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1 Introduction
The most accurate way to determine the quality of a video
or an image is by measuring it using psychophysical experi-
ments with human subjects.1 Unfortunately, psychophysical
experiments are very expensive, time-consuming, and hard
to incorporate into a design process or an automatic quality
of service control. Therefore, the ability to measure quality
accurately and efficiently, without using human observers, is
highly desirable in practical applications. Good visual-quality
metrics can be employed to monitor video or image quality,
compare the performance of image- and video- processing
systems and algorithms, and to optimize the algorithms and
parameter settings for a image- and video-processing system.

Objective visual-quality metrics can be classified as
data metrics, which measure the fidelity of the signal with-
out considering its content, or picture metrics, which esti-
mate quality considering the visual information contained in
the data. Customarily, quality measurements in the area of
image processing have been largely limited to a few data
metrics, such as the mean absolute error (MAE), the mean
square error (MSE), and the peak signal-to-noise ratio
(PSNR), supplemented by limited subjective evaluation.
Although over the years data metrics have been widely criti-
cized for not correlating well with perceived quality meas-
urements, it has been shown that such metrics can predict
subjective ratings with reasonable accuracy as long as the
comparisons are made with the same content, the same tech-
nique, or the same type of distortions.2–4 Because of their
simplicity and physical significance, the use of data metrics
is fairly standard in the published literature and it will prob-
ably not disappear in a near future, especially in areas such
as broadcasting and coding.

One of the major reasons why these simple metrics do
not generally perform as desired is because they do not
incorporate any human-visual-system (HVS) features in
their computation.3,4 It has been discovered that, in the pri-

mary visual cortex of mammals, an image is not represented
in the pixel domain, but in a rather different manner. Unfor-
tunately, the measurements produced by metrics such as
MSE or PSNR are simply based on a pixel-to-pixel compari-
son of the data, without considering what is the content and
the relationships among pixels in an image (or frames). They
also do not consider how the spatial and frequency content
of the impairments are perceived by human observers. In
the past few years, a big effort in the scientific community
has been devoted to the development of better image- and
video-quality metrics that incorporate HVS features (i.e.,
picture metrics) and, therefore, correlate better with the
human perception of quality.5–9

Picture metrics can be divided into three different
categories according to the availability of the original (refer-
ence) image or video signal: full reference (FR) metrics,
reduced reference (RR) metrics, and no-reference (NR)
metrics. Figures 1–3 show the block diagrams correspond-
ing to the FR, RR, and NR quality metrics, respectively. On
the FR approach, the entire reference is available at the
measurement point. Quality metrics with best perform-
ances are generally FR picture metrics that try to incorpo-
rate aspects of the HVS considered relevant to quality, such
as color perception, contrast sensitivity, and pattern mask-
ing. Unfortunately, the usage of FR metrics is restricted to
studio applications since in many practical applications (e.g.,
video conference, internet streaming, broadcasting, etc.)
the reference is not available.

For the RR approach, only part of the reference is
available through an auxiliary channel. In this case, the
information available at the measurement point generally
consists of a set of features extracted from the reference
image or video. Metrics in this class may be less accurate
than the FR metrics, but they are also less complex and
make real-time implementations more affordable. Never-
theless, they still require some amount of information to be
available at the receiver and synchronization. Requiring the
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reference or even a small portion of it becomes a serious
impediment in many real-time transmission applications.
For the NR approach, the reference image or video is not
available and the quality estimation is obtained exclusively
from the test signal. It turns out that, although human
observers can usually assess the quality of an image or video
without the reference, designing a NR metric is a difficult
task. Considering the difficulties faced by the FR metrics,
this is no surprise.

