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I. ABSTRACT

Computational photography tries to expand the concept of
traditional photography (a static two dimensional projection
of a scene) using state-of-the-art technology. While this can
be achieved by combining information from multiple con-
ventional pictures, a more interesting challenge consists in
encoding and recovering additional information from one (or
more) image(s). Since a photograph results from the convolu-
tion of scene radiance with the camera’s aperture (integrated
over the exposure time), researchers have designed apertures
with certain desirable spectral properties to facilitate the de-
convolution process and, consequently, the recovery of scene
information. Images captured using these so-called coded
apertures can be deconvolved to create all-in-focus images,
and to estimate scene depth, among other things. Images of
moving objects acquired using a coded exposure (obtained by
switching between a fully-closed and a fully-opened aperture,
according to a predefined pattern) can be deconvolved to
reduce motion blur. The notion of encoding information during
image acquisition opens up new and exciting possibilities,
which researchers have just begun to explore. This article
provides a gentle introduction to coded photography, focusing
on the fundamental concepts and essential mathematical tools.

Keywords- computational photography, coded photography,
image processing.

II. INTRODUCTION

Digital photography replaced the photographic film by an
electronic sensor. Despite of its practical implications, this
phenomenon limited itself to replace the chemical process
of film development by an electronic gathering of photons.
Current technology, however, allows us to expand the capabil-
ities of photography with new and exciting possibilities. The
most straightforward way of achieving this is by combining
information from multiple images acquired with a single
camera. In this case, each image is obtained using slightly
different parameter values, such as position/orientation, expo-
sure time, and aperture size. Such a strategy can be used to
construct panoramas [1], and high-dynamic-range images [2].
Multiple images can also be acquired using camera arrays [3],
which can be used to improve resolution, signal-to-noise ratio,
dynamic range, depth of field, frame rate, spectral sensitivity,
or sample 4D light fields [4]. More sophisticated approaches
can obtain additional information from a single picture by

modifying one or more of the components of a traditional
camera (i.e., optics, sensor, and illumination). For instance,
directional information of the scene radiance entering a camera
can be recorded by placing an array of microlenses in front of
the sensor [5], [6] , modifying the camera aperture [7] or the
the camera optical system [8]. The resulting cameras are called
plenoptic cameras. By trading spatial for angular resolution,
plenoptic cameras can record a sampled version of the 4D
light field [4]. Images acquired with plenoptic cameras can
be refocused after acquisition time [5]. Other camera designs
allow the recovery of a high-dynamic-range image from a
single photograph by placing an optical mask corresponding
to a mosaic of cells with different transmittances over the
camera’s sensor [9], [10]. A depth map can also be obtained
from single pictures by placing a conical mirror in front of
the camera’s objective lens [11].

An important class of computational photography tech-
niques use some coding strategies during image acquisition.
Collectively known as coded photography, these approaches
can be classified as coded aperture, coded exposure, coded
illumination and coded sensing. Since a photograph results
from the convolution of scene radiance with the camera’s
aperture (integrated over the exposure time), coded-aperture
techniques use especially-designed apertures with certain spec-
tral properties that facilitate the deconvolution process and the
recovery of scene information. Although the images captured
using coded apertures are usually not suitable for immediate
visualization, with proper deconvolution they can be used, for
instance, to recover all-in-focus pictures [12], [13], and to
estimate scene depth [12], [14].

Coded-exposure techniques switch the camera’s aperture
between a fully-closed and a fully-opened situation during
image acquisition, according to some predefined pattern. Given
an image of a moving object acquired using coded aperture, the
image can be deconvolved to reduce the occurrence of motion
blur [15]. Coded illumination, on the other hand, consists in
projecting some controlled light patterns into the scene to
allow the extraction of scene properties.

This article provides a gentle introduction to coded pho-
tography, focusing on its fundamental concepts and essential
mathematical tools. Several good surveys [16], [17], [18],
[19] complement this material providing a comprehensive
description of the computational photography field as a whole.
Due to space constraints, we restrict the presentation to coded-



aperture and coded-exposure techniques. The article begins
with a description of the concepts and tools required to
master coded aperture and coded exposure. This is followed by
sections relating the abstract concepts to actual techniques. It
closes with a brief summary and a discussion of some research
opportunities.

III. CONVOLUTION AND CORRELATION

This section briefly reviews the concepts of convolution and
correlation, which are central to the image formation process.
For this, matrix notation is used to represent images. Lower-
case and uppercase symbols represent entities in the spatial
and frequency domains, respectively. Thus, given an image f ,
fr,c refers to its pixel at row r and column c. F and Fu,v
denote f ’s Fourier transform, and its coefficients associated to
frequency (u, v), respectively. We use circular convolution and
modulo arithmetic for matrix index calculations. Assuming f
has R rows and C columns, a row index r < 0 has its value
replaced by R + r. If r ≥ R, its value is then replaced by
r−R. Likewise, a column index c < 0 has its value replaced
by C + c, and if c ≥ C, its value becomes c− C.

The circular convolution of two one dimensional vectors f
and h with R elements is defined as

[f ⊗ h]i =
R−1∑
r=0

fr hi−r, i ∈ [0, R− 1], (1)

where [�]i is the i-th element of vector �. The convolution
of two matrices f and h with R rows and C columns can be
expressed as

[f ⊗ h]i,j =
R−1∑
r=0

C−1∑
c=0

fr,c hi−r,j−c, (2)

where i ∈ [0, R−1], j ∈ [0, C−1], and [�]i,j is the element at
row i and column j of matrix �. The corresponding correlation
operations are defined as

[f ◦ h]i =
R−1∑
r=0

fr hi+r, (3)

and

[f ◦ h]i,j =
R−1∑
r=0

C−1∑
c=0

fr,c hi+r,j+c. (4)

Since these operations are fundamental to the image acqui-
sition process, it is instructive to have some intuition on how
they affect the processed data. For this, we will analyze their
impact on some elementary matrices d(r,c), whose elements
are all zeros, except for one, located at row r and column c,
whose value is one. The elements of these matrices may be
expressed as a product of two kronecker deltas. The Kronecker
delta δij , discrete analog of the Dirac delta, is a function of
two variables i and j defined as

δij =

{
1, if i = j;
0, otherwise.

(a) (b) (c) (d)

Fig. 1. Convolution and correlation with a delta image. (a) Input image f .
(b) Delta image d(r,c). (c) The convolution f ⊗ d(r,c) circularly shifts f
by r rows down and c columns to the right (fi−r,j−c). (d) The correlation
f◦d(r,c) circularly shifts f in the opposite direction (r rows up and c columns
to the left, producing fi+r,j+c).

Thus, the elements of a matrix d(r,c) can be expressed as

d
(r,c)
i,j = δri δcj .

We refer to the images corresponding to these elementary
matrices simply as delta images. They define a basis for a
vector space of images, as any 2D image f can be written as
a linear combination of delta images:

f =

R−1∑
r=0

C−1∑
c=0

fr,c d
(r,c). (5)

The convolution of an image f with a delta image d(r,c)

circularly shifts f by r rows down and c columns to the right
(Fig. 1Convolution and correlation with a delta image. (a)
Input image f . (b) Delta image d(r,c). (c) The convolution
f ⊗ d(r,c) circularly shifts f by r rows down and c columns
to the right (fi−r,j−c). (d) The correlation f ◦ d(r,c) circularly
shifts f in the opposite direction (r rows up and c columns to
the left, producing fi+r,j+c)figure.1, c):

[f ⊗ d(r,c)]i,j =
R−1∑
k=0

C−1∑
l=0

fk,l d
(r,c)
i−k,j−l,

[f ⊗ d(r,c)]i,j =
R−1∑
k=0

C−1∑
l=0

fk,l δr,i−k δc,j−l,

[f ⊗ d(c,r)]i j = fi−r,j−c. (6)

Likewise, the correlation of f with a delta image d(r,c)

circularly shifts f in the opposite direction, by r rows up and
c columns to the left (Fig. 1Convolution and correlation with a
delta image. (a) Input image f . (b) Delta image d(r,c). (c) The
convolution f ⊗ d(r,c) circularly shifts f by r rows down and
c columns to the right (fi−r,j−c). (d) The correlation f ◦d(r,c)
circularly shifts f in the opposite direction (r rows up and c
columns to the left, producing fi+r,j+c)figure.1, d):

[f ◦ d(c,r)]i j = fi+r,j+c. (7)

The relation between convolution and image forma-
tion will be detailed in section VIImage Formation and
Convolutionsection.6. Simply put, a captured image can be
described as the convolution of an ideal all-in-focus image
with the camera’s point spread function (PSF), which describes



Fig. 2. N -th roots of unity on the complex plane. This example shows the
roots of unit for N = 5.

the camera’s response to a point source. In turn, the PSF is
largely shaped by the camera’s aperture.

Convolution and correlation are linear operators. As we
show later in section VMatrix Operatorssection.5, there is a
one-to-one correspondence between linear operators in a vec-
torial space and matrices. This provides another way of writing
the convolution and correlation operations as a conventional
matrix-vector multiplication, which will be useful to simplify
the algebraic formulations of deconvolution techniques.

IV. CONVOLUTION AND FOURIER TRANSFORMS

Given a column vector f with R rows, we define its discrete
Fourier transform (DFT) F as the product of f by a square
matrix M (R), with dimensions R×R and complex elements:

F =M (R)f, (8)

where
M (R)
r,c = exp (−2πi(rc

R
)).

The elements of M (R) are all members of the group UR of
R-th roots of unity (i.e., UR = {z ∈ C|R ∈ Z, zR = 1}). For
example, for R = 5, M (5) is expressed as:

M (5) =


z00 = 1 z04 = 1 z03 = 1 z02 = 1 z01 = 1
z10 = 1 z14 = z4 z13 = z3 z12 = z2 z11 = z1
z20 = 1 z24 = z3 z23 = z1 z22 = z4 z21 = z2
z30 = 1 z34 = z2 z33 = z4 z32 = z1 z31 = z3
z40 = 1 z44 = z1 z43 = z2 z42 = z3 z41 = z4

 ,
(9)

where z0 to z4 are the 5-th roots of unity. The columns of
M (R) are built from these roots taken in a clockwise order
on the complex plane (see Fig. 2N -th roots of unity on the
complex plane. This example shows the roots of unit for N =
5figure.2).

