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Abstract: Gliomas comprise the vast majority of all malignant brain tumors. Low-grade glioma patients with 
combined whole-arm losses of 1p and 19q chromosomes were shown to have significantly better overall 
survival rates compared to non-deleted patients. This work evaluates several approaches for assessment of 
1p/19q status from T2-weighted magnetic resonance images, using radiomics and machine learning. 
Experiments were performed using images from a public database (102 codeleted, 57 non-deleted). We 
experimented with sets of 68 and 100 radiomic features, and with several classifiers, including support vector 
machine, k-nearest neighbors, stochastic gradient descent, logistic regression, decision tree, Gaussian naive 
Bayes, and linear discriminant analysis. We also experimented with several ensemble-based methods, 
including four boosting-based classifiers, random forest, extra-trees, and bagging. The performance of these 
methods was compared using various metrics. Our best results were achieved using a bagging ensemble 
estimator based on the decision tree classifier, using only texture-based radiomics features. Compared to 
other works that used the same database, this approach provided higher sensitivity. It also achieved higher 
sensitivity than that provided by neurosurgeons and neuroradiologists analyzing the same images. We also 
show that including radiomic features associated with first order statistics and shape does not improve the 
performance of the classifiers, and in many cases worsens it. The molecular assessment of brain tumors 

HIGHLIGHTS 
 

• We investigate machine learning assessment of 1p/19q status in low grade gliomas. 

• Experiments were performed with different sets of radiomic features. 

• Several classifiers were evaluated, including various ensemble methods. 

• Best results achieved using a bagging estimator with texture-based radiomic features. 

•  
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through biopsies is an invasive procedure, and is subject to sampling errors. Therefore, the techniques 
presented in this work have strong potential for aiding in better clinical, surgical, and therapeutic decision-
making. 

Keywords: low-grade glioma; 1p/19q codeletion; radiomics; machine learning; ensemble methods. 

INTRODUCTION 

Gliomas comprise the vast majority of all malignant brain tumors. The World Health Organization 
recommends the use of an integrative classification of tumors, considering histopathological and molecular 
characteristics, thus allowing for better clinical management [1]. For example, oligodendrogliomas are 
diagnosed by the identification of the combined whole-arm losses of 1p and 19q chromosomes (1p/19q 
codeletion). Oligodendrogliomas have better prognosis than astrocytomas and glioblastomas; thus, the 
identification of 1p/19q status (codeleted or non-deleted) is a very important step for evaluating outcomes in 
patients with gliomas [2,3]. Low-grade glioma (LGG) patients with codeleted 1p/19q status were shown to 
have significantly better overall survival rates compared to non-deleted patients [4]. Thus, knowledge of 
1p/19q is of fundamental importance in making better clinical, surgical, and therapeutic decisions. 

The molecular assessment of brain tumors is made through biopsies, which are invasive procedures that 
are subject to sampling errors, involve surgical risks [5]. One non-invasive alternative for assessment of 
1p/19q status involves the use of magnetic resonance imaging (MRI), radiomics, and machine learning. MRI 
is a non-invasive medical imaging method, as it does not use ionizing radiation. MRI provides superior soft 
tissue contrast, and therefore it is the gold standard imaging method for the diagnosis and treatment 
management of brain tumors [6,7]. Radiomics is a tool for extracting quantitative attributes from medical 
images, allowing the mining of non-visual information, which may correlate to histopathological and genetic 
characteristics of the tumor, enabling molecular diagnosis, assessment of tumor grade and prognosis, as 
well as assisting in clinical decision-making, guiding treatments and pre-surgical mapping [8,9]. Machine 
learning provides techniques so that a computational model can be created from data (input) with a known 
response (output) [10]. 

Many research groups have been working on machine learning methods for assessment of 1p/19q status 
[11-20]. The works of those groups has shown that machine learning and deep learning have strong potential 
for diagnosis of 1p/19q codeletion. Several authors have demonstrated machine learning methods which 
perform better than radiologists diagnosing brain tumors in MRI images [13]. However, there are several 
machine learning tools yet unexplored for assessment of 1p/19q status, some of which may provide even 
better performance for this application. 

