
 
MATLAB 6.5 Image Processing Toolbox Tutorial 
 
The purpose of this tutorial is to gain familiarity with MATLAB’s Image Processing 
Toolbox.  This tutorial does not contain all of the functions available in MATLAB.  It is 
very useful to go to Help\MATLAB Help in the MATLAB window if you have any 
questions not answered by this tutorial.  Many of the examples in this tutorial are 
modified versions of MATLAB’s help examples.  The help tool is especially useful in 
image processing applications, since there are numerous filter examples.    
 
1. Opening MATLAB in the microcomputer lab 

1.1. Access the Start Menu, Proceed to Programs, Select MATLAB 6.5 from the 
MATLAB 6.5 folder 

--OR--        
1.2. Open through C:\MATLAB6p5\bin\win32\matlab.exe 

 
2. MATLAB 

2.1. When MATLAB opens, the screen should look something like what is pictured 
in Figure 2.1, below. 

 

 
Figure 2.1: MATLAB window 

 



2.2. The Command Window is the window on the right hand side of the screen.  
This window is used to both enter commands for MATLAB to execute, and to 
view the results of these commands. 

2.3. The Command History window, in the lower left side of the screen, displays 
the commands that have been recently entered into the Command Window. 

2.4. In the upper left hand side of the screen there is a window that can contain three 
different windows with tabs to select between them.  The first window is the 
Current Directory, which tells the user which M-files are currently in use.  The 
second window is the Workspace window, which displays which variables are 
currently being used and how big they are.  The third window is the Launch 
Pad window, which is especially important since it contains easy access to the 
available toolboxes, of which, Image Processing is one.  If these three windows 
do not all appear as tabs below the window space, simply go to View and select 
the ones you want to appear.  

2.5. In order to gain some familiarity with the Command Window, try Example 2.1, 
below. You must type code after the >> prompt and press return to receive a 
new prompt.  If you write code that you do not want to reappear in the 
MATLAB Command Window, you must place a semi colon after the line of 
code.  If there is no semi colon, then the code will print in the command 
window just under where you typed it.   

  
 Example 2.1 
 >> X = 1;  %press enter to go to next line     
 >> Y = 1;       %press enter to go to next line 
 >> Z = X + Y %press enter to receive result 
 
 As you probably noticed, MATLAB gave an answer of Z = 2 under the last line 

of typed code.  If there had been a semi colon after the last statement, the 
answer would not have been printed.  Also, notice how the variables you used 
are listed in the Workspace Window and the commands you entered are listed in 
the Command History window.  If you want to retype a command, an easy way 
to do this is to press the ↑ or ↓ arrows until you reach the command you want to 
reenter. 

 
3. The M-file 

3.1. M-file – An M-file is a MATLAB document the user creates to store the code 
they write for their specific application.  Creating an M-file is highly 
recommended, although not entirely necessary.  An M-file is useful because it 
saves the code the user has written for their application.  It can be manipulated 
and tested until it meets the user’s specifications.  The advantage of using an M-
file is that the user, after modifying their code, must only tell MATLAB to run 
the M-file, rather than reenter each line of code individually. 

3.2. Creating an M-file – To create an M-file, select File\New ►M-file. 
3.3. Saving – The next step is to save the newly created M-file.  In the M-file 

window, select File\Save As…  Choose a location that suits your needs, such as 
a disk, the hard drive or the U drive.  It is not recommended that you work from 



your disk or from the U drive, so before editing and testing your M-file you may 
want to move your file to the hard drive.  

3.4. Opening an M-file – To open up a previously designed M-file, simply open 
MATLAB in the same manner as described before.  Then, open the M-file by 
going to File\Open…, and selecting your file.  Then, in order for MATLAB to 
recognize where your M-file is stored, you must go to File\Set Path…  This 
will open up a window that will enable you to tell MATLAB where your M-file 
is stored.  Click the Add Folder… button, then browse to find the folder that 
your M-file is located in, and press OK.  Then in the Set Path window, select 
Save, and then Close.  If