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Abstract-The reconstruction of multi-dimensional magnetic 
resonance imaging (MRI) data can be a computationally demand­
ing task. Signal-to-noise ratio is also a concern, specially in high­
resolution imaging. Data compression may be useful not only for 
reducing reconstruction complexity and memory requirements, 
but also for reducing noise, as it is capable of eliminating spurious 
components. This work proposes the use of SVD-based low­
rank approximation for the reconstruction and denoising of MRI 
data. The Akaike information criterion is used to estimate the 
appropriate model order. The model order is used to remove 
noisy components and to reduce the amount of data to be stored 
and processed. The proposed method is evaluated using in vivo 
MRI data. We present images reconstructed using less than 20% 
of the original data size and with a similar quality in terms of 
visual inspection. A quantitative evaluation is also presented. 

I. INTRODUCTION 

Magnetic resonance imaging (MRI) of living human tissue 
started in the 1970s. Due to its recentness, MRI is a very 
fruitful area of research in the bioengineering and signal 
processing fields [1]. The general MRI process is illustrated 
in Figure 1. The image acquisition process can use one or 
multiple coils, different pulse sequences and gradient fields, 
and is currently a major field of research and work. The 
acquired data corresponds to the Fourier transform of the 
image, A(kx, ky), also called k-space. The image, A(x, y), is 
obtained using reconstruction algorithms, which are typically 
based on the inverse Fourier transform. 

ACQUISITION 
PROCESS 

RECONSTRUCTION 
ALGORITHM 

Figure 1. Magnetic resonance imaging acquisition and reconstruction 
process. 

The data acquisition process usually focus on reducing scan 
time in order to increase patient comfort and throughput and to 
reduce motion artifacts. However, reduced scan time results in 
reduced signal-to-noise ratio (SNR). This issue is aggravated 
when high-resolution imaging is used, as a reduced voxel size 
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is generally associated with significantly lower SNR. A post­
acquisition approach to improve SNR is to use data statistics 
in order to identify and remove noise components. 

Singular value decomposition (SVD) is a well-known tech­
nique for data compression [2] as well as for denoising 
[4]. Some applications have already been demonstrated for 
MRI, such as data reconstruction [3] and denoising [4]. In 
multi-channel MRI systems, SVD can also be used for coil 
compression [5]. SVD-based low-rank approximation can be 
applied either before image reconstruction - treating data in 
the k-space - or after reconstruction - dealing with the 
reconstructed image and aiming to use less memory to store 
it. 

This paper proposes the use of model order selection and 
decomposition schemes for MRI data reconstruction, based 
on the Akaike information criterion (AIC) and singular value 
decomposition. By applying a model order selection, we 
calculate the number of components necessary to represent 
the MRI data. Then, SVD-based low-rank approximation is 
used to reconstruct the MRI image from the reduced number 
of components. In order to validate this technique, both image 
and k-space domain denoising are evaluated and compared 
by means of both signal-to-error ratio (SER) and visual 
inspection. 

The remainder of this paper is organized as follows: Sec­
tion II presents the mathematical formulation for MRI image 
reconstruction and for singular value decomposition. Sec­
tion III introduces the problem and explains the experimental 
methodology. Section IV describes the proposed approach, 
and explainins how SVD and Ale are used to achieve the 
desired results. Section V presents the results of truncated 
SVD applied to an MRI brain image. Section VI presents a 
final analysis of the results and this work's conclusions. 

II. MATHEMATICAL FORMULATION 

In this section, we present the theoretical fundamentals of 
MRI image reconstruction and the principles of singular value 
decomposition. 

A. Magnetic resonance imaging 

The acquired MRI signal at a particular time instant t 
corresponds to a sample of the Fourier transform A(kx, ky) 



of the cross-sectional image A(x, y): 

A(kx, ky) = 11 A(x, y) e-j2n(kxx+kyy) dx dy. (1) 

The Fourier coordinates kx and ky vary with time, according 
to: 

(2) 

(3) 

where I is the gyromagnetic ratio (for hydrogen protons, 
I = 42.57 MHzfT) , and Gx(Y) and Gy(Y) are time-varying 
magnetic field gradients along the x- and y-axes, respectively. 

The A(x, y) image is reconstructed using a two-dimensional 
inverse Fourier transform along kx and kyo The k-space data is 
typically digitized and reconstructed on a computer. Therefore, 
the reconstructed MRI image corresponds to a matrix of 
grayscale pixel-intensity values, A. 