This work evaluates several approaches for the non-invasive evaluation of the 1p/19q chromosome 
codeletion status from T2-weighted magnetic resonance images, using radiomics and machine learning. The 
evaluated methods use radiomics feature extraction, feature scaling, and classification based on various 
supervised models. Our best results were achieved using a bagging ensemble estimator based on the 
decision tree classifier, using only texture-based radiomics features. Compared to other works that used the 
same database, this approach provided higher sensitivity. It also achieved higher sensitivity than that 
provided by neurosurgeons and neuroradiologists analyzing the same images. We also show that including 
radiomic features associated with first order statistics and shape does not improve the performance of the 
classifiers, and in many cases worsens it. 

METHODS 

Dataset 

All experiments were performed using the LGG-1p19qDeletion dataset from The Cancer Imaging Archive 
[20,21]. This dataset consists of MRI images acquired at 1.5 T or 3 T, including post-contrast T1- and T2-
weighted images (1-mm and 3-mm slice thickness, respectively). However, we only used the T2-weighted 
images, because these better highlight fluid and edema compared to other sequences, and therefore are 
very useful in detailing various pathological processes, including for determining the extent of infiltration of a 
brain tumor. The dataset contains pre-operative images from 159 patients, all with 1p/19q status proven 
through biopsy (102 patients with codeleted LGG, and 57 patients with non-deleted LGG). Representative 
images are shown in Figure 1. The dataset also includes semi-automatically segmented regions-of-interest 
(ROI) for all images. Each ROI completely encloses a tumor and its boundaries [20], as illustrated in Figure 
2. 
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Figure 1. Representative images from the LGG-1p19q. Deletion database: (a) large heterogeneous infiltrative lesion in 
the right frontoparietal region with areas of low signal intensity, suggesting hemorrhage or calcification, diagnosed as 
oligodendroglioma (1p/19q codeleted tumor); and (b) homogeneous infiltrative lesion in the right frontal lobe with high 
signal intensity, diagnosed as astrocytoma (1p/19q non-codeleted tumor). 

 

 

Figure 2. Example of a segmented tumor from the LGG-1p19qDeletion database: (a) image containing right occipital 
tumor with homogeneous high signal intensity, diagnosed as oligodendroglioma (1p/19q codeleted); (b) semi-
automatically segmented region-of-interest; and (c) region-of-interest overlayed over image. 

Feature extraction 

The extraction of quantitative features from the tumors was performed using the PyRadiomics platform 
version 2.0 [22]. PyRadiomics is a flexible open-source plat- form, which allows extracting a large number of 
radiomic features from medical images. 

The ROIs in the LGG-1p19qDeletion database are provided in the Neuroimaging Informatics Technology 
Initiative (NIfTI) format, which is not supported in PyRadiomics. Thus, these were converted to the Nearly 
Raw Raster Data (NRRD) format using the 3DSlicer software tool [23]. 

We extracted 100 features from each ROI, with no filters enabled. The features in PyRadiomics are 
subdivided into classes, including: first order statistics (first order); shape-based (shape); gray level 
cooccurence matrix (GLCM); gray level run length matrix (GLRLM); gray level size zone matrix (GLSZM); 
and gray level dependence matrix (GLDM). A summary of the features we extracted is presented in Table 1. 
Note that while first order statistics features describe the distribution of voxel intensities within the ROI, and 
shape-based features describe size and shape of the ROI, the remaining classes of features describe texture 
characteristics [22,24]. We experimented with sets of 68 and 100 features, as will be discussed later. The 
68-feature set uses only texture-based features. 
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Table 1. Summary of extracted radiomic features. 

Class Name Number of Features Class Description 

first order 18∗ Describe the distribution of voxel intensities within the ROI 

shape 14∗ Describe the three-dimensional size and shape of the ROI 

GLCM 
 

22 Quantifies the cooccurence of voxel intensities within the ROI 

GLRLM 16 Quantifies the occurrences of consecutive voxels within the ROI 
that have the same gray level 

GLSZM 16 Quantifies the number of connected voxels that share the same 
gray level intensity in the ROI 

GLDM 14 Quantifies gray level dependencies in the ROI 

∗ We experimented with sets of 68 and 100 features. First order statistics and shape-based features were not used 

when working with only 68 features. 

Train-test data split 

After feature extraction, the dataset with 159 instances (57 non-deleted and 102 codeleted) was 
randomly divided into two subsets: 90% for training (143 instances) and 10% for testing (16 instances).  