For two dimensional matrices (or images) f , with R rows
and C columns, we define their DFT as the product:

F =M (R)fM (C). (10)

The inverse of M (R) is simply its complex conjugate times a
normalization factor 1/R:

I(R) =M (R) 1

R
M (R)∗ ,

DFT M (R) image

DFT M (C) image M (R)

Fig. 3. Fourier transform computed as matrix products. (top) One-
dimensional case: the DFT of (an image represented as) a 1D vector f can
be obtained as the matrix-vector product F = M(R)f (Equation 8Convo-
lution and Fourier transformsequation.4.8). (bottom) Two-dimensional case:
the DFT of (an image represented as) a 2D matrix is another 2D matrix
obtained as F = M(R)fM(C) (Equation 10Convolution and Fourier
transformsequation.4.10). M(N) is a square matrix constructed from the N -th
roots of unity (Equation 9Convolution and Fourier transformsequation.4.9).

where I(R) is the identity matrix of order R. From this, it
follows that the inverse discrete Fourier transform (IDFT) may
be expressed as:

f =
1

R
M (R)∗F,

for the one-dimensional case, and

f =
1

RC
M (R)∗FM (C)∗ ,

for the two-dimensional case. The important connection be-
tween convolution and the DFT is given by the convolution
theorem, which establishes that the DFT of the convolution of
two vectors or matrices is the element-wise product of their
DFT’s:

DFT (f ⊗ h) = F. ∗H.

Let g = f ⊗ h be the convolution of two images f and h in
the spatial domain. The value of each pixel of g depends on
the values of all pixels from both f and h. In the frequency
domain, the coefficients associated with a pair of frequencies
(u, v) result from the product of coefficients located in the
same row and column of the corresponding DFT matrices:
Gu,v = Fu,vHu,v . The convolution theorem also shows that
the convolution is commutative:

f ⊗ h = h⊗ f.

V. MATRIX OPERATORS

Convolution, correlation, and the Fourier transform are all
linear operators. However, it is not immediately obvious from
their definitions that each of these operators can be expressed
as the product of a matrix by a vector. One interesting
consequence of this representation and of the convolution
theorem is that the DFT can be seen as a change of basis that



Fig. 4. Representing a 2D image with R rows and C columns as a 1D vector
containing R × C elements (right), which can then be transformed using a
matrix-vector multiplication (center). The transformed vector is then decoded
back into an image with R rows and C columns.

Fig. 5. Thin lens approximation. The image of a point p located at a distance
x in front of the lens is formed at a distance x′ behind the lens.

diagonalizes the convolution operator matrix. It also allows
one to make use of a variety of tools available in linear algebra.
This section briefly discusses how to obtain such matrix-vector
representations.

Let V and U be C- and R-dimensional vectorial spaces,
respectively. Also, let T : V → U be a linear operator that
maps every vector v in V to a vector u in U . Then, there
exists a matrix M , with R rows and C columns, such that

Mv = u = T (v); ∀ v ∈ V.

The matrix elements Mij of M can be obtained applying the
linear operator T to each vector vj of the canonical basis of
V , and computing the dot product of the resulting T (vj) with
the vectors ui of the canonical basis of U :

Mij = ui · T (vj) (11)

There is a one-to-one correspondence between matrices and
linear operators in vector spaces.

In order to apply these matrix operators to images, one
must first rearrange its pixels to form a column vector v, as
illustrated in Fig. 4Representing a 2D image with R rows
and C columns as a 1D vector containing R × C elements
(right), which can then be transformed using a matrix-vector
multiplication (center). The transformed vector is then decoded
back into an image with R rows and C columnsfigure.4,
and then obtain the matrix M from Equation 11Matrix
Operatorsequation.5.11. It is important to note that the column
vectors so constructed have R×C rows and that M will have
R×C rows and R×C columns. The usual definition of two-
dimensional convolution, correlation, and Fourier transforms
provide more compact expressions, as M tends to be huge.

(a) (b) (c)

Fig. 6. Motion blurr. (a) Ideal image f . (b) Trajectory mask hmotion,
expressing the relative motion of the camera with respect to the scene objects.
(c) Image containing motion blurr: g = f ⊗ hmotion.

VI. IMAGE FORMATION AND CONVOLUTION

In this section we assume a scene with all the objects located
at the same distance x from the camera lens. We also assume
that their surfaces are Lambertian, i.e., the radiance leaving a
scene surface point does not vary with direction.

Fig. 5Thin lens approximation. The image of a point p
located at a distance x in front of the lens is formed at a
distance x′ behind the lensfigure.5 shows how a scene point
p located at a distance x from the camera lens is projected on
the sensor. Rays leaving p go through the lens and converge to
a sharp point behind the lens at a distance x′ that depends both
on x and on the lens focal distance fd. The relation between
x, x′ and fd is given by Gauss formula:

1

x
+

1

x′
=

1

fd
(12)

If the sensor is located exactly at x′, a sharp image of p is
formed. If, however, the sensor is located at another distance
s < x′, the rays leaving p will be spread over a region
with the same shape as the aperture. The relation between
the aperture diameter D and its projection d can be calculated
using trigonometric relations as:

d = D(
x′ − s
x′

) = D(1− s 1
x′
). (13)

From Equations 12Image Formation and
Convolutionequation.6.12 and 13Image Formation and
Convolutionequation.6.13, one can compute d as :

d = D(1− s( 1
fd
− 1

x
)). (14)

Scene points located at a distance y from the optical axis will
be projected on the sensor at a distance y′ from the optical
axis:

y′ = y
s

x
. (15)

The difference between an ideal all-in-focus image f and the
captured one g is that in g, every point of f will appear
scaled by d. Thus, for each point on the scene plane, its
image will appear as a scaled version of the aperture shifted
by some distance y′. As we saw in Section IIIConvolution
and Correlationsection.3, this is exactly what one would ob-
tain by convolving a scaled version of the aperture with a
delta image. Using the fact that f itself may be expressed
as a linear combination of deltas (Equation 5Convolution



and Correlationequation.3.5) and that convolution is a linear
operator, one concludes that the image formed on the sensor
can be described as the convolution of the ideal image f with
a scaled version of the aperture h:

g = f ⊗ h. (16)

Using a similar analysis for a moving object, g will be
formed by a linear combination of several instantaneous
projections of its scaled and blurred aperture image. Thus, the
blurring mask combines the aperture mask and a mask which is
a scaled version of the object’s trajectory projected on a plane
perpendicular to the optical axis. If the shutter is opened and
closed several times during the capture of g, only the portions
of the object trajectory corresponding to times when the shutter
is open must be considered. In short, for a moving object,
Equation 16Image Formation and Convolutionequation.6.16
still holds but one should replace h by:

h = haperture ⊗ hmotion. (17)

For a real scene, the convolution kernel will vary with object
distance to the camera’s focal plane, as well as with its relative
movement with respect to the camera. This means that, in
general, one cannot use a single kernel to deconvolve an entire
image.

A. Image formation and noise

The captured image g may be contaminated by noise n from
multiple sources, some of which will be independent of the
image content:

g = f ⊗ h+ n. (18)

Although some sources of noise do depend on image content,
following a common practice in computational photography
works, we will only consider additive noise. One should be
aware, however, that current technology allows the construc-
tion of cameras for which the principal source of noise is the
random arrival of photons. This can be modeled by a Poisson
process that depends on the image content.

VII. THE DECONVOLUTION PROBLEM

As discussed in the previous section, the image acquisition
process can be modeled as the convolution of an ideal image
with a kernel, which depends on the camera’s aperture pattern.
The captured image may be blurred if the scene objects are
out of focus, or due to camera-object relative motion. A
central question is whether this process is invertible. In other
words, can one recover a sharp image f given a blurred
picture g and knowledge about the camera’s aperture used
to acquire g? Another key question to many computational
photography techniques is how can one design apertures
(masks) that facilitate or improve the recovery of f from
g. In fact, this is the most fundamental question in coded
photography. This section addresses these important questions
and introduces the notion of deconvolution. It also provides
an intuitive introduction to various techniques commonly used
in computational photography to perform deconvolution.

f h g = f ⊗ h

|Fuv| |Huv| |Guv| = |Fuv. ∗Guv|

Fig. 7. The result of convolving an image with a circular aperture, represented
both in the spatial and frequency domains. (left) Input image f (cameraman)
and a side view of its amplitude spectrum (|Fu,v |) plotted as a surface in
3D, using a log10 scale. (center) Circular aperture h and a side view of its
amplitude spectrum (|Hu,v |). Note the occurrence of very small values, of
the order of 10−6. (right) Blurred image g = f ⊗ h, and a side view of its
amplitude spectrum |Gu,v |.

The Noiseless Case: We will begin by the simple case of a
convolution kernel that is constant all over the image. In this
case, the captured image g will be the convolution of the ideal
image f with a kernel h that models the aperture pattern plus
motion blur. For now, we ignore the existence of noise. Thus,

g = f ⊗ h.

In the frequency domain, this relationship can be expressed as

Gu,v = Fu,vHu,v, ∀ u, v, (19)

where u and v are frequencies. This is illustrated for both
domains in Fig. 7The result of convolving an image with a
circular aperture, represented both in the spatial and frequency
domains. (left) Input image f (cameraman) and a side view
of its amplitude spectrum (|Fu,v|) plotted as a surface in 3D,
using a log10 scale. (center) Circular aperture h and a side
view of its amplitude spectrum (|Hu,v|). Note the occurrence
of very small values, of the order of 10−6. (right) Blurred
image g = f ⊗ h, and a side view of its amplitude spectrum
|Gu,v|figure.7, which shows the result of convolving an image
with a circular aperture. The ideal image f is shown on the
left, followed by the circular aperture h, at the center, and
by the resulting blurred image g, on the right. Side views
of the amplitude spectra of f , h, and g (i.e., |Fu,v|, |Hu,v|,
and |Gu,v|, respectively) are shown under the corresponding
images, plotted as a surface in 3D, using a log10 scale. For
|Hu,v|, one should note the existence of some very small
values, in the order of 10−6.