B. Singular value decomposition 

Considering the image matrix A, which is an M x N matrix 
of data, it is possible to obtain its singular values and singular 
vectors according to: 

A usvT 
N 

L O"iUiVr , 
i=l 

(4) 

(5) 

where U is an M x M matrix, S is an M x N diagonal 
matrix, and VT is an N x N matrix. After calculating each 
singular value and singular vector of the matrix, we are able 
to decompose it using singular value decomposition. 

Considering that the rank of the signal matrix A is r, and 
that M ::::: N, then r ::::: N. Equation (4) describes the singular 
value decomposition of A [6], [7]. 

The columns of U are called the left singular vectors, {UK } , 

and the rows of VT correspond to the right singular vectors, 
{VK } . The elements of the diagonal matrix S are called 
the singular values. The singular values contain information 
about the importance of each vector - left singular and right 
singular - in spanning the signal space (or generating the 
MRI data, in the proposed application). The singular values 
describe how essential each component is for data description. 

Furthermore, S K > 0 for 1 ::::: K ::::: r, and Si = 0 for 
(r + 1) ::::: i ::::: N, and the singular values are ordered from 
the highest to the lowest. Therefore, this composition indicates 
that the singular values with the lowest indexes represent the 
more important components of the signal. Thus, it is possible 
to apply an algorithm in order to determine the model order 
and therefore reduce the number of components in the matrices 
U, S, and V in order to recover the original data without 
significant loss of information, and possibly reduce noise [7]. 
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In this paper, we propose the use of this decomposition scheme 
for reducing MRI data. 

In order to correctly validate our analysis, we compare 
the results of SVD decomposition schemes considering the 
original signal (in k-space) and the reconstructed signal (in 
image domain). 

III. PROBLEM STATEMENT 

By applying the AIC, the amount of signal singular values 
and its respective left and right singular vectors is estimated. 
Therefore, it is possible to use this number, also called model 
order, to represent the original data. 

We call principal components (PC) the singular values and 
singular vectors related to the model order. Using the PC, 
one can increase the signal-to-error ratio in the reconstruction 
by removing noisy components and, therefore, enhance the 
reconstructed image quality. Another interesting point is that 
with fewer components, the data require less physical memory 
for storage and/or less bandwidth for transmission. 

IV. PROPOSED SVD-BASED LOW-RANK APPROXIMATION 

VIA AKAIKE INFORMATION CRITERION 

The use of decomposition schemes enables us to select data 
from a given set of information and therefore identify which 
components are the most important for describing the original 
element. Data selection is a way of reducing noise from the 
acquired data based on its statistics and the distribution of 
its components. In this work, we analyze the singular value 
profile, obtained by singular value decomposition of any kind 
of complex rectangular matrices. 

From the singular value matrix, it is possible to identify 
the model order and therefore apply a selection algorithm that 
deals only with the important information, i.e., the information 
that is required for characterizing the original data and neces­
sary for accurate image reconstruction. Furthermore, one can 
identify which singular value components correspond to noise, 
and remove them before recomposing the original image. 

The optimal selection of the number of components is 
performed using a selection criterion, or - in image analysis 
- by visual inspection. However, the latter is a less general 
solution, because it is sensitive to sUbjective analysis and 
differs from person to person. Therefore, this option should be 
used only to refine the final result. In this work, the number of 
principal components is selected using an objective approach: 
the Akaike information criterion (AIC). 

A. Akaike information criterion 

The Akaike information criterion is used to select the 
necessary number of components to describe a signal without 
loss of information. It is a mathematical criterion based on 
information theory, in which given a set of candidate models 
for a data, the preferred model is the one with the minimum 
AIC value, where the AIC value is given by [9], [10]: 

Ale = 2k - 2ln(L) , (6) 



where k is the number of parameters in the statistical model, 
and L is the maximized value of the likelihood function for 
the estimated model. 

For the proposed analysis, the Ale number is calculated 
according to [8]: 

AIC(m) = -N· (M -m) ·log -- +m· (2M -m), (7) 
(g(m)) 
a(m) 

where M and N correspond to the image size, and m is the 
number of considered components - and therefore the value 
that must be found in order to minimize the expression -, 
g( m) is the geometric mean of the m smallest eigenvalues of 
the data and a(m) is the arithmetic mean of m smallest sin­
gular values. Note that the singular values are the eigenvalues 
are the square of the singular values. 

After finding the value of m that minimizes equation (7), 
it is possible to find the model order, which is given by: 
iJ = M -m. The model order provides information about the 
minimum number of components that accurately represents 
the signal, and, therefore, allows us to discard the other 
components, which are considered noisy elements. Thus, this 
algorithm is used to reduce the amount of data used for image 
reconstruction, and also for denoising. 