Feature normalization 

Different radiomic features come in different orders of magnitude. Thus, normalization was used so that 
all features display similar ranges of values. This helps the classification algorithm, by ensuring all features 
are weighted similarly. The standardization method was applied to each of the 100 feature sets, so that they 
each have zero mean and unit standard deviation [25,26]. The normalized features are calculated as z = (x 
− µ)/σ, where x are the unnormalized features, and µ and σ are the mean and standard deviation of the 
corresponding feature set, respectively.  Note that µ and σ are calculated from the training instances only, 
but are used for normalizing both training and testing feature sets.  

Classification 

We experimented with several classifiers [27] for classification of 1p/19q status:  

• support vector machine (SVM) classifier [28,29]; 

• random forest (RF) classifier [30]; 

• k-nearest neighbors (KNN) classifier [31]; 

• extra-trees (ET) classifier [32,33]; 

• gradient boosting (GB) classifier [34]; 

• adaptive boosting (AB) classifier [35]; 

• stochastic gradient descent (SGD) classifier [36,37]; 

• histogram-based gradient boosting (HGB) classification tree classifier [38]; 

• extreme gradient boosting (XGB) classifier [39]; 

• logistic regression (LR) classifier [40]; 

• decision tree (DT) classifier [41,42]; 

• Gaussian naive Bayes (GNB) classifier [43]; and 

• linear discriminant analysis (LDA) classifier [44]. 
 
A list of classes and input parameters used for implementing each classifier is shown in Table 2. 

Experiments with the above classifiers were performed using implementations from the scikit-learn 0.24.2 
(sklearn) library [26], except for the XGB classifier, which was implemented using the XGBoost 1.7.1 
(xgboost) library [39]. 

We also experimented with bagging [45], an ensemble meta-estimator in which random subsets of the 
training dataset are used to fit multiple instances of a base estimator, and then the final prediction is obtained 
by aggregating the individual predictions from each estimator instance (Figure 3). The default base estimator 
in the scikit-learn implementation of bagging is a decision tree classifier, but the user may specify a different 
classifier as base estimator. We experimented with bagging using each of the other methods listed in Table 
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2 as the base estimator. We used the BaggingClassifier class from the sklearn library with default input 
parameters, except for n_estimators=200 and base_estimator specified as one of the classifiers from Table 
2. 

 
 

 

Figure 3. Simplified process diagram of parallel ensemble classifying methods such as bagging. 

             Table 2. List of classes and input parameters used for implementing each classifier. 

Classifier  Class and input parameters 

SVM SVC(kernel=’linear’, probability=True) 

RF RandomForestClassifier(n_estimators=200) 

KNN KNeighborsClassifier(n_neighbors=3,weights=’uniform’) 

ET ExtraTreesClassifier(n_estimators=200) 

GB GradientBoostingClassifier(n_estimators=200,max_depth=1) 

AB AdaBoostClassifier(n_estimators=200) 

SGD 
CalibratedClassifierCV(base_estimator=SGDClassifier(penalty=’elasticnet’, 
loss=’log’,learning_rate=’optimal’,eta0=1,alpha= 0.1)) 

HGB HistGradientBoostingClassifier(max_bins=255,max_iter=100) 

XGB XGBClassifier(n_estimators=200,eval_metric=’logloss’) 

LR LogisticRegression(class_weight=’balanced’, solver=’newton-cg’) 

DT DecisionTreeClassifier(max_features=30) 

GNB GaussianNB() 

LDA LinearDiscriminantAnalysis() 

Note: the XGBClassifier class is from the xgboost library; all other classes are from the sklearn library; 
default input parameters were used where not specified above. 

Evaluating the performance of the classifiers 

The following widely-accepted metrics [46] were used to evaluate the performance of each classifier in 
predicting 1p/19q status: balanced classification accuracy (BCA), accuracy (Acc), sensitivity or recall (Se), 
specificity (Spe), precision (Pre), F1 score (F1), and area under curve (AUC). 