Picture metrics can be further classified according to
the approach they use for estimating the quality of an image
or video. There are basically three main approaches: error
sensitivity, feature extraction, and statistical. The error-sensi-
tivity approach analyzes visible differences (errors) between a
test and a reference signal and gives an estimate of the qual-
ity of the test in comparison to the reference. This approach
is mostly used by FR metrics since it is assumed that an
undistorted (perfect quality) reference image or video is
available at the measurement point. The error-sensitivity
FR metrics are actually similarity or fidelity measures since
they actually provide measures of how similar (or different)
the two images or videos are. As a consequence, they are
frequently incapable of identifying improvements in quality
produced, for example, by an enhancement algorithm.

The feature extraction approach looks for higher-level
features or attributes of the image or video (e.g., sharp-
ness/blur, contrast, fluidity, artifacts, etc.) that are consid-
ered relevant to quality.10 These algorithms measure the
magnitude of high-level features in order to estimate qual-
ity. A number of NR and RR metrics use a specific type of
the feature extraction approach, which estimates the
strength of the most perceptually relevant artifacts (percep-
tual defects) and combine these values in order to obtain a
quality estimate. These specific metrics are referred as
application-specific metrics and can only be used for the
target application. In contrast, models that are designed

using regular features or assumptions about the HVSs are
known as general-purpose metrics. The feature extraction
approach can also be designed to identify degradations or
quality improvements through the analysis image attributes
such as contrast, blurriness/sharpness, colorfulness, fluidity,
etc.

The statistical approach consists of extracting statisti-
cal measures from the images or videos in order to obtain a
quality estimation. The statistical measures may include
mean, variance, covariance, kurtosis, etc. Since natural
(undistorted) images and videos correspond to a small sub-
set of all possible signals, the statistical algorithms try to
identify if the test image or video present deviations from
the statistics of natural images or videos.

The approaches discussed in this section are equally
valid for image-and video-quality metrics. However, the
video-quality metrics must take into account both spatial
and temporal information. Also, video applications might
contain artifacts that vary over the time and, therefore, a
characterization of temporal errors and their impact on per-
ceived quality is necessary. Unfortunately, this model is not
usually implemented. Since a video can be seen as sequence
of still images, most approaches in the literature simply
extend the quality model for still images and apply it indi-
vidually to every frame of the video. The scores obtained for
each frame are combined using a pooling mechanism. Pool-
ing techniques can range from a simple average of the frame
scores to more complex methods that weigh frames differ-
ently according to their motion information.

In this paper, we give an overview of the main ideas
used in the design of picture metrics targeted at visual
applications. More specifically, we briefly describe the dif-
ferent types of objective metrics and present a repre-
sentative set of the different approaches taken by these
algorithms. Finally, we discuss the challenges and recent
developments in the area of image and video quality metrics.

2 Full-reference video-quality metrics
Full-reference (FR) video-quality metrics estimate the
quality of a test image or video by comparing it with the
reference (original). This approach assumes that the refer-
ence video has no degradations and that it is available at the
measurement point. As previously mentioned, FR video-
quality metrics have the best performance among the three
types of metrics (FR, RR, and NR). This is mainly due to the
availability of the reference video at the measurement point.
Also, since FR metrics are intended for off-line applications,
they can be more computationally complex and incorporate

FIGURE 1 — Block diagram of a full-reference (FR) objective quality
metric.

FIGURE 2 — Block diagram of a  reduced-reference  (RR) objective
quality metric.

FIGURE 3 — Block diagram of a no-reference (NR) objective quality
metric.
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several aspects of the HVS. The major drawback of the FR
approach is the fact that a large amount of reference infor-
mation has to be provided at the final comparison point.
Also, a very precise spatial and temporal alignment of refer-
ence and test videos is needed to guarantee the accuracy of
the metric.