In this section, the combination of Ale model order selec­
tion and low-rank truncated singular value decomposition is 
applied to the data in both k-space and image domains. The 
results are compared both qualitatively (by means of visual 
inspection) and quantitatively (by calculating the signal-to­
error ratio). 

B. Using the estimated model order for SVD-based low-rank 
approximation 

After finding the optimal model order, we can reduce the 
singular value and singular vector matrices by selecting only 
the components that are important for accurately describing 
the signal. For example, given the matrix A of size M x N, 
which is originally described as stated in equation (4) - where 
UMxM, SMxN, and VNxN -, then if the model order is 
D (1 ::; D ::; min(M, N)), we can use only the highest D 
singular values and the first D left and right singular vectors 
to represent the original data. Therefore, we have: 

A UsSs VsT (8) 
D 

2.: aiuivf! , (9) 
i=l 

where Us and Vs contain the first D columns of U and 
V ,  respectively, and Ss is the diagonal matrix with the D 
highest singular values. The process is also called low-rank 
approximation or low-rank truncation. 

In the next section, we evaluate the use of truncated SVD 
for representing single-coil, two-dimensional MRI data. The 
information is therefore matricial. SVD was applied in both 
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k-space and image domains, so that it is possible to iden­
tify which k-space or image components are more likely to 
represent noisy elements. Using the Ale, the singular value 
matrices are reduced to represent only meaningful and useful 
data. Finally, image reconstruction is performed and the results 
are compared both qualitatively and quantitatively. 

V. RESULTS 

The data used in this work was downloaded at http: 
//shorty.usc.edu/class/591/fall04/. Figure 2 shows the image 
reconstructed from these data, using all components of its 
singular value matrix. Reconstruction was performed using an 
inverse two-dimensional discrete Fourier transform. This result 
will be used as ground-truth reference. 

Figure 2. Ground-truth reference image obtained using all components of 
its singular value matrix. 

The image show in Figure 2 is a 256 x 256 complex matrix, 
which generates 256 x 256 matrices U, S, and V. In order to 
verify the efficiency of the proposed method, random noise is 
added to the original data (in k-space) - which is already 
originally noisy due to the acquisition process and channel 
inhomogeneities -, and then SVD is applied. Noise addition 
is done in both real and imaginary values - corresponding to 
the image - according to: 

n( kx, ky) are the zero mean i.i.d. additive Gaussian noise 
samples with variance a; = 9. 

The number of singular values used for reconstruction is 
selected both by using the Akaike information criterion and 
by visual inspection, in order to perform quantitative and 
qualitative analyses. 

After applying the SVD, we obtain the singular value 
profiles for both k-space and image domains (Figures 3 
and 4, respectively). Both profiles are very similar, thus the 
two approaches present similar results. According to these 
profiles, the most important singular values lie in the first 
50 components of data. Thus, by this simple analysis, it is 
possible to state that the singular values matrix which is 



originally a 256 x 256 matrix, can be reduced to a 50 x 50 
matrix, without significant loss of information. This kind of 
reduction means dealing with less than one fifth of the data 
in each dimension of matrix S. Then, both U and V matrices 
can also be reduced and less data would be stored. 
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Figure 3. Singular value profile in k-space (Fourier) domain. 
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Figure 4. Singular value profile in image domain. 

The reconstruction root mean squared error (RMSE) as a 
function of the number of components for k-space domain 
SVD is shown in Figure 5. With 50 components, the RMSE 
is about -11 dB. This is a good threshold to be used in the 
proposed reconstructions. 
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30-coefficient truncated SVD in k-space domain is shown in 
Figure 6. The error between this result and the ground-truth 
reference is shown in Figure 7. Even though the error image 
presents coherent brain patterns, the SER is approximately 
18.8 dB - which is calculated as follows: 

L L(IXk(kx, ky)12) 
SER(dB) = 10 .10glO ___ k

x_k_y _______ _ 
L L(IXk(kx, ky) - Ak(kx, ky)12) 

(11) 

where Xk(kx, ky) is the ground-truth image, Ak(kx, ky) is the 
reconstructed one and the operator I . I returns the magnitude. 

Figure 6. Reconstructed image obtained using the proposed AIC/SVD 
approach in k-space domain. 

Figure 7. Error between the result shown in Figure 6 and the ground-truth 
-15o

o':----02�5--c5f.o O----c!;.75�� 10c;- 0 -C-:12cc 5--:C15�0--o1"' 75�-; 2c."cOOcc--c 2� 25oc---;c' 25C;;- 0 -� 275 reference, shown in Figure 2. 
Number of components 

Figure 5. Root mean squared error as a function of the number of 
components, for k-space domain analysis. 