 Each classifier was simulated 100 times, with each new simulation beginning with a new train-test data 
split, followed by feature normalization. For each classifier, the metrics listed above were assessed for each 
simulation, and then averaged. Confidence intervals for each metric and for each classifier were also 
calculated — at the 95% confidence level, based on a two-tailed Student’s t-distribution — from the results 
from these 100 simulations. 

https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&ved=2ahUKEwjY_IyMpJjfAhXBqZAKHdazDawQFjAAegQIAxAC&url=http%3A%2F%2Fwww.scielo.br%2Fbabt&usg=AOvVaw08BojU0LuZNEI4C434jTD4
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The AUC values represent the area under the receiver operating characteristic (ROC) curve [47], and 
were obtained while executing the classification step, as they were calculated using the roc_auc_score 
implementation from the sklearn library. 

The AUC measures the probability that a positive sample will be labeled as positive by the classifier. 
The other metrics were calculated after the classification step, from the confusion matrices obtained from 

each simulation, as: 
 

BCA = ((Se + SPE) / 2) (1) 

Acc = ((TP + TN) / (TP + FP + TN + FN)) (2) 

Se = (TP / (TP + FN)) (3) 

Spe = (TN / (TN + FP)) (4) 

Pre = (TP / (TP + FP)) (5) 

F1 = 2 · ((Pre · Se) / (Pre + Se)) (6) 

 
where TP, FP, TN, and FN represent the number of true positives, false positives, true negatives, and false 
negatives, respectively, obtained from each simulation. Codeleted instances were treated as “positives”, and 
non-deleted instances were treated as “negatives”. All metrics were converted to percentage values, by 
multiplying each by 100%. 

Note that the BCA is the arithmetic mean of sensitivity and specificity. This metric is particularly useful 
when dealing with imbalanced data [48], as is our case.  Also note that the F1 score is the harmonic mean 
of precision and sensitivity. As such, a very low value of precision yields a very low F1 score, even if the 
sensitivity is very high; similarly, a very low value of sensitivity yields a very low F1 score, even if the precision 
is very high. 

Comparing different methods 

Two different tumors may have similar size, shape and/or pixel gray-level distribution (these would be 
quantified by shape-based and first order statistics features), but may differ in spatial interrelationship of pixel 
intensities (which would be quantified by texture-based features). Texture analysis may be especially useful 
when dealing with markedly heterogeneous tumors [24]. Quantitative texture features extracted from T2 
images have been shown to predict 1p/19q codeletion with high sensitivity and specificity [49]. 

Thus, we experimented with sets of 68 and 100 radiomic features. First order statistics and shape 
features were not used when working with only 68 features, i.e., only texture-based features were used (see 
Table 1). The average of each metric for each classifier, obtained with 68 features, was compared with that 
obtained with 100 features. 

We also experimented with bagging using each of the other methods listed in Table 2 as the base 
estimator, and then compared each metric for each classifier with that obtained without bagging. This was 
done because default (DT-based) bagging showed very promising results in our initial experiments, so we 
decided to investigate whether this ensemble approach could improve the performance of other classifiers. 

In each of those comparisons, we performed a two-sample t-test using GNU Octave 7.2.0. When p < 
0.05, the null hypothesis of equal means was rejected. Normality tests were not performed, as our sample 
size (n = 100) is large [50]. 

RESULTS 

Table 3 presents the performance results obtained with each of the classifiers listed in Table 2, 
using 68 texture-based radiomic features (features associated with first order statistics and shape were 
not used in this experiment; see Table 1).  Each entry corresponds to a 100-simulation average, and 
the best result for each metric is highlighted in bold. In this first experiment, SVM and RF presented 
the best overall results, and displayed similar performances. SVM presented the highest BCA (77.3%), 
while RF presented the highest accuracy (80.3%) and AUC (84.6%). These classifiers also presented 
competitive sensitivity, specificity, precision and F1 score. The SGD classifier presented higher 
sensitivity (95.7%) than SVM and RF, but provided very low specificity (51.5%). This is because SGD 
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presented few false negatives (codeleted instances classified as non-deleted), but many false positives 
(non-deleted instances classified as codeleted). The LR classifier provided the highest specificity 
(66.5%) and the lowest sensitivity (75.7%), as it presented fewer false positives, but more false 
negatives. 

Table 3. Classification performance using 68 texture-based radiomic features. Each entry corresponds to a 100-
simulation average. The best result for each metric is highlighted in bold. 