Assuming that H has no zero values, one can recover the
ideal image representation F from the blurred one G and the



g = f ⊗ h h−1 f = g ⊗ h−1

|Guv| 1/|Huv| |Fuv| = |Guv/Huv|

Fig. 8. Debluring by inverse filtering in the abscence of noise. (left) Blurred
image g obtained in Fig. 7The result of convolving an image with a circular
aperture, represented both in the spatial and frequency domains. (left) Input
image f (cameraman) and a side view of its amplitude spectrum (|Fu,v |)
plotted as a surface in 3D, using a log10 scale. (center) Circular aperture h
and a side view of its amplitude spectrum (|Hu,v |). Note the occurrence of
very small values, of the order of 10−6. (right) Blurred image g = f⊗h, and
a side view of its amplitude spectrum |Gu,v |figure.7 as g = f⊗h, and a side
view of its amplitude spectrum. (center) Image representation of the frequency
domain inverse filter 1/Hu,v and a side view of its corresponding spectrum.
(right) Deblurred image obtained as Fu,v = Gu,v/Hu,v (Equation 20The
Deconvolution Problemequation.7.20). Fu,v , and therefore f , can be exactly
recovered.

g = f ⊗ h+ n h−1 f̂ = g ⊗ h−1

|Guv| 1/|Huv| |F̂uv| = |Guv/Huv|

Fig. 9. Debluring by inverse filtering in the presence of noise. (left) Blurred
image g obtained as g = f ⊗ h + n, and a side view of its amplitude
spectrum. In this example, Gaussian noise with σ = 0.001 was added to
the image shown in Fig. 8Debluring by inverse filtering in the abscence of
noise. (left) Blurred image g obtained in Fig. 7The result of convolving an
image with a circular aperture, represented both in the spatial and frequency
domains. (left) Input image f (cameraman) and a side view of its amplitude
spectrum (|Fu,v |) plotted as a surface in 3D, using a log10 scale. (center)
Circular aperture h and a side view of its amplitude spectrum (|Hu,v |). Note
the occurrence of very small values, of the order of 10−6. (right) Blurred
image g = f ⊗ h, and a side view of its amplitude spectrum |Gu,v |figure.7
as g = f ⊗ h, and a side view of its amplitude spectrum. (center) Image
representation of the frequency domain inverse filter 1/Hu,v and a side
view of its corresponding spectrum. (right) Deblurred image obtained as
Fu,v = Gu,v/Hu,v (Equation 20The Deconvolution Problemequation.7.20).
Fu,v , and therefore f , can be exactly recoveredfigure.8 (left). The added noise
has dominated the frequency components with low magnitude values (compare
both spectra). (center) Image representation of the frequency domain inverse
filter 1/Hu,v and a side view of its corresponding spectrum. (right) Deblurred
image obtained using Equation 22The Deconvolution Problemequation.7.22.
As the noise dominates several frequency components, inverse filtering
becomes ill posed, and the recovered image f̂ is essentially noise.

blurring kernel H as

Fu,v = Gu,v /Hu,v. (20)

This method of obtaining F is known as inverse filtering, as
one searches, in the frequency domain, for a sharp image f
that convolved with h will give the blurred image g. A similar
problem involves finding H from G and F . Fig. 8Debluring
by inverse filtering in the abscence of noise. (left) Blurred
image g obtained in Fig. 7The result of convolving an image
with a circular aperture, represented both in the spatial and
frequency domains. (left) Input image f (cameraman) and
a side view of its amplitude spectrum (|Fu,v|) plotted as a
surface in 3D, using a log10 scale. (center) Circular aperture
h and a side view of its amplitude spectrum (|Hu,v|). Note
the occurrence of very small values, of the order of 10−6.
(right) Blurred image g = f ⊗ h, and a side view of its
amplitude spectrum |Gu,v|figure.7 as g = f ⊗ h, and a side
view of its amplitude spectrum. (center) Image representation
of the frequency domain inverse filter 1/Hu,v and a side view
of its corresponding spectrum. (right) Deblurred image ob-
tained as Fu,v = Gu,v/Hu,v (Equation 20The Deconvolution
Problemequation.7.20). Fu,v , and therefore f , can be exactly
recoveredfigure.8 illustrates the use of inverse filtering for the
example shown in Fig. 7The result of convolving an image
with a circular aperture, represented both in the spatial and
frequency domains. (left) Input image f (cameraman) and
a side view of its amplitude spectrum (|Fu,v|) plotted as a
surface in 3D, using a log10 scale. (center) Circular aperture
h and a side view of its amplitude spectrum (|Hu,v|). Note the
occurrence of very small values, of the order of 10−6. (right)
Blurred image g = f ⊗ h, and a side view of its amplitude
spectrum |Gu,v|figure.7. Since we are assuming a noiseless
acquisition process, f can be exactly recovered (Fig. 8Deblur-
ing by inverse filtering in the abscence of noise. (left) Blurred
image g obtained in Fig. 7The result of convolving an image
with a circular aperture, represented both in the spatial and
frequency domains. (left) Input image f (cameraman) and
a side view of its amplitude spectrum (|Fu,v|) plotted as a
surface in 3D, using a log10 scale. (center) Circular aperture
h and a side view of its amplitude spectrum (|Hu,v|). Note
the occurrence of very small values, of the order of 10−6.
(right) Blurred image g = f ⊗ h, and a side view of its
amplitude spectrum |Gu,v|figure.7 as g = f ⊗ h, and a side
view of its amplitude spectrum. (center) Image representation
of the frequency domain inverse filter 1/Hu,v and a side view
of its corresponding spectrum. (right) Deblurred image ob-
tained as Fu,v = Gu,v/Hu,v (Equation 20The Deconvolution
Problemequation.7.20). Fu,v , and therefore f , can be exactly
recoveredfigure.8, right).

In case H contains zero values, it is not possible to recover
F in general, since some frequencies from f might have been
lost. This can be easily understood by considering the element-
wise multiplication that takes place in the frequency do-
main (Equation 19The Deconvolution Problemequation.7.19).
If some frequencies are lost, the problem is said to be ill
posed, meaning that it has either none or multiple solutions.



For instance, given one solution, any other F̂ differing from
the first one only in the frequencies for which Hu,v is zero
will also be a plausible solution.

If H has no zeros, but instead it contains very small values
associated to some frequencies (u, v), the exact solution exists
and is unique, but it may be ill conditioned. In this case, the
solution becomes very sensitive to small changes in the values
of the corresponding frequencies in G. This situation is of
serious practical concern and will be discussed next, when we
analyze the noisy case.
The Noisy Case: In the presence of (additive) noise, the
captured image g may be modeled as the convolution of the
ideal image f with a blurring kernel h, plus some noise n:

g = f ⊗ h+ n.

In the frequency domain this can be expressed as

Gu,v = Fu,vHu,v +Nu,v, ∀ u, v, (21)

where Nu,v are the (u, v) DFT components of the noise.
Assuming that H has no zeros, applying inverse filtering
to Equation 21The Deconvolution Problemequation.7.21 pro-
duces

Fu,v =
Gu,v
Hu,v

− Nu,v
Hu,v

. (22)

The second term on the right hand side of Equation 22The
Deconvolution Problemequation.7.22 is the deconvolved noise.
Whenever |Hu,v| is small and |Nu,v| >> |Gu,v|, the de-
convolved noise will dominate the reconstruction process at
frequencies (u, v). As a result, the recovered image f̂ might
not even resemble f . This is illustrated in Fig. 9Debluring
by inverse filtering in the presence of noise. (left) Blurred
image g obtained as g = f ⊗ h + n, and a side view of
its amplitude spectrum. In this example, Gaussian noise with
σ = 0.001 was added to the image shown in Fig. 8Debluring
by inverse filtering in the abscence of noise. (left) Blurred
image g obtained in Fig. 7The result of convolving an image
with a circular aperture, represented both in the spatial and
frequency domains. (left) Input image f (cameraman) and
a side view of its amplitude spectrum (|Fu,v|) plotted as a
surface in 3D, using a log10 scale. (center) Circular aperture
h and a side view of its amplitude spectrum (|Hu,v|). Note
the occurrence of very small values, of the order of 10−6.
(right) Blurred image g = f ⊗ h, and a side view of its
amplitude spectrum |Gu,v|figure.7 as g = f ⊗ h, and a side
view of its amplitude spectrum. (center) Image representation
of the frequency domain inverse filter 1/Hu,v and a side
view of its corresponding spectrum. (right) Deblurred image
obtained as Fu,v = Gu,v/Hu,v (Equation 20The Deconvo-
lution Problemequation.7.20). Fu,v , and therefore f , can be
exactly recoveredfigure.8 (left). The added noise has domi-
nated the frequency components with low magnitude values
(compare both spectra). (center) Image representation of the
frequency domain inverse filter 1/Hu,v and a side view of
its corresponding spectrum. (right) Deblurred image obtained
using Equation 22The Deconvolution Problemequation.7.22.

