

Universidade de Brasília (UnB) Faculdade de Tecnologia (FT) Departamento de Engenharia Elétrica (ENE)

Course: Image Processing Prof. Mylène C.Q. de Farias Semester: 2017.1

LIST 02 Submission Date: 13/04/2017 (Cut-off: 20/02/2017)

Question 1: Prove that both the Discrete and Continuous Fourier Transform are linear operations.

Question 2: Prove the following properties of the 2D DFT:

P1:

$$f(x,y)e^{j2\pi(u_0x/M+v_0y/N)} \iff F(u-u_0,v-v_0)$$

P2:

$$f(x - x_0, y - y_0) \Longleftrightarrow F(u, v) e^{j2\pi(x_0 u/M + y_0 u/N)}$$

Question 3: Show that the DFT $f(x, y) = \sin(2\pi u_0 x + 2\pi v_0 y)$ is given by:

$$F(u,v) = \frac{j}{2} \left[\delta(u + Mu_0, v + Nv_0) - \delta(u - Mu_0, v - Nv_0) \right]$$

Question 4: Prove all properties shown in the Table shown in Fig.1.

.

Question 5: Prove that the periodicity properties (in the spatial and frequency domain) of the 2D DFT.

Question 6: Prove the convolution theorem (2D DFT).

Question 7: Prove the differentiation theorem (2D DFT).

	Spatial Domain [†]		Frequency Domain [†]
1)	f(x, y) real	\Leftrightarrow	$F^*(u,v) = F(-u,-v)$
2)	f(x, y) imaginary	\Leftrightarrow	$F^*(-u,-v) = -F(u,v)$
3)	f(x, y) real	\Leftrightarrow	R(u, v) even; $I(u, v)$ odd
4)	f(x, y) imaginary	\Leftrightarrow	R(u, v) odd; $I(u, v)$ even
5)	f(-x, -y) real	\Leftrightarrow	$F^*(u, v)$ complex
6)	f(-x, -y) complex	\Leftrightarrow	F(-u, -v) complex
7)	$f^*(x, y)$ complex	\Leftrightarrow	$F^*(-u - v)$ complex
8)	f(x, y) real and even	\Leftrightarrow	F(u, v) real and even
9)	f(x, y) real and odd	\Leftrightarrow	F(u, v) imaginary and odd
10)	f(x, y) imaginary and even	\Leftrightarrow	F(u, v) imaginary and even
11)	f(x, y) imaginary and odd	\Leftrightarrow	F(u, v) real and odd
12)	f(x, y) complex and even	\Leftrightarrow	F(u, v) complex and even
13)	f(x, y) complex and odd	\Leftrightarrow	F(u, v) complex and odd

^{*}Recall that x, y, u, and v are *discrete* (integer) variables, with x and u in the range [0, M - 1], and y, and v in the range [0, N - 1]. To say that a complex function is *even* means that its real *and* imaginary parts are even, and similarly for an odd complex function.

Figura 1: Table of the properties of the 2D DFT.