Classifier BCA Acc Se Spe Pre AUC F1 

SVM 77.3 79.8 91.0 63.5 79.5 80.0 84.2 
RF 76.0 80.3 90.9 61.1 81.2 84.6 85.2 

KNN 75.3 79.3 91.4 59.1 78.7 77.8 84.0 

ET 74.8 79.1 90.1 59.6 79.5 84.2 83.9 

GB 74.8 79.2 90.8 58.8 79.9 82.9 84.4 

AB 74.5 79.4 88.4 60.5 81.4 82.0 84.2 

SGD 73.6 80.3 95.7 51.5 78.9 79.3 86.0 

HGB 72.9 76.4 84.6 61.1 79.8 79.9 81.4 

XGB 72.5 76.0 85.9 59.0 78.1 77.7 81.1 

LR 71.1 71.6 75.7 66.5 78.3 78.8 76.1 

DT 68.8 71.4 77.5 60.0 78.8 68.8 77.2 

GNB 67.9 72.3 85.8 49.9 74.5 70.9 79.0 

LDA 61.9 66.2 77.3 46.5 72.6 64.3 73.8 

 

Table 4 presents the results obtained with the same classifiers, but using 100 radiomic features (i.e., 
features associated with first order statistics and shape were not excluded). Statistically-significant 
differences were found for some metrics and some classifiers. The use of additional radiomic features 
resulted in worse performance (significantly lower average for at least one metric, as indicated with ∗) for 
most classifiers: SVM, RF, KNN, ET, GB, AB, SGD, and LDA. We did not observe any significant difference 
in performance for these classifiers: HGB, XGB, and DT. We observed improved results (indicated with ∗∗) 
for only two classifiers: LR, for which the F1 score was significantly improved from 76.1% to 79.5%, and GNB, 
for which the AUC was significantly improved from 70.9% to 75.7%. Note GNB still presents very poor overall 
performance compared to the other classifiers from Tables 3 and 4, while LR still presents high specificity, 
but low sensitivity. Based on these results, we used the 68-feature set in our next experiment, instead of the 
full 100-feature set. 

Table 5 presents the results obtained with the same classifiers, but this time using each classifier as the 
base estimator of the bagging classifier. The 68-feature set was used. The use of bagging significantly 
improved all metrics (indicated with ∗∗) for the XGB and DT classifiers, while significantly worsened all metrics 
(indicated with ∗) for the KNN classifier. Bagging also significantly improved the sensitivity of SVM (from 
91.0% to 96.3%), but at the cost of significantly lower specificity (from 63.5% to 39.1%). HGB presented an 
important improvement in sensitivity (from 84.6% to 90.2%), which resulted in significant improvement in 
BCA, accuracy, and F1 score. We did not observe any significant difference in performance for these 
classifiers: RF, ET, GB, and GNB. Most notably, bagging with DT presented the highest BCA (79.3%), 
accuracy (81.9%), and specificity (67.8%) of all our experiments; our second highest precision (82.6%), AUC 
(84.2%), and F1 score (85.9%); and competitive sensitivity (90.9%). We consider DT-based bagging to be 
our best overall classifier. Note that bagging with XGB and bagging with HGB also presented excellent 
results. 

Table 6 summarizes the results we obtained with our best overall classifier: bagging method with a 
decision tree base estimator, using a 68-feature set. Mean, standard deviation and 95% confidence intervals 
are shown for confusion matrix values and for all classification metrics. The confusion matrix values show 
that the average number of misclassifications (FN and FP) is small, compared to the number of correct 
classifications (TP and TN). Particularly, the number of false negatives is very small compared to the number 
of true positives. This ensures high sensitivity (90.9%). Unfortunately, the number of false positives is not as 
low when compared with the number of true negatives. This hurts specificity. Still, our best specificity result 
(67.8%) was obtained using DT-based bagging. 
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Table 4. Classification performance using the full 100-feature set. Each entry corresponds to a 100-simulation average. 
The best result for each metric is highlighted in bold. 