In this section, we give a brief description of the most
common FR approaches, exemplified here by three differ-
ent approaches of FR quality metrics: an error-sensitivity
approach,5 a feature-extraction approach,9 and a statistical
approach.6

2.1 Visible-differences predictor (VDP)
The FR model proposed by Daly is known as visible differ-
ences predictor (VDP).5 This FR metric is a good example
of a metric that uses an error-sensitivity approach, which
makes an attempt to analyze and quantify the error signal in
a way that simulates the human-quality judgment. Daly’s
algorithm finds the main parameters that limit the visual
sensitivity and takes them into account when analyzing the
differences between test and reference videos. The main
sensitivity limitation (or variations) parameters considered
by the model are light level, spatial frequency, and signal
content. Each of these sensitivity variations corresponds to
one of the stages of the model, as described below:

� Amplitude non-linearity: It is well known that
sensitivity and perception of lightness are non-lin-
ear functions of luminance. The amplitude non-
linearity stage of the VDP describes the sensitivity
variations as a function of the gray scale. It is based
on a model of the early retina network.

� Contrast-sensitivity function (CSF): The CSF
describes the variations in the visual sensitivity as a
function of spatial frequency. The CSF stage
changes the input as a function of light adaptation,
noise, color, accommodation, eccentricity,a and im-
age size.

� Multiple-detection mechanism: It is modeled
with four subcomponents:

� Spatial cortex transform – Models the frequency
selectivity of the visual system and creates the
framework for multiple detection mechanisms.
This is modeled by a hierarchy of filters modi-
fied from Watson’s cortex transform that sepa-
rates the image into spatial levels followed by six
orientation levels.11

� Masking function – Models the magnitude of
the masking effect.

� Psychometric function – Describes the details
of the threshold.

� Probability summation – Combines the responses
of all detection mechanisms into a unified per-
ceptual response.

A simplified block diagram of the VDP is depicted in
Fig. 4. The output of Daly’s metric is a probability-of-detec-
tion map, which indicates the areas where the reference and
test images differ in a perceptual sense.

2.2 NTIA video-quality metric (VQM)
The video-quality metric (VQM) is a FR video-quality metric
proposed by Wolf and Pinson from the National Telecom-
munications and Information Administration (NTIA).9 The
algorithm used by VQM uses a feature-extraction approach
that includes measurements for the perceptual effects of
several video impairments, such as blurring, jerky/unnatural
motion, global noise, block distortion, and color distortion.
These measurements are combined into a single metric that
gives a prediction of the overall quality.

The VQM algorithm can be divided into the following
stages:

� Calibration: This first stage has the goal of calibrating
the video in preparation for the feature-extraction
stage. With this purpose, it estimates and corrects
the spatial and temporal shifts, as well as the
contrast and brightness offsets of the processed
video sequence with respect to the original video
sequence.

FIGURE 4 — Block diagram of the visible-differences predictor (Ref. 5).

aEccentricity is the angle relative to the point of sharpest seeing, the
fovea, is referred to as eccentricity. The more eccentric an object, the more
difficult it is to see sharply. The fovea occupies the central 1° of vision.
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� Extraction of quality features: In this stage, the
set of quality features that characterizes perceptual
changes in the spatial, temporal, and chrominance
domains are extracted from spatial-temporal subre-
gions of the video sequence. For this, a perceptual
filter is applied to the video to enhance a particular
type of property, such as edge information. Features
are extracted from spatio-temporal (ST) subregions
using a mathematical function, and then, a visibility
threshold is applied to these features.

� Estimation of quality parameters: In this stage,
a set of quality parameters that describe the percep-
tual changes is calculated by comparing features
extracted from the processed video with those extracted
from the reference video.

� Quality estimation: The final step consists of calcu-
lating an overall quality metric using a linear combina-
tion of parameters calculated in previous stages.

The VQM was one of the best performance FR metrics
tested by Video Quality Experts Group (VQEG) in Phase
II.7 It has recently been adopted by ANSI as a standard for
objective video quality.

2.3 Structural similarity and image quality
(SSIM)

The structural similarity and image quality (SSIM) is based
on the idea that natural images are highly “structured”.6 In
other words, image signals have strong relationships among
themselves, which carry information about the structures of
the objects in the scene.