As the noise dominates several frequency components, inverse
filtering becomes ill posed, and the recovered image f̂ is
essentially noisefigure.9, where Gaussian noise with σ =
0.001 has been added to the image shown in Fig. 8Debluring
by inverse filtering in the abscence of noise. (left) Blurred
image g obtained in Fig. 7The result of convolving an image
with a circular aperture, represented both in the spatial and
frequency domains. (left) Input image f (cameraman) and
a side view of its amplitude spectrum (|Fu,v|) plotted as a
surface in 3D, using a log10 scale. (center) Circular aperture
h and a side view of its amplitude spectrum (|Hu,v|). Note
the occurrence of very small values, of the order of 10−6.
(right) Blurred image g = f ⊗ h, and a side view of its
amplitude spectrum |Gu,v|figure.7 as g = f ⊗ h, and a side
view of its amplitude spectrum. (center) Image representation
of the frequency domain inverse filter 1/Hu,v and a side
view of its corresponding spectrum. (right) Deblurred image
obtained as Fu,v = Gu,v/Hu,v (Equation 20The Deconvo-
lution Problemequation.7.20). Fu,v , and therefore f , can be
exactly recoveredfigure.8 (left). Although Figs. 8Debluring
by inverse filtering in the abscence of noise. (left) Blurred
image g obtained in Fig. 7The result of convolving an image
with a circular aperture, represented both in the spatial and
frequency domains. (left) Input image f (cameraman) and
a side view of its amplitude spectrum (|Fu,v|) plotted as a
surface in 3D, using a log10 scale. (center) Circular aperture
h and a side view of its amplitude spectrum (|Hu,v|). Note
the occurrence of very small values, of the order of 10−6.
(right) Blurred image g = f ⊗ h, and a side view of its
amplitude spectrum |Gu,v|figure.7 as g = f ⊗ h, and a side
view of its amplitude spectrum. (center) Image representation
of the frequency domain inverse filter 1/Hu,v and a side
view of its corresponding spectrum. (right) Deblurred image
obtained as Fu,v = Gu,v/Hu,v (Equation 20The Deconvo-
lution Problemequation.7.20). Fu,v , and therefore f , can be
exactly recoveredfigure.8 (top left) and 9Debluring by inverse
filtering in the presence of noise. (left) Blurred image g
obtained as g = f ⊗ h + n, and a side view of its amplitude
spectrum. In this example, Gaussian noise with σ = 0.001
was added to the image shown in Fig. 8Debluring by inverse
filtering in the abscence of noise. (left) Blurred image g
obtained in Fig. 7The result of convolving an image with a
circular aperture, represented both in the spatial and frequency
domains. (left) Input image f (cameraman) and a side view
of its amplitude spectrum (|Fu,v|) plotted as a surface in 3D,
using a log10 scale. (center) Circular aperture h and a side view
of its amplitude spectrum (|Hu,v|). Note the occurrence of very
small values, of the order of 10−6. (right) Blurred image g =
f⊗h, and a side view of its amplitude spectrum |Gu,v|figure.7
as g = f ⊗ h, and a side view of its amplitude spectrum.
(center) Image representation of the frequency domain inverse
filter 1/Hu,v and a side view of its corresponding spectrum.
(right) Deblurred image obtained as Fu,v = Gu,v/Hu,v

(Equation 20The Deconvolution Problemequation.7.20). Fu,v ,
and therefore f , can be exactly recoveredfigure.8 (left). The
added noise has dominated the frequency components with



low magnitude values (compare both spectra). (center) Image
representation of the frequency domain inverse filter 1/Hu,v

and a side view of its corresponding spectrum. (right) De-
blurred image obtained using Equation 22The Deconvolution
Problemequation.7.22. As the noise dominates several fre-
quency components, inverse filtering becomes ill posed, and
the recovered image f̂ is essentially noisefigure.9 (top left) are
visually indistinguishable, the added noise has dominated the
frequency components with low magnitude values in f . This
can be verified by simply comparing both spectra. As a result,
the image f̂ obtained using Equation 22The Deconvolution
Problemequation.7.22 is dominated by noise (Fig. 9Debluring
by inverse filtering in the presence of noise. (left) Blurred
image g obtained as g = f ⊗ h + n, and a side view of
its amplitude spectrum. In this example, Gaussian noise with
σ = 0.001 was added to the image shown in Fig. 8Debluring
by inverse filtering in the abscence of noise. (left) Blurred
image g obtained in Fig. 7The result of convolving an image
with a circular aperture, represented both in the spatial and
frequency domains. (left) Input image f (cameraman) and
a side view of its amplitude spectrum (|Fu,v|) plotted as a
surface in 3D, using a log10 scale. (center) Circular aperture
h and a side view of its amplitude spectrum (|Hu,v|). Note
the occurrence of very small values, of the order of 10−6.
(right) Blurred image g = f ⊗ h, and a side view of its
amplitude spectrum |Gu,v|figure.7 as g = f ⊗ h, and a side
view of its amplitude spectrum. (center) Image representation
of the frequency domain inverse filter 1/Hu,v and a side
view of its corresponding spectrum. (right) Deblurred image
obtained as Fu,v = Gu,v/Hu,v (Equation 20The Deconvo-
lution Problemequation.7.20). Fu,v , and therefore f , can be
exactly recoveredfigure.8 (left). The added noise has domi-
nated the frequency components with low magnitude values
(compare both spectra). (center) Image representation of the
frequency domain inverse filter 1/Hu,v and a side view of
its corresponding spectrum. (right) Deblurred image obtained
using Equation 22The Deconvolution Problemequation.7.22.
As the noise dominates several frequency components, inverse
filtering becomes ill posed, and the recovered image f̂ is
essentially noisefigure.9, right), characterizing a situation of
ill conditioning.

Since noise is inherent to any image-capture process, it
should be clear that more robust techniques than just inverse
filtering are needed to perform deconvolution. This is the
subject of following section.

VIII. DECONVOLUTION TECHNIQUES

This section discusses four popular approaches to perform
deconvolution while trying to avoid noise amplification. First,
we will describe the autocorrelation method used in X-
ray and γ-ray astronomy. Then, we will review the Wiener
filter, the Richardson-Lucy algorithm, and conclude the section
describing techniques based on image priors.
Autocorrelation Methods: Coded-aperture techniques were
introduced by Dicke [20] and by Ables [21] to image X- and
γ-ray radiation in astronomy, overcoming the limitation that

such rays cannot be refracted using regular lenses. While a
pinhole camera can be used to capture images from high-
energy sources, it is not light efficient. The light-efficiency
problem is resolved with the use of a (coded-aperture) mask
containing a large number of pinholes. However, such a
solution results in multiple copies of the target image being
projected on the sensor, which will require deconvolution.
This situation is similar to superimposing the convolutions of
a desired image f with a series of delta images, each one
representing a pinhole, as discussed in Section IIIConvolution
and Correlationsection.3.

The central idea behind autocorrelation methods is to find a
mask whose autocorrelation (i.e., its correlation with itself) re-
sults in an approximation of a delta image. Such masks consist
of equal-sized holes on an opaque plate. They can be modeled
as a binary matrix with R rows and C columns, having k
cells with value 1. Assuming that the value 1 represents a
hole, the mask transparency is defined as T = k

R×C . In 1971,
Golay [22] proposed a set of patterns called Non-Redundant
Arrays (NRA) whose autocorrelations consist of a delta at the
origin with a peak of height k (i.e., k d(0,0)), plus some few
non zero elements of value 1 << k. Other patterns known as
Uniform Redundant Arrays (URA) [23], [24] have been found
with autocorrelations producing a delta at the origin plus a
matrix with constant element values equal to λU :

h ◦ h = k d(0,0) + λU ,

where λ is a scalar value, U is a matrix with all ones, and
k d(0,0) is a delta image with peak magnitude k at the origin.
A random pinhole mask approximately fulfills this condition.
For example, a mask h of size R×C with half of its elements
zeros and half ones, which are randomly spaced will have an
autocorrelation:

(h ◦ h)r,c =
{

(R× C)/2, if r = 0 and c = 0;
≈ (R× C)/4, otherwise.

Random pinhole patterns are described in [20] and [21].
Deconvolution in the presence of noise can then be expressed
as

g ◦ h = (f ⊗ h+ n) ◦ h
= f ⊗ h ◦ h+ n ◦ h
= f ⊗ (k d(0,0) + λU) + n ◦ h
= k f + λ (f ⊗ U) + n ◦ h
= k f + k λ f + n ◦ h,

where f is f ’s average value. Since h is composed of zeros and
ones, this approach does not suffer from the noise amplifica-
tion problem that plagues inverse filtering. The reconstructed
image f̂ is defined as:

f̂ =
g ◦ h
k

. (23)

It will differ from the ideal f by an approximately constant
offset.



A variation of this restoration method known as balanced
autocorrelation uses a modified mask ĥ to perform correla-
tion:

ĥij =

{
1, if hij = 1;
T/(T-1), if hij = 0,

where T is the mask transparency defined above. in this
way the sum of all the elements of ĥij is zero and any DC
background is removed from the reconstructed image [23].

Modified Uniform Redundant Arrays (MURA) were intro-
duced in [25] and are similar to URAs. To deconvolve a
MURA, the following mask ĥ is used:

ĥij =

 1, if i+ j = 0;
1, if hij = 1 and (i+ j) 6= 0;
−1, if hij = 0 and (i+ j) 6= 0.

Fig. 10MURA mask (a) Input image. (b) MURA mask.
(c) Convolution of input image with the MURA mask plus
Gaussian noise (σ = 0.001). (d) Restored imagefigure.10
shows an image convolved with a MURA mask, and restored
after adding Gaussian noise.

(a) (b) (c) (d)

Fig. 10. MURA mask (a) Input image. (b) MURA mask. (c) Convolution
of input image with the MURA mask plus Gaussian noise (σ = 0.001). (d)
Restored image.