Classifier BCA Acc Se Spe Pre AUC F1 

SVM 71.8* 75.6* 85.3* 58.2 79.2 73.5* 81.3* 
RF 74.6 78,1 88.8 60.5 79.9 81.0* 83.4 

KNN 64.2* 69.4* 82.9* 45.6* 74.3* 70.3* 77.2* 

ET 73.5 77.7 89.9 57.1 78.4 80.3* 83.1 

GB 74.7 77.6 85.7* 63.6 80.3 80.9 82.2 

AB 70.4* 74.1* 82.7* 58.1 78.5 74.7* 79.6* 

SGD 72.8 78.5 93.3* 52.3 77.7 79.3 84.2 

HGB 71.4 75.8 85.8 57.1 79.3 77.5 81.7 

XGB 73.2 76.7 86.8 59.6 79.8 81.1 82.4 

LR 72.4 74.6 78.8 66.0 81.3 77.9 79.5** 

DT 67.6 69.9 76.0 59.2 78.1 67.3 76.0 

GNB 69.0 73.6 84.9 53.0 76.4 75.7** 79.7 

LDA 61.8 64.5 71.2* 52.4 73.0 61.5 71.0 

∗ p < 0.05 and mean is lower than with 68 features. 

∗∗ p < 0.05 and mean is higher than with 68 features. 

Table 5. Classification performance using each classifier as the base estimator of the bagging classifier. The 68-feature 
set was used. Each entry corresponds to a 100-simulation average. The best result for each metric is highlighted in 
bold. 

Base Estimator BCA Acc Se Spe Pre AUC F1 

SVM 67.7* 76.1* 96.3** 39.1* 74.4* 78.0 83.4 
RF 75.9 79.2 90.1 61.8 79.8 81.7 83.9 

KNN 61.4* 56.1* 76.0* 46.7* 71.9* 68.6* 73.2* 

ET 72.4 78.3 89.6 55.2 80.8 82.5 84.4 

GB 76.9 81.2 81.0 62.8 81.8 83.3 85.6 

AB 76.8 80.3 92.5** 61.1 79.8 82.9 85.0 

SGD 76.1 79.4 87.8* 64.3** 81.5 80.7 83.8 

HGB 77.9** 80.9** 90.2** 65.6 81.9 83.1 85.3** 

XGB 78.5** 81.6** 90.3** 66.7** 83.0** 82.8** 85.8** 

LR 69.5 71.9 79.9** 59.2* 76.7 76.2 77.4 

DT 79.3** 81.9** 90.9** 67.8** 82.6** 84.2** 85.9** 

GNB 68.4 73.8 84.0 52.8 77.4 72.5 79.9 

LDA 61.7 65.6 78.3 45.2 71.2 71.5** 73.4 

∗ p < 0.05 and mean is lower than without bagging. 

∗∗ p < 0.05 and mean is higher than without bagging. 

Table 6. Summary of results obtained with our best overall classifier: bagging method with a decision tree base 
estimator, using a 68-feature set. Mean, standard deviation and 95% confidence intervals are shown for confusion matrix 
values and for all classification metrics 

 mean ± std dev confidence interval 

TP 9.32 ± 1.86 8.96 – 9.68 

FN 0.94 ± 0.93 0.76 – 1.12 

TN 3.78 ± 1.35 3.51 – 4.05 

FP 1.96 ± 1.36 1.69 – 2.23 

BCA 79.3 ± 11.3 77.1 – 81.5 

Acc 81.9 ± 9.9 79.9 – 83.8 

Se 90.9 ± 8.9 89.2 – 92.7 

Spe 67.8 ± 20.0 63.8 – 71.7 

Pre 82.6 ± 12.0 80.2 – 84.9 

AUC 84.2 ± 10.0 82.2 – 86.2 

F1 85.9 ± 8.3 84.3 – 87.6 

 

Figure 4 presents the ROC curve obtained by averaging over 100 simulations of our DT-based bagging 
classifier. Metrics such as sensitivity, specificity, and precision are dependable on the classifier’s 
discrimination threshold, so it is often useful to analyze the ROC curve, which illustrates how the classification 
results change as the classifier’s discrimination threshold is varied. The ROC curve is a plot of true positive 

https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&ved=2ahUKEwjY_IyMpJjfAhXBqZAKHdazDawQFjAAegQIAxAC&url=http%3A%2F%2Fwww.scielo.br%2Fbabt&usg=AOvVaw08BojU0LuZNEI4C434jTD4
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rate (Se) against false positive rate (1 − Spe). The ROC curve is computed based on probability estimates of 
the positive class (codeleted 1p/19q status). The area under the average ROC curve was 0.842, which 
corresponds to the mean AUC value of 84.2%. This is an estimate of the probability of accurately labeling a 
positive (codeleted 1p/19q status) sample. 

 
 

 

 
Figure 4. ROC curve obtained by averaging over 100 simulations of our DT-based bagging classifier. The area under 
the ROC curve was 0.84. 