To estimate the similarity between a test image and
the corresponding reference, the SSIM algorithm measures
the luminance l(x, y), contrast c(x, y), and structure s(x, y)
of the test image y and the corresponding reference image
x, using the following expressions:

and

where C1, C2, and C3 are small constants given by C1 = (K1 ⋅
L)2, C2 = (K2 ⋅ L)2, and C3 = C2/2. L is the dynamic range of
the pixel values (for 8-bits/pixel gray-scale images, L = 255),
K1 << 1, and K2 << 1. The general formula of the SSIM metric
is given

where α, β, and γ are parameters that define the relative
importance of the luminance, contrast, and structure com-
ponents. If α = β = γ = 1, these parameters are given equal
importance. The SSIM has a range of values varying
between “0” and “1”, with “1” being the best value possible.
A study on the performance of SSIM has shown that this
simple metric presents good results.6 A block diagram of the
SSIM algorithm is depicted in Fig. 5.

3 Reduced-reference video-quality metrics
Reduced-reference (RR) video-quality metrics require only
partial information about the reference video. To help
evaluate the quality of the video, certain features or physical
measures are extracted from the reference and transmitted
to the receiver as side information. One of the interesting
characteristics of RR metrics is the possibility of choosing
the amount of side information. In practice, the exact
amount of information will be dictated by the characteristics
of the side channel that is used to transmit the auxiliary data
or, similarly, by the available storage to cache them. Bit rates
of the RR channel can go from zero (for no-reference metrics)
to 15, 80, or 256 kbps, depending on the application in target.

Metrics in this class may be less accurate than the FR
metrics, but they are also less complex and make real-timel x y
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FIGURE 5 — Block diagram of the SSIM algorithm (Ref. 6).
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implementations more affordable. Nevertheless, synchroni-
zation between the original and impaired data is still neces-
sary. Frequently, RR metrics are designed from FR metrics
that use a feature-extraction approach. This is the case for
the RR metric described in this section.

3.1 NTIA reduced-reference video-quality
metric

One of the earliest RR metrics was proposed by Webster et
al. from NTIA.12 Their metric is a feature extraction metric
that estimates the amount of impairment in a video by
extracting localized spatial and temporal activity features
using especially designed filters. The block diagram of this
metric is depicted in Fig. 6. As expected, this metric is very
similar to the VQM metric described in the previous section.

The authors define two types of features: spatial infor-
mation (SI) and temporal information (TI). The SI feature
corresponds to the standard deviation of edge-enhanced
frames, which assumes that the inserted degradation will
modify the edge statistics in the frames. The TI feature cor-
responds to the standard deviation of difference frames, i.e.,
the amount of perceived motion in the video scene. As
shown in Fig. 3, at the transmission side or the encoding
point, these features are extracted from the reference video
and sent over an auxiliary data channel. The size of the RR
data depends upon the size of the window over which SI and
TI features are calculated. At the receiver side or comparison
point, the features from the reference video are received.
Then, the exact same features are extracted from the test
video. Afterwards, three comparison metrics (m1, m2, and
m3) are derived from the SI and TI features of the reference
and test videos and, finally, used to estimate the quality of
the test video.

4 No-reference video-quality metrics
Requiring the reference video or even a small portion of it
becomes a serious impediment in many real-time transmis-
sion applications. In this case, it becomes essential to
develop ways of blindly estimating the quality of a video
using a no-reference video-quality metric. It turns out that,
although human observers can usually assess the quality of
a video without using the reference, designing a no-refer-

ence metric is a very difficult task. Considering the difficul-
ties faced by the FR video-quality metrics, this is no sur-
prise. For this reason, most of the proposed NR metrics
available in the literature use the engineering approach to
estimate quality. One of the exceptions to this is the metric
by Gastaldo et al. that uses a neural network to estimate the
quality of a given test video.13

The engineering approach is similar to the feature
extraction approach described earlier. But, in this case, a
greater emphasis is given to the distortion analysis and, con-
sequently, specific features of the video are extracted. These
extracted features can be either structural elements (con-
tours, lines, activity, etc.) or artifacts (specific distortions)
introduced by a particular technology. In this approach, the
algorithm estimates how pronounced these features are and
uses this information to estimate the overall quality or degra-
dation of the video.