Wiener Filter: Comparing the amplitude spectra shown in
Figs. 8Debluring by inverse filtering in the abscence of
noise. (left) Blurred image g obtained in Fig. 7The result
of convolving an image with a circular aperture, represented
both in the spatial and frequency domains. (left) Input image
f (cameraman) and a side view of its amplitude spectrum
(|Fu,v|) plotted as a surface in 3D, using a log10 scale. (center)
Circular aperture h and a side view of its amplitude spectrum
(|Hu,v|). Note the occurrence of very small values, of the
order of 10−6. (right) Blurred image g = f ⊗ h, and a side
view of its amplitude spectrum |Gu,v|figure.7 as g = f ⊗ h,
and a side view of its amplitude spectrum. (center) Image
representation of the frequency domain inverse filter 1/Hu,v

and a side view of its corresponding spectrum. (right) De-
blurred image obtained as Fu,v = Gu,v/Hu,v (Equation 20The
Deconvolution Problemequation.7.20). Fu,v , and therefore f ,
can be exactly recoveredfigure.8 (left) (noiseless case) and
9Debluring by inverse filtering in the presence of noise. (left)
Blurred image g obtained as g = f⊗h+n, and a side view of
its amplitude spectrum. In this example, Gaussian noise with
σ = 0.001 was added to the image shown in Fig. 8Debluring
by inverse filtering in the abscence of noise. (left) Blurred
image g obtained in Fig. 7The result of convolving an image

with a circular aperture, represented both in the spatial and
frequency domains. (left) Input image f (cameraman) and
a side view of its amplitude spectrum (|Fu,v|) plotted as a
surface in 3D, using a log10 scale. (center) Circular aperture
h and a side view of its amplitude spectrum (|Hu,v|). Note
the occurrence of very small values, of the order of 10−6.
(right) Blurred image g = f ⊗ h, and a side view of its
amplitude spectrum |Gu,v|figure.7 as g = f ⊗ h, and a side
view of its amplitude spectrum. (center) Image representation
of the frequency domain inverse filter 1/Hu,v and a side
view of its corresponding spectrum. (right) Deblurred image
obtained as Fu,v = Gu,v/Hu,v (Equation 20The Deconvo-
lution Problemequation.7.20). Fu,v , and therefore f , can be
exactly recoveredfigure.8 (left). The added noise has domi-
nated the frequency components with low magnitude values
(compare both spectra). (center) Image representation of the
frequency domain inverse filter 1/Hu,v and a side view of
its corresponding spectrum. (right) Deblurred image obtained
using Equation 22The Deconvolution Problemequation.7.22.
As the noise dominates several frequency components, inverse
filtering becomes ill posed, and the recovered image f̂ is
essentially noisefigure.9 (left) (noisy case), one observes that
lots of frequencies in the spectrum of Fig. 9Debluring by
inverse filtering in the presence of noise. (left) Blurred image
g obtained as g = f ⊗ h + n, and a side view of its
amplitude spectrum. In this example, Gaussian noise with
σ = 0.001 was added to the image shown in Fig. 8Debluring
by inverse filtering in the abscence of noise. (left) Blurred
image g obtained in Fig. 7The result of convolving an image
with a circular aperture, represented both in the spatial and
frequency domains. (left) Input image f (cameraman) and
a side view of its amplitude spectrum (|Fu,v|) plotted as a
surface in 3D, using a log10 scale. (center) Circular aperture
h and a side view of its amplitude spectrum (|Hu,v|). Note
the occurrence of very small values, of the order of 10−6.
(right) Blurred image g = f ⊗ h, and a side view of its
amplitude spectrum |Gu,v|figure.7 as g = f ⊗ h, and a side
view of its amplitude spectrum. (center) Image representation
of the frequency domain inverse filter 1/Hu,v and a side view
of its corresponding spectrum. (right) Deblurred image ob-
tained as Fu,v = Gu,v/Hu,v (Equation 20The Deconvolution
Problemequation.7.20). Fu,v , and therefore f , can be exactly
recoveredfigure.8 (left). The added noise has dominated the
frequency components with low magnitude values (compare
both spectra). (center) Image representation of the frequency
domain inverse filter 1/Hu,v and a side view of its corre-
sponding spectrum. (right) Deblurred image obtained using
Equation 22The Deconvolution Problemequation.7.22. As the
noise dominates several frequency components, inverse filter-
ing becomes ill posed, and the recovered image f̂ is essentially
noisefigure.9 (left) become dominated by noise, which has
erased the original signal information. Thus, to avoid noise
amplification, during deconvolution one can selectively ignore
the information associated with such frequencies. One such
approach is called Wiener filtering. It attenuates the noisy



frequencies before applying a conventional inverse filter:

F̂u,v =
1

Hu,v
(Bu,v Gu,v), (24)

where F̂ , G, and H are, respectively, the spectra of the restored
image f̂ , of the observed image g, and of the blurring filter
h. B is given by:

Bu,v =
|Hu,v|2

|Hu,v|2 + |Nu,v|2
|Fu,v|2

. (25)

Note that in the absence of noise, B = 1, and the Wiener filter
reduces to an inverse filter.

Fig. 9Debluring by inverse filtering in the presence of
noise. (left) Blurred image g obtained as g = f ⊗ h + n,
and a side view of its amplitude spectrum. In this example,
Gaussian noise with σ = 0.001 was added to the image
shown in Fig. 8Debluring by inverse filtering in the abscence
of noise. (left) Blurred image g obtained in Fig. 7The result
of convolving an image with a circular aperture, represented
both in the spatial and frequency domains. (left) Input image
f (cameraman) and a side view of its amplitude spectrum
(|Fu,v|) plotted as a surface in 3D, using a log10 scale. (center)
Circular aperture h and a side view of its amplitude spectrum
(|Hu,v|). Note the occurrence of very small values, of the
order of 10−6. (right) Blurred image g = f ⊗ h, and a side
view of its amplitude spectrum |Gu,v|figure.7 as g = f ⊗ h,
and a side view of its amplitude spectrum. (center) Image
representation of the frequency domain inverse filter 1/Hu,v

and a side view of its corresponding spectrum. (right) De-
blurred image obtained as Fu,v = Gu,v/Hu,v (Equation 20The
Deconvolution Problemequation.7.20). Fu,v , and therefore f ,
can be exactly recoveredfigure.8 (left). The added noise has
dominated the frequency components with low magnitude val-
ues (compare both spectra). (center) Image representation of
the frequency domain inverse filter 1/Hu,v and a side view of
its corresponding spectrum. (right) Deblurred image obtained
using Equation 22The Deconvolution Problemequation.7.22.
As the noise dominates several frequency components, inverse
filtering becomes ill posed, and the recovered image f̂ is essen-
tially noisefigure.9 (right) and Fig. 11Comparison of several
deconvolution techniques for image deblurring in the presence
of additive noise. (a) Ideal image f . (b) Blurred image with
noise g = f ⊗ h + n (same as shown in Fig 9Debluring
by inverse filtering in the presence of noise. (left) Blurred
image g obtained as g = f ⊗ h + n, and a side view of
its amplitude spectrum. In this example, Gaussian noise with
σ = 0.001 was added to the image shown in Fig. 8Debluring
by inverse filtering in the abscence of noise. (left) Blurred
image g obtained in Fig. 7The result of convolving an image
with a circular aperture, represented both in the spatial and
frequency domains. (left) Input image f (cameraman) and
a side view of its amplitude spectrum (|Fu,v|) plotted as a
surface in 3D, using a log10 scale. (center) Circular aperture
h and a side view of its amplitude spectrum (|Hu,v|). Note
the occurrence of very small values, of the order of 10−6.

(right) Blurred image g = f ⊗ h, and a side view of its
amplitude spectrum |Gu,v|figure.7 as g = f ⊗ h, and a side
view of its amplitude spectrum. (center) Image representation
of the frequency domain inverse filter 1/Hu,v and a side
view of its corresponding spectrum. (right) Deblurred image
obtained as Fu,v = Gu,v/Hu,v (Equation 20The Deconvo-
lution Problemequation.7.20). Fu,v , and therefore f , can be
exactly recoveredfigure.8 (left). The added noise has domi-
nated the frequency components with low magnitude values
(compare both spectra). (center) Image representation of the
frequency domain inverse filter 1/Hu,v and a side view of
its corresponding spectrum. (right) Deblurred image obtained
using Equation 22The Deconvolution Problemequation.7.22.
As the noise dominates several frequency components, inverse
filtering becomes ill posed, and the recovered image f̂ is
essentially noisefigure.9, left). Images (c) to (f) show the
results obtained by deconvolving (b) using: (c) Wiener filter-
ing; (d) the Richardson-Lucy algorithm; (e) image priors with
Gaussian prior (β = 2); (f) image priors with a sparse prior
(β = 0.8)figure.11 (c) show the results produced by inverse
and Wiener filtering, respectively. Note that as several of the
original frequencies in f got dominated by noise, Wiener
filtering cannot reconstruct f exactly. However, by selectively
modulating the contribution of each frequency according to
its signal-to-noise ratio (SNR), the Wiener filtering can obtain
a significantly better result. Fig. 12Plot of Wiener’s Bu,v
function (Equation 25Deconvolution techniquesequation.8.25)
for the circular aperture example shown in Fig. 7The result
of convolving an image with a circular aperture, represented
both in the spatial and frequency domains. (left) Input image
f (cameraman) and a side view of its amplitude spectrum
(|Fu,v|) plotted as a surface in 3D, using a log10 scale. (center)
Circular aperture h and a side view of its amplitude spectrum
(|Hu,v|). Note the occurrence of very small values, of the order
of 10−6. (right) Blurred image g = f ⊗ h, and a side view
of its amplitude spectrum |Gu,v|figure.7 in the presence of
Gaussian additive noise (σ = 0.001). It resembles a selective
low-pass filterfigure.12 plots the values of Bu,v for the circular
aperture example shown in Fig. 7The result of convolving an
image with a circular aperture, represented both in the spatial
and frequency domains. (left) Input image f (cameraman) and
a side view of its amplitude spectrum (|Fu,v|) plotted as a
surface in 3D, using a log10 scale. (center) Circular aperture
h and a side view of its amplitude spectrum (|Hu,v|). Note the
occurrence of very small values, of the order of 10−6. (right)
Blurred image g = f ⊗ h, and a side view of its amplitude
spectrum |Gu,v|figure.7 in the presence of Gaussian additive
noise (σ = 0.001). Note that for this example B resembles a
selective low-pass filter.