DISCUSSION 

Our experiments evaluated the potential of shape-based, first order statistics, and texture-based radiomic 
features for machine learning classification of 1p/19q chromosomal codeletion status in low-grade gliomas. 
Shape-based features quantify the tumor’s shape and size; first order statistics features quantify the tumor’s 
pixel intensity distribution (or histogram); and texture-based features (associated with second and higher 
order statistics) quantify pixel interrelationships, such as spatial relationships and co-occurrence of the pixel 
values [24]. The PyRadiomics library proved adequate for extracting radiomic features from the LGG-
1p19qDeletion dataset, requiring only a file format conversion (from NIfTI to NRRD). We demonstrated 
promising classification results using exclusively texture-based radiomic features extracted from T2-weighted 
MRI images. Texture potentially correlate with cellular density, angiogenesis, and necrosis; hence, texture 
analysis can be used to measure tumor heterogeneity and to predict tumor biology [24]. For example, 
oligodendrogliomas usually present calcifications and bleeding, while astrocytomas tend to be more 
homogeneous. Thus, heterogeneity is an important visual aspect that specialist evaluate on MRI images 
when attempting to differentiate between these types of tumors. Texture analysis has been shown to predict 
1p/19q codeletion with high sensitivity and specificity [49]. Our experiments showed that not only texture-
based features are sufficient for classification of 1p/19q status, but including radiomic features associated 
with first order statistics and shape does not improve the performance of the classifiers, and in many cases 
worsens it. 

Ensemble methods such as bagging and boosting have been shown to provide better accuracy than 
single base classifiers in several applications [51-54]. Single base estimators often have a high bias or too 
much variance. Ensemble methods try to reduce bias and/or variance by combining several learners [55-57]. 
In bagging, several homogeneous learners are trained independently, in parallel (as illustrated in Figure 3); 
in boosting, the homogeneous learners are trained sequentially. We experimented with several boosting-
based classifiers (GB, AB, HGB, and XGB), but our best results were obtained using bagging-based 
classifiers. Interestingly, the use of bagging improved the performance of some of the boosting classifiers 
(see Table 5). Our best result, however, was obtained with a bagging classifier using the decision tree 
algorithm as base estimator. 

https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&ved=2ahUKEwjY_IyMpJjfAhXBqZAKHdazDawQFjAAegQIAxAC&url=http%3A%2F%2Fwww.scielo.br%2Fbabt&usg=AOvVaw08BojU0LuZNEI4C434jTD4
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Table 7 presents a comparison between the proposed DT-based bagging classifier and several methods 
from the literature. These represent the state-of-the-art in 1p/19q codeletion status classification based on 
radiomics and machine learning. Table 7 also includes metrics from a study in which two neurosurgeons and 
two neuroradiologists evaluated the T2-weighted images from the LGG-1p19qDeletion dataset [13]. The 
evaluators rated each image with respect to whether they were able to confidently determine the tumor’s 
1p/19q status, using a scale of 1 to 5 (where 1 corresponded to “unsure”, and 5 corresponded to “confident”). 
This score was converted into a codeletion prediction marker, from which the presented metrics were 
calculated. The comparison in Table 7 shows that our DT-based bagging classifier provides accuracy and 
AUC values comparable to the best methods from the literature. If we focus on works that used exclusively 
the same database (Refs. [14] and [16]), our classifier shows better sensitivity, but lower specificity. Our 
method also achieved better sensitivity and AUC than that provided by neurosurgeons and neuroradiologists 
analyzing the same images. 

Table 7. Comparison with state-of-the-art methods from the literature for 1p/19q status classification based on radiomics 
and machine learning.  