When applying the AIC for k-space domain, the selected 
number of components to be used for data reconstruction is 
30. Therefore, matrices U, S, and V are 256 x 30,30 x 30, and 
256 x 30, respectively. The reconstructed image obtained using 
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Applying the same process in image domain, it is possible 
to determine the number of essential image components. The 
AIC-determined number of components was the same: 30. The 
image obtained using 30-coefficient truncated SVD in image 
domain is shown in Figure 8. As expected, both results are 
very similar. The maximum difference between k-space and 
image-domain reconstructed images is on the order of 10-14, 



which may be considered quantization error. Therefore, the 
two results can be considered equal. 

Figure 8. Reconstructed image obtained using the proposed AIC/SVD 
approach in image domain. 

Figure 9 shows the results using only 10 components, for 
both k-space and image-domain approaches. Both reconstruc­
tions present bad results, and the denoising process is not 
effective. Here, meaningful data is interpreted as noise, and 
the error image is completely coherent with the actual image, 
which suggests that important components were discarded. 
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Figure 9. Images obtained using only 10 SVD components: (a) reconstruction 
in k-space; (b) reconstruction in image domain; (c) error between reference 
image and k-space result; and (d) error between reference image and image­
domain result. 

By comparing k-space domain and image domain truncated 
SVD results in terms of signal-to-error ratio, it can be con­
cluded that both approaches are equivalent (Table 1). Thus, it is 
possible to implement the algorithm using either the k-space 
or image domain approaches, without loss of reconstruction 
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quality. The results in Table 1 also show that the proposed 
approach performs quantitatively well, as the SER is higher 
than 10 dB even with a small number of components. 

Table I 
SIGNAL-TO-ERROR RATIO (SER) FOR IMAGE AND FREQUENCY DOMAINS 
AND ROOT-MEAN SQUARED ERROR (RMSE) FOR VARYING NUMBER OF 

COMPONENTS (FROM 10 TO 130). 

Number of SER (dB) SER (dB) RMSE (dB) 
Components frequency domain image domain 

10 13.4 13.4 -6.7 
22 17.1 17.1 -8.6 
31 19.0 19.0 -9.5 
43 20.9 20.9 -10.5 
55 22.4 22.4 -11. 2 
67 23.7 23.7 -11.9 
79 24.9 24.9 -12.5 
88 25.8 25.8 -12.9 
97 26.7 26.7 -13. 3 

109 27.9 27.9 -13.9 
118 28.8 28.8 -14. 4 
124 29.4 29.4 -14.7 
130 30.1 30.1 -15. 0 

When using the AIC to select the number of components 
- 30, for both image and k-space domains - the SER is 
18.8 dB, which is an acceptable result. However, when com­
putational effort is not an issue, it is possible to use a higher 
number of components in order to achieve higher SER. For 
example, using 128 components (half of the original number) 
will result in greater computational complexity, because larger 
matrices are used; however, the SER will be 29.8 dB. 

Using a qualitative analysis, it is possible to select points 
where data becomes visually similar to the original image and 
where it is achieved a visually accurate image. In this analysis, 
these points correspond to 10 and 28 components respectivelly. 

Lastly, the memory storage as a function of the number 
of components is shown in Figure 10. Using the AIC, the 
reconstruction process uses 11. 7% of the memory used to 
reconstruct the image with all components. However, the result 
is very similar to the ground-truth reference, as previously 
shown. Then, in addition to reducing noise in the images, the 
use of SVD reduces the amount of memory necessary to store 
the data. Therefore, it may be useful when dealing with high­
resolution, multi-channel and/or multi-dimensional MRI data. 

VI. CONCLUSION 

The results suggest that truncated SVD works for MRI 
data and can improve its reconstruction by reducing noise 
and making the reconstruction process less computationally 
demanding. Using SVD-based low rank approximation, the 
process requires a small number of components, and, there­
fore, less memory and a reduced number of computational 
operations. The results also showed that reconstruction after 
denoising in k-space and image domains are equal for both 
quantitative and qualitative analysis. 

The use of a larger number of components generally 
presents better results. However, when using all components 
the image is reconstructed with its noisy elements. Therefore, 
it is interesting to perform model order selection and singular 
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Figure 10. Memory storage necessary for data reconstruction, according to 
the number of components selected using the AlC. The red circle indicates 
where image initially can be seen but it is not well represented - using 
only 10 components - and the green x corresponds to a more accurate 
representation, obtained with the minimum number of components according 
to the AlC, i.e., 30. 

value decomposition low-rank truncation in order to represent 
the data with only the principal components. 
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