The solution obtained with the Wiener filter minimizes the
mean-square reconstruction error among those f̂ that can be
obtained from g using a linear operator. For this to be true,
the noise and the image must be uncorrelated and the noise
must have zero mean.

One should note that the filter formulation (Equations
24Deconvolution techniquesequation.8.24 and 25Deconvolu-



Fig. 12. Plot of Wiener’s Bu,v function (Equation 25Deconvolution
techniquesequation.8.25) for the circular aperture example shown in Fig. 7The
result of convolving an image with a circular aperture, represented both in
the spatial and frequency domains. (left) Input image f (cameraman) and
a side view of its amplitude spectrum (|Fu,v |) plotted as a surface in 3D,
using a log10 scale. (center) Circular aperture h and a side view of its
amplitude spectrum (|Hu,v |). Note the occurrence of very small values, of
the order of 10−6. (right) Blurred image g = f ⊗ h, and a side view of its
amplitude spectrum |Gu,v |figure.7 in the presence of Gaussian additive noise
(σ = 0.001). It resembles a selective low-pass filter.

Fig. 13. The 1/f law for the frequency spectrum of natural images. (left) Log
of the amplitude spectrum of the cameraman image: log|Fu,v |. (center) Log
of the average amplitude spectrum over over several natural images. (right)
Plot of Log of 1/f1.7 function. All these plots have similar shapes.

tion techniquesequation.8.25) requires the power spectra of the
noise, |N(u, v)|2, and of the ideal image, |F (u, v)|2. Since
these quantities are not known, in practice one needs to provide
approximations to both. A commonly used approximation
for Gaussian noise is to assume a noise power distribution
constant and equal to the noise variance σ2. For the case of
|F (u, v)|2, for instance, Zhou et. al. [13] suggest using an
approximation computed as the average over a set of natural
images. Fig. 13The 1/f law for the frequency spectrum of
natural images. (left) Log of the amplitude spectrum of the
cameraman image: log|Fu,v|. (center) Log of the average
amplitude spectrum over over several natural images. (right)
Plot of Log of 1/f1.7 function. All these plots have similar
shapesfigure.13 illustrates the idea: on average, the magnitude
of the frequency spectra of natural images seem to follow a
simple 1/f relation. A discussion on natural image models
can be found in [26].
Richardson-Lucy: The Richardson-Lucy algorithm [27],
[28],[29],[30],[31] is an iterative deconvolution approach de-
rived by applying the Bayes’ theorem to a probabilistic model
of images. Using the matrix representation for linear oper-
ators presented in Section VMatrix Operatorssection.5, the
image formation equation (Equation 18Image formation and

noiseequation.6.18) can be rewritten as

gi =

m−1∑
j=0

hij f j + ni,

where g, f , and n are the vector representations of images
g, and f , and the noise n, respectively. h is the matrix
representation of the kernel h. Thus, for any given row i of
h, its elements hij are the weights defining the contributions
of pixels in the ideal image f to gi, the i-th pixel (element)
in g. The algorithm begins by initializing an approximation to
f :

f̂
(1)

j = 1,∀ j.

Then, it iteratively computes successive approximations to f
as:

f̂
(t+1)

j = f̂
(t)

j

∑
i

gi hij∑
k hik f̂

(t)

k

= f̂
(t)

j

∑
i

gi
hij∑

k hik f̂
(t)

k

.

The superscript (t+1) indicates the result of the t-th iteration.
As the algorithm converges slowly, acceleration techniques
have been developed [32]. Fig.11Comparison of several de-
convolution techniques for image deblurring in the presence
of additive noise. (a) Ideal image f . (b) Blurred image with
noise g = f ⊗ h + n (same as shown in Fig 9Debluring
by inverse filtering in the presence of noise. (left) Blurred
image g obtained as g = f ⊗ h + n, and a side view of
its amplitude spectrum. In this example, Gaussian noise with
σ = 0.001 was added to the image shown in Fig. 8Debluring
by inverse filtering in the abscence of noise. (left) Blurred
image g obtained in Fig. 7The result of convolving an image
with a circular aperture, represented both in the spatial and
frequency domains. (left) Input image f (cameraman) and
a side view of its amplitude spectrum (|Fu,v|) plotted as a
surface in 3D, using a log10 scale. (center) Circular aperture
h and a side view of its amplitude spectrum (|Hu,v|). Note
the occurrence of very small values, of the order of 10−6.
(right) Blurred image g = f ⊗ h, and a side view of its
amplitude spectrum |Gu,v|figure.7 as g = f ⊗ h, and a side
view of its amplitude spectrum. (center) Image representation
of the frequency domain inverse filter 1/Hu,v and a side
view of its corresponding spectrum. (right) Deblurred image
obtained as Fu,v = Gu,v/Hu,v (Equation 20The Deconvo-
lution Problemequation.7.20). Fu,v , and therefore f , can be
exactly recoveredfigure.8 (left). The added noise has domi-
nated the frequency components with low magnitude values
(compare both spectra). (center) Image representation of the
frequency domain inverse filter 1/Hu,v and a side view of
its corresponding spectrum. (right) Deblurred image obtained
using Equation 22The Deconvolution Problemequation.7.22.
As the noise dominates several frequency components, inverse
filtering becomes ill posed, and the recovered image f̂ is
essentially noisefigure.9, left). Images (c) to (f) show the
results obtained by deconvolving (b) using: (c) Wiener filter-
ing; (d) the Richardson-Lucy algorithm; (e) image priors with
Gaussian prior (β = 2); (f) image priors with a sparse prior



(a) (b) (c) (d) (e) (f)

Fig. 11. Comparison of several deconvolution techniques for image deblurring in the presence of additive noise. (a) Ideal image f . (b) Blurred image with
noise g = f ⊗ h + n (same as shown in Fig 9Debluring by inverse filtering in the presence of noise. (left) Blurred image g obtained as g = f ⊗ h + n,
and a side view of its amplitude spectrum. In this example, Gaussian noise with σ = 0.001 was added to the image shown in Fig. 8Debluring by inverse
filtering in the abscence of noise. (left) Blurred image g obtained in Fig. 7The result of convolving an image with a circular aperture, represented both in
the spatial and frequency domains. (left) Input image f (cameraman) and a side view of its amplitude spectrum (|Fu,v |) plotted as a surface in 3D, using a
log10 scale. (center) Circular aperture h and a side view of its amplitude spectrum (|Hu,v |). Note the occurrence of very small values, of the order of 10−6.
(right) Blurred image g = f ⊗h, and a side view of its amplitude spectrum |Gu,v |figure.7 as g = f ⊗h, and a side view of its amplitude spectrum. (center)
Image representation of the frequency domain inverse filter 1/Hu,v and a side view of its corresponding spectrum. (right) Deblurred image obtained as
Fu,v = Gu,v/Hu,v (Equation 20The Deconvolution Problemequation.7.20). Fu,v , and therefore f , can be exactly recoveredfigure.8 (left). The added noise
has dominated the frequency components with low magnitude values (compare both spectra). (center) Image representation of the frequency domain inverse
filter 1/Hu,v and a side view of its corresponding spectrum. (right) Deblurred image obtained using Equation 22The Deconvolution Problemequation.7.22.
As the noise dominates several frequency components, inverse filtering becomes ill posed, and the recovered image f̂ is essentially noisefigure.9, left). Images
(c) to (f) show the results obtained by deconvolving (b) using: (c) Wiener filtering; (d) the Richardson-Lucy algorithm; (e) image priors with Gaussian prior
(β = 2); (f) image priors with a sparse prior (β = 0.8)

(β = 0.8)figure.11 (d) illustrates the result of the Richardson-
Lucy algorithm used to deblur the noisy image shown in
Fig.11Comparison of several deconvolution techniques for
image deblurring in the presence of additive noise. (a) Ideal
image f . (b) Blurred image with noise g = f⊗h+n (same as
shown in Fig 9Debluring by inverse filtering in the presence
of noise. (left) Blurred image g obtained as g = f ⊗ h + n,
and a side view of its amplitude spectrum. In this example,
Gaussian noise with σ = 0.001 was added to the image
shown in Fig. 8Debluring by inverse filtering in the abscence
of noise. (left) Blurred image g obtained in Fig. 7The result
of convolving an image with a circular aperture, represented
both in the spatial and frequency domains. (left) Input image
f (cameraman) and a side view of its amplitude spectrum
(|Fu,v|) plotted as a surface in 3D, using a log10 scale. (center)
Circular aperture h and a side view of its amplitude spectrum
(|Hu,v|). Note the occurrence of very small values, of the
order of 10−6. (right) Blurred image g = f ⊗ h, and a side
view of its amplitude spectrum |Gu,v|figure.7 as g = f ⊗ h,
and a side view of its amplitude spectrum. (center) Image
representation of the frequency domain inverse filter 1/Hu,v

and a side view of its corresponding spectrum. (right) De-
blurred image obtained as Fu,v = Gu,v/Hu,v (Equation 20The
Deconvolution Problemequation.7.20). Fu,v , and therefore f ,
can be exactly recoveredfigure.8 (left). The added noise has
dominated the frequency components with low magnitude val-
ues (compare both spectra). (center) Image representation of
the frequency domain inverse filter 1/Hu,v and a side view of
its corresponding spectrum. (right) Deblurred image obtained
using Equation 22The Deconvolution Problemequation.7.22.
As the noise dominates several frequency components, in-
verse filtering becomes ill posed, and the recovered image
f̂ is essentially noisefigure.9, left). Images (c) to (f) show
the results obtained by deconvolving (b) using: (c) Wiener

filtering; (d) the Richardson-Lucy algorithm; (e) image priors
with Gaussian prior (β = 2); (f) image priors with a sparse
prior (β = 0.8)figure.11 (b).
Image-Prior-based Techniques: Other deconvolution meth-
ods involve the use of regularization techniques. The idea
behind these approaches is to obtain a sharp image f̂ that
better explains the acquired image g under convolution with
the kernel h and, at the same time, qualifies as a natural image.
A camera’s finite aperture may cause out-of-focus blurring. In
this case, the kernel h that models such an aperture can be
seen as a low-pass filter. As a result, many noisy variations
of f̂ will produce good approximations to g when convolved
with h. To avoid the recovery of a noisy f̂ , a second term is
added to the objective function to penalize such a selection.
Since image derivatives can be used to detect noise, let D[0]

to D[3] be matrix operators that compute the first and second
image derivatives in the horizontal and vertical directions,
respectively. Using the same matrix and vector representations
used in the description of the Richardson-Lucy algorithm, one
can express the following objective function to be minimized:

δ =
∑
i

∑
k

(hik f̂k − gi)
2+
∑
i

3∑
q=0

λq(
∑
k

D
[q]
ik f̂k)

β , (26)

where λq weights the contribution of D[q], and β is a param-
eter that adjusts the model to the distribution of derivatives
in natural images. The second term penalizes the choice
of noisy images. Differentiating Equation 26Deconvolution
techniquesequation.8.26 with respect to each desired pixel f̂m,
and requiring the resulting expressions to be zero, one gets:

[hTg]m = [hTh f̂ ]m+
β

2

3∑
q=0

λq(
∑
i

(D
[q]
mi)

T [(D[q] f̂)i]
β−1

).