Reference Dataset Classifier BCA Acc Se Spe Pre AUC F1 

[13] LGG-1p19qDeletion neurosurgeons∗  48.9 41.5 63.8  51.5  

neuroradiologists∗  63.2 53.5 81.8  81.1  

Own - EMC/HMC (train) 
LGG-1p19qDeletion (test) 

SVM 
 69.3 73.2 61.7 78.7 72.3 69.7 

[14] LGG-1p19qDeletion quadratic SVM  80.0 66.7 100.0    

[15] Own RF  70.0 68.3 71.2  76.0  

[16] LGG-1p19qDeletion multilayer perceptron  83.8 87.5 75.8 90.5 86.9 88.3 

[17] Own – PUMCH RF  83.3 100.0 75.0  88.9  

[18] TCGA-LGG XGB   75.0 85.0  80.0  

 
[19] 

LGG-1p19qDeletion 
TCGA-LGG BraTS 2019 

 
CNN  

 
83.3 

 
86.7 

 
79.2 

 
 

82.1 
 

Own - GUH  75.0 58.3 82.1  86.6  

proposed LGG-1p19qDeletion DT-based bagging 79.3 81.9 90.9 67.8 82.6 84.2 85.9 

* Ref. [13] presents a comparative study in which two neurosurgeons and two neuroradiologists rated the dataset’s 
images with respect to whether they were able to confidently determine the tumor’s 1p/19q status, using a scale of 1 to 
5 (where 1 corresponded to “unsure”, and 5 corresponded to “confident”). This score was converted into a codeletion 
prediction marker, from which these metrics were calculated. 

 
Akkus and coauthors [20] reported 87.7% accuracy using a CNN-based method applied onto the LGG-

1p19qDeletion dataset. We decided not to include this result in Table 7 because it was obtained by using 
three slices from each subject, and then dividing the slices into training and testing sets, such that slices from 
the same subject may have been used for both training and testing steps. We feel that this may configure 
data leakage. 

When assessing 1p/19q status, it is more critical to avoid false negatives (misdiagnosing a codeleted 
tumor) than it is to avoid false positive (misdiagnosing a non-deleted tumor); i.e., high sensitivity is more 
critical than high specificity. Positive codeletion diagnosis is important because patients with codeleted 
tumors have better prognosis and longer survival, as these tumors respond well to dedicated chemotherapy 
(based on procarbanize, lomustine and vincristine), and to radiotherapy [4]. Our DT-based bagging classifier 
achieved higher sensitivity (90.9%) than most methods from the literature. Some of our classifiers achieved 
even higher sensitivity (as high as 96.3%), at the cost of lower specificity. While none of the classifiers we 
evaluated achieved specificity higher than 67.8%, we believe this may be due to the small size of the LGG-
1p19qDeletion dataset, particularly the small number of non-deleted instances. Using an imbalanced dataset 
is often an issue, as the data patterns of the majority class may stand out from those of the minority class. A 
model trained with an imbalanced dataset may project higher accuracy onto the majority class, and possibly 
display poor classification performance for the minority class [58]. Aiming to address this issue, we 
experimented with minority oversampling techniques such as the adaptive synthetic algorithm [59] and the 
synthetic minority oversampling technique [60], but this did not improve the classification results. We also 
tried to match the number of instances of each class in the training set by reducing the number of instances 
from the majority class [61], but this also proved unfruitful. Experiments with dimensionality reduction 
techniques [62] also showed no improvement in classification performance. Li and coauthors [63] suggest a 
relation of 10 to 15 instances per radiomic feature used in the classification stage. Thus, we strongly feel that 
our classifiers could have achieved better performance if a larger dataset was available. 

https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&ved=2ahUKEwjY_IyMpJjfAhXBqZAKHdazDawQFjAAegQIAxAC&url=http%3A%2F%2Fwww.scielo.br%2Fbabt&usg=AOvVaw08BojU0LuZNEI4C434jTD4
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CONCLUSION 

This work evaluated several machine learning classifiers for the non-invasive evaluation of the 1p/19q 
chromosome codeletion status in low grade gliomas, using radiomic features extracted from T2-weighted 
magnetic resonance images. Our experiments showed that including radiomic features associated with first 
order statistics and shape does not improve the performance of the classifiers, and in many cases worsens 
it. Our best results were achieved using a bagging ensemble estimator based on the decision tree classifier, 
using only texture-based radiomic features. Compared to other works that used the same database, this 
approach provided higher sensitivity. It also achieved higher sensitivity and AUC than that provided by 
neurosurgeons and neuroradiologists analyzing the same images. Results could be improved by using a 
larger dataset for training the classifiers. 

Patients with 1p/19q codeletion have better survival rates and prognosis than non- deleted patients, but 
the molecular assessment of brain tumors through biopsies is an invasive procedure, and is subject to 
sampling errors. Therefore, the techniques presented in this work have strong potential for aiding in better 
clinical, surgical, and therapeutic decision-making. 
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