Most NR video-quality metrics consider artifacts as
features, i.e., they estimate the strength of the artifact sig-
nals in the video and combine these measures to obtain an
estimation of the amount of degradation in the video. The
most popular artifacts considered by NR metrics are
blockiness, blurriness, noisiness, and ringing. In this sec-
tion, we describe the NR metric by Farias and Mitra,14

which uses a multi-dimensional approach to combine the
outputs from a set of artifact submetrics.

4.1 NR metric based on artifact measurements

The algorithm proposed by Farias and Mitra is based on the
assumption that the perceived quality of a video can be
affected by a variety of artifacts and that the strengths of
these artifacts contribute to the overall annoyance.14 This
multi-dimensional approach requires a good knowledge of
the types of artifacts present in digital videos and extensive
studies of the most relevant artifacts. The authors performed a
series of psychophysical experiments to understand how arti-
facts depend on the physical properties of the video and how
they combine to produce the overall annoyance.

The block diagram of the proposed metric is depicted
in Fig. 7. The algorithm is composed of a set of artifact submet-
rics (artifact physical-strength measurements) to estimate the
strengths of blockiness, blurriness, and ringing/noisiness
artifacts. The metrics are simple enough to be used in real-
time applications, as briefly described below.

FIGURE 6 — Block diagram of Webster’s algorithm (Ref. 12).
FIGURE 7 — Block diagram of the no-reference metric proposed by
Farias and Mitra (Ref. 14).
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� The blockiness metric is a modification of the met-
ric by Vlachos.15 It estimates the blockiness signal
strength by comparing the cross-correlation of pix-
els inside (intra) and outside (inter) the borders of
the coding blocking structure of a frame.

� The blurriness metric is based on the idea that blur
makes the edges larger or less sharp.16 The algo-
rithm measures blurriness by estimating the width
of the edges in the frame.

� The noisiness/ringing metric is based on the work
by Lee,17 which uses the well-known fact that the
noise variance of an image can be estimated by the
local variance of a flat area. A cascade of 1-D filters
was used as a pre-processing stage to reduce the
content effect.

The performance of each artifact submetric is evalu-
ated according to their ability to detect and estimate the
artifact signal strength. Hence, test sequences containing
(1) only the artifact being measured, (2) artifacts other than
the artifact being measured, and (3) a combination of all
artifacts are used in the design. The outputs of the individ-
ual metrics are also compared to artifact perceptual
strengths gathered from psychophysical experiments. A
model for overall annoyance is obtained based on a combi-
nation of the artifact metrics using a Minkowski metric.

5 Alternative approaches
In this section, we discuss three alternative approaches to
quality metrics that have received a lot of attention in the
last few years: hybrid metrics, saliency-based metrics, and
data hiding metrics.

5.1 Hybrid video-quality metrics
A new trend in video-quality design is the development of
hybrid metrics, which are metrics that estimate the quality
of the video by analyzing the network information, the bit-
stream headers, and the decoded video.8 The idea here is to
improve the precision of regular picture-quality metrics by
also considering parameters extracted from the transport
stream and the bitstream headers (without decoding) in the
computation. The main advantages of this approach are the
lower bandwidth and processing requirements, when com-
pared to metrics that only consider the fully decoded video.
The disadvantage of hybrid metrics is that they are technology
dependent, i.e., their solution is only valid to the technology
(compression, transmission, etc.) they were designed for.

One interesting example of this type of metric is the
work by Winkler and Mohandas.8 Their algorithm does not
require the reference video and is targeted at MPEG-2 and
H.264 video streaming over IP networks. To estimate the
quality of a compressed and transmitted video, the authors
define a V-factor that combines the information gathered by
analyzing the transport stream (TS) headers, the packetized
elementary stream (PES) headers, the video coding layer

(VCL), and the decoded video signal. It is worth pointing
out that the analysis of decoded video signal is done by using
a picture-quality metric, similar to the ones described in the
previous sections of this paper.