Here, the superscript T indicates matrix transpose, and the op-



erator [�]m returns the m-th element of the vector represented
by the symbol �. When the parameter β takes the value 2, it
is said that a Gaussian prior is being used. In this case, the
solution that minimizes δ is a linear system:

[hTg]m = [hTh f̂ ]m +

3∑
q=0

λq(
∑
i

(D
[q]
mi)

T [(D[q] f̂)i]).

For β 6= 2, for example β = 0.8, it is said that a sparse
prior is being used, and the resulting system is not linear, but
produces better results (i.e., less reconstruction artifacts):

[hTg]m = [hTh f̂ ]m+0.4

3∑
q=0

λq(
∑
i

(D
[q]
mi)

T [(D[q] f̂)i]
−0.2

).

Figs.11Comparison of several deconvolution techniques for
image deblurring in the presence of additive noise. (a) Ideal
image f . (b) Blurred image with noise g = f⊗h+n (same as
shown in Fig 9Debluring by inverse filtering in the presence
of noise. (left) Blurred image g obtained as g = f ⊗ h + n,
and a side view of its amplitude spectrum. In this example,
Gaussian noise with σ = 0.001 was added to the image
shown in Fig. 8Debluring by inverse filtering in the abscence
of noise. (left) Blurred image g obtained in Fig. 7The result
of convolving an image with a circular aperture, represented
both in the spatial and frequency domains. (left) Input image
f (cameraman) and a side view of its amplitude spectrum
(|Fu,v|) plotted as a surface in 3D, using a log10 scale. (center)
Circular aperture h and a side view of its amplitude spectrum
(|Hu,v|). Note the occurrence of very small values, of the
order of 10−6. (right) Blurred image g = f ⊗ h, and a side
view of its amplitude spectrum |Gu,v|figure.7 as g = f ⊗ h,
and a side view of its amplitude spectrum. (center) Image
representation of the frequency domain inverse filter 1/Hu,v

and a side view of its corresponding spectrum. (right) De-
blurred image obtained as Fu,v = Gu,v/Hu,v (Equation 20The
Deconvolution Problemequation.7.20). Fu,v , and therefore f ,
can be exactly recoveredfigure.8 (left). The added noise has
dominated the frequency components with low magnitude val-
ues (compare both spectra). (center) Image representation of
the frequency domain inverse filter 1/Hu,v and a side view of
its corresponding spectrum. (right) Deblurred image obtained
using Equation 22The Deconvolution Problemequation.7.22.
As the noise dominates several frequency components, in-
verse filtering becomes ill posed, and the recovered image
f̂ is essentially noisefigure.9, left). Images (c) to (f) show
the results obtained by deconvolving (b) using: (c) Wiener
filtering; (d) the Richardson-Lucy algorithm; (e) image priors
with Gaussian prior (β = 2); (f) image priors with a sparse
prior (β = 0.8)figure.11 (e) and (f) show the results obtained
with the above equations to deblur the noisy image shown
in Fig.11Comparison of several deconvolution techniques for
image deblurring in the presence of additive noise. (a) Ideal
image f . (b) Blurred image with noise g = f⊗h+n (same as
shown in Fig 9Debluring by inverse filtering in the presence
of noise. (left) Blurred image g obtained as g = f ⊗ h + n,

and a side view of its amplitude spectrum. In this example,
Gaussian noise with σ = 0.001 was added to the image
shown in Fig. 8Debluring by inverse filtering in the abscence
of noise. (left) Blurred image g obtained in Fig. 7The result
of convolving an image with a circular aperture, represented
both in the spatial and frequency domains. (left) Input image
f (cameraman) and a side view of its amplitude spectrum
(|Fu,v|) plotted as a surface in 3D, using a log10 scale.
(center) Circular aperture h and a side view of its amplitude
spectrum (|Hu,v|). Note the occurrence of very small values,
of the order of 10−6. (right) Blurred image g = f ⊗ h,
and a side view of its amplitude spectrum |Gu,v|figure.7 as
g = f ⊗ h, and a side view of its amplitude spectrum.
(center) Image representation of the frequency domain inverse
filter 1/Hu,v and a side view of its corresponding spectrum.
(right) Deblurred image obtained as Fu,v = Gu,v/Hu,v

(Equation 20The Deconvolution Problemequation.7.20). Fu,v ,
and therefore f , can be exactly recoveredfigure.8 (left). The
added noise has dominated the frequency components with
low magnitude values (compare both spectra). (center) Image
representation of the frequency domain inverse filter 1/Hu,v

and a side view of its corresponding spectrum. (right) De-
blurred image obtained using Equation 22The Deconvolution
Problemequation.7.22. As the noise dominates several fre-
quency components, inverse filtering becomes ill posed, and
the recovered image f̂ is essentially noisefigure.9, left). Images
(c) to (f) show the results obtained by deconvolving (b) using:
(c) Wiener filtering; (d) the Richardson-Lucy algorithm; (e)
image priors with Gaussian prior (β = 2); (f) image priors
with a sparse prior (β = 0.8)figure.11 (b) using β = 2
and β = 0.8, respectively. A detailed derivation of these
expressions, based on statistical image models, and MATLAB
scripts for implementing deconvolution using image priors, can
be found in the accompanying materials of [12].

IX. CODED APERTURE AND CODED EXPOSURE

This section enumerates and provides brief notes about a
set of relevant papers and other sources of information on
coded aperture and coded exposure. Its goal is to provide
references to guide readers interested in learning more about
these subjects.

A. Coded Aperture in Astronomy

First proposed by Dicke [20] and Ables [21] for X-ray
and γ-ray astronomy, a lot of work has been done in coded
aperture. Jean in ’t Zand [33] maintains a site at NASA with in-
troductory tutorials and references. A review of coded-aperture
imaging with descriptions of practical implementations in
astronomy can be found in [34]. Random Pinhole Pattern
is described in [20] and [21]. A description of Uniformly
Redundant Arrays (URA) can be found in [23], [24]. Mod-
ified Uniformly Redundant Arrays (MURA) were introduced
in [25]. Pseudo Noise Product Arrays (PNP) are described
in [35], and a discussion about Geometric Coded Aperture
masks can be found in [36].



Fig. 14. Depth of field: The amount of blurring increases with object distance
to the in focus plane

B. Coded Aperture in Computational Photography

In computational photography, coded apertures replace the
camera’s conventional circular aperture with patterns designed
to preserve high-frequency content that would otherwise be
lost by the circular aperture. Fig. 15Image capture using
coded aperture. (a) Reference scene (image) f . (b) Circular
aperture h. (c) Image acquired using the circular aperture in
(b): g = f ⊗ h. (d) Example of a simple coded aperture
consisting of an array of pinholes: h′. (e) Image acquired
using the coded aperture in (d) = g′ = f⊗h′. Note some high-
frequency information not present in (c)figure.15 compares the
blurring caused by a circular aperture with the one produced by
a simple patterned aperture. Depending on its spatial location
with respect to the camera’s sensor and optical system, an
optical mask can be used for different purposes. For instance,
placing a mask over the sensor can be used to capture a light
field [37] or to increase dynamic range [9]. If instead the
mask replaces the optics diaphragm, it can be use to improve
image deblurring [37], [13], encode information for distance
computation from a single [12] or multiple images [38],[39],
[40], or to encode light-field information [7]. Coded aperture
has also been used to produce super-resolution [41]. A par-
ticular type of light-field modulation called wavefront coding
is used in [42] to obtain depth-independent blurring, allowing
the recovery of an all-in-focus image from deconvolution with
a single kernel.

As explained in sections VIImage Formation
and Convolutionsection.6 and VIIThe Deconvolution
Problemsection.7 and can be observed in Fig. 14Depth of
field: The amount of blurring increases with object distance
to the in focus planefigure.14, the camera aperture introduces
blurring that depends on object distance to the focal plane,
which can be used to obtain distance information. Many
computer vision techniques have been developed to estimate
camera-object distance, and a discussion of this subject is
outside the scope of this article. However, two of these
approaches include depth from focus and depth from defocus.
In the first, several images are taken while the aperture varies
dynamically. In the second, a static set of images is used. The
relation between depth from defocus and stereo is analyzed

in [43].
The central idea behind depth from defocus is that object

distances to the camera may be determined if two or more
images of the same object are taken with different aper-
tures [39]. The use of coded apertures may improve distance
discrimination. Hiura and Matsuyama [40] describe a multi-
exposure camera for depth estimation that uses simple pinhole
delta patterns as coded masks. Zhou et al. [14] discuss the
problem of finding optimal coded aperture pairs to estimate
depth from defocus, and Levin [44] analyses the problem
of depth discrimination from a set of images captured with
different coded apertures.

In principle, one cannot distinguish a blurred image of a
sharp object from a sharp image of an object with blurred
appearance. The use of coded aperture can be used to reduce
this kind of ambiguity. Former work in this area can be
found in [45]. Levin et al. [12] presented a technique to
recover an all-in-focus image and estimate a scene depth
map from a single photograph. They propose the use of the
Kullback-Leibler (KL) divergence among the aperture masks
at different scales as a measure of the depth-discrimination
power of an aperture mask. KL is a concept of probability
theory that measures the difference between two probability
distributions. The optical mask is searched in a space of
randomly sampled binary 13 × 13 patterns. The founded
optimal mask is shown in Fig. 16Comparison of the Fourier
amplitude spectra of different coded-aperture masks used for
deconvolution. (top left) A conventional circular aperture with
radius of 6 pixels. Note the existence of very small values, of
the order of 10−5, which causes the deconvolution process to
become ill conditioned in the presence of noisy. (top right) The
13 × 13 binary mask proposed by Levin et al. [12]. (bottom
left) A 7 × 7 grayscale mask proposed by Veeraraghavan et
al. [37]. (bottom right) A 13 × 13 binary mask proposed by
Zhou and Nayar [13]figure.16 (top right). The existence of
zeros in this mask’s spectrum complicates the deconvolution
process. Thus, deblurring relies on the use of natural image
priors (see Section VIIIDeconvolution techniquessection.8).
As featureless regions of the image do not provide enough
information for depth recovery, the estimated scene-distance
maps are incomplete. They regularize such maps using graph-
cuts and user assistance.

Veeraraghavan et al. [37] designed coded apertures for
capturing light fields, as well as for defocus deblurring. For
the later, they search for a broadband filter to improve the
deconvolution process. The search criteria tries to maximize
the mask’s Fourier transform minimum magnitude, while
minimizing its variance. They considered both binary and gray
scale patterns, and concluded that the second are easier to find
and, in addition, give superior performance. For gray scale
patterns, they use a gradient-descent optimization to search
for patterns formed by 7 × 7 pixels. An optimal mask is
shown in Fig. 16Comparison of the Fourier amplitude spectra
of different coded-aperture masks used for deconvolution. (top
left) A conventional circular aperture with radius of 6 pixels.



(a) (b) (c) (d) (e)

Fig. 15. Image capture using coded aperture. (a) Reference scene (image) f . (b) Circular aperture h. (c) Image acquired using the circular aperture in (b):
g = f ⊗h. (d) Example of a simple coded aperture consisting of an array of pinholes: h′. (e) Image acquired using the coded aperture in (d) = g′ = f ⊗h′.
Note some high-frequency information not present in (c).

Fig. 16. Comparison of the Fourier amplitude spectra of different coded-
aperture masks used for deconvolution. (top left) A conventional circular
aperture with radius of 6 pixels. Note the existence of very small values,
of the order of 10−5, which causes the deconvolution process to become ill
conditioned in the presence of noisy. (top right) The 13 × 13 binary mask
proposed by Levin et al. [12]. (bottom left) A 7×7 grayscale mask proposed
by Veeraraghavan et al. [37]. (bottom right) A 13×13 binary mask proposed
by Zhou and Nayar [13].

Note the existence of very small values, of the order of
10−5, which causes the deconvolution process to become ill
conditioned in the presence of noisy. (top right) The 13× 13
binary mask proposed by Levin et al. [12]. (bottom left) A
7× 7 grayscale mask proposed by Veeraraghavan et al. [37].
(bottom right) A 13× 13 binary mask proposed by Zhou and
Nayar [13]figure.16 (bottom left).

Zhou et al. analyze the problem of finding optimal masks
for deblurring [13], and the use of pairs of masks for depth-
from-defocus estimation [38]. They use a modified version
of the Wiener filter discussed in Section VIIIDeconvolution
techniquesfigure.10. To find optimal masks for deblurring, they
use a genetic algorithm to search the space of 13× 13 binary
masks [13]. One of their masks is shown in Fig. 16Comparison
of the Fourier amplitude spectra of different coded-aperture
masks used for deconvolution. (top left) A conventional cir-
cular aperture with radius of 6 pixels. Note the existence
of very small values, of the order of 10−5, which causes
the deconvolution process to become ill conditioned in the
presence of noisy. (top right) The 13 × 13 binary mask
proposed by Levin et al. [12]. (bottom left) A 7× 7 grayscale
mask proposed by Veeraraghavan et al. [37]. (bottom right) A
13×13 binary mask proposed by Zhou and Nayar [13]figure.16
(bottom right). In their approach, the optimal mask varies with

image-noise level. To find optimal coded-aperture pairs for
depth from defocus, Zhou et al. initially use the same genetic
algorithm to find an 11 × 11 binary pattern. Starting from
such a pattern, they progressively enlarge the mask (for use at
different scales) up to 33×33 pixels. At each scale, they refine
the initial estimate using a gradient descent optimization.

C. Coded Exposure

Coded exposure consists in changing the way the camera’s
sensor is exposed to the scene radiance, by opening and closing
the shutter during image capture. The usual way is to keep
the shutter opened during the entire acquisition period, which
causes moving objects to appear blurred, over attenuating high
frequencies. If the movement is uniform and rectilinear, the
blurring can be approximated by convolution with a box filter.

Raskar et al. [15] proposed to open and close the shutter
several times using a temporal coded pattern. This way, they
can reduce high-frequency attenuation and improve image
restoration. Figs. 17Comparison of image acquisition using
conventional and coded exposure. (a) Reference scene. (b) A
continuous exposure pattern. The yellow segment represents
the time period in which the shutter is kept opened. (c) Image
acquired using a continuous exposure during a horizontal
camera movement. Note the continuous blurring. (d) A coded-
exposure pattern. The exposure consists of several discrete
time intervals. (e) Image acquired using the coded-exposure
pattern in (d) for the same camera movement as in (c). Some
high-frequency information has been capturedfigure.17 (c) and
(e) show examples of images acquired using conventional
and coded exposure, respectively. In the conventional case,
the blurring is continuous (Figs. 17Comparison of image
acquisition using conventional and coded exposure. (a) Ref-
erence scene. (b) A continuous exposure pattern. The yellow
segment represents the time period in which the shutter is
kept opened. (c) Image acquired using a continuous exposure
during a horizontal camera movement. Note the continuous
blurring. (d) A coded-exposure pattern. The exposure consists
of several discrete time intervals. (e) Image acquired using
the coded-exposure pattern in (d) for the same camera move-
ment as in (c). Some high-frequency information has been
capturedfigure.17 c). When using coded exposure, the camera
captures a series of discrete blurred images (one for each
exposure sub-interval) of the moving objects. Such images



(a) (b) (c) (d) (e)

Fig. 17. Comparison of image acquisition using conventional and coded exposure. (a) Reference scene. (b) A continuous exposure pattern. The yellow segment
represents the time period in which the shutter is kept opened. (c) Image acquired using a continuous exposure during a horizontal camera movement. Note
the continuous blurring. (d) A coded-exposure pattern. The exposure consists of several discrete time intervals. (e) Image acquired using the coded-exposure
pattern in (d) for the same camera movement as in (c). Some high-frequency information has been captured.

contain high-frequency information (Figs. 17Comparison of
image acquisition using conventional and coded exposure. (a)
Reference scene. (b) A continuous exposure pattern. The yel-
low segment represents the time period in which the shutter is
kept opened. (c) Image acquired using a continuous exposure
during a horizontal camera movement. Note the continuous
blurring. (d) A coded-exposure pattern. The exposure con-
sists of several discrete time intervals. (e) Image acquired
using the coded-exposure pattern in (d) for the same camera
movement as in (c). Some high-frequency information has
been capturedfigure.17 e), which can be recovered through
deconvolution.

Raskar et al. select the exposure pattern by performing a
random brute-force linear search over the space of 1D binary
patterns composed of 52 bits, half of which are 1’s. Among
all possibilities, they choose the pattern that maximizes the
minimum amplitude value of the its Fourier transform, while
minimizing DFT amplitude variance.

X. CONCLUSION

Computational photography is a new research area that
tries to expand the concept of traditional photography using
state-of-the-art technology. It houses many exciting challenges
that will require new creative solutions. This article presented
a gentle introduction to coded computational photography,
focusing on coded aperture and coded exposure. The goal
was to provide a rigorous, although intuitive, introduction to
the fundamental concepts and tools required to master the
subject. It also tried to relate these abstract concepts to actual
algorithms and techniques. It is our hope that this document
will be a valuable source of information for anyone interested
in learning about computational photography.

A. Research Opportunities

Coded photography is a very young discipline, with several
problems still waiting to be understood and solved. Many
simplifying assumptions made by current techniques are not
satisfied by most real scenes. For instance, objects tend to
be distributed over relatively large depth ranges, are not
composed by Lambertian surfaces, may be moving in arbitrary
directions and with different speeds. Any of these situations
brake the simple one-mask deconvolution model assumption,

and demand a point-by-point deconvolution strategy. So far,
these problems have been treated with approximate solutions
based on image segmentation and fusion. Current solutions
still require certain degree of manual intervention to produce
reasonable results.

It has been shown that image priors can be applied to
the deconvolution problem yielding good results. Although
such a strategy can alleviate some artifacts common to other
approaches, a significant amount of work still need to be done
with respect to the development of new priors to model natural
images and techniques to explore this knowledge.

Light fields are a fundamental concept in computational
photography. To properly sample it, sensor cells have to be
allocated to capture directional information. This imposes a
trade-off between spatial and angular resolution. Surely, a lot
of work needs to be done in this area, especially related to
how to explore light-field redundancy to reduce the sampling
requirements using natural image priors.

Even though significant progress have been made regarding
image capture and rendering quality, a photograph continues
to be static and two dimensional projection of a 4-D light field.
What other dimensions can be explored? Do photographs need
to be two dimensional? instantaneous? How can we expand the
sense of reality of a captured scene in all dimensions, including
a cognitive sense?
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