5.2 Video-quality metrics based on salient
region detection

A recent development in the area of quality metrics consists
of trying to incorporate the perceptual importance of the
different areas of the video in the design of the metric. The
assumption here is that the quality will suffer more if an
impairment affects an “important” area of the video, rather
than “non-important” areas.

The work by Oprea et al. uses this approach to weigh
distortion measurements.18 The first step of Oprea et al.‘s
algorithm is to find the perceptually important areas of the
video frame. For this, the model estimates key features that
attract attention: color contrast, object size, orientation, and
eccentricity. The measurement of these features will deter-
mine the important (or salient) areas, producing a saliency
map. Extracting saliency from video sequences is a complex
task because both the spatial extent and the dynamic evolu-
tion of the regions should be considered. For the detected
salient areas, a distortion measure is computed using a spe-
cialized no-reference metric. The metric considered by this
algorithm is a blurriness metric.

5.3 Video-quality metrics using data hiding
Yet another alternative way of implementing a video-quality
metric is to use data-hiding techniques. The idea consists of
embedding into the original video the necessary informa-
tion to estimate its quality at the time of display. One exam-
ple of a metric that uses this approach is the work by Farias
et al.19 Figure 8 depicts the block diagram of this video-
quality-assessment system.

At the transmitter, the algorithm embeds a mark in
each frame of the video using a spread-spectrum tech-
nique.20 In the embedding stage, a pseudo-random algo-
rithm is first used to generate a mark, which is then
multiplied by a scaling factor and added to the (mid-fre-
quencies) DCT coefficients. At the receiver, the mid-fre-
quency DCT coefficients (where the mark was inserted) are
multiplied by the corresponding pseudo-random image.
The result is then averaged over a number of frames and the
mark is extracted. A measure of the degradation of the mark

FIGURE 8 — Block diagram of the video-quality-assessment system
based on data hiding.
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is given by the total square error (TSE) between the extracted
mark and the original mark. The less the amount of errors
caused by processing, compression or transmission, the
smaller the error between the two marks.

6 Conclusions
In this paper, we gave an overview of the main ideas used in
the design of objective visual-quality metrics. More specifi-
cally, we briefly described the different types of objective
metrics and presented a representative set of the different
approaches taken by these algorithms.

To date, most of the achievements have been in the
development of FR video-quality metrics. Much remains to
be done in the area of NR and RR quality metrics, which
would certainly benefit from the incorporation of better
perception models. Concerning the development of artifact
metrics for NR and RR metrics, we believe there is still a
great need to characterize the different types of artifacts
that affect visual quality. In particular, there are very few
works that investigate the interactions among the different
types of artifacts or even attributes.

Concerning the area of video quality, there is a good
number of algorithms that incorporate some sort of tempo-
ral information to estimate quality. Nevertheless, we believe
improvements can be achieved by incorporating better
models for motion perception, pooling, and visual attention.
A new trend in video-quality design is the development of
hybrid metrics, which are metrics that use a combination of
the packet information, the bitstream header (without
decoding), and the decoded video as inputs to the video-
quality estimation algorithm.

With respect to applications, given the growing popu-
larity of video delivery services over IP networks (e.g.,
internet streaming and IPTV) or wireless channels (e.g.,
mobile TV), there is a great need for metrics that estimate
the quality of the video in these applications. Another area
that has attracted attention is multimedia quality. So far,
very few metrics have addressed the issue of simultaneously
measuring the quality of all media involved (e.g., video,
audio, text). Since video and audio quality can influence
each other,21 quality metrics for the multimedia scenario
cannot be a simple combination of an audio and a video
metric.

Another area that has attracted a lot of attention is the
quality assessment of 3-D videos.22 Assessing the quality of
3-D videos is a big challenge. So far, it is not clear if the same
approaches used for the 2-D case can be extended to the 3-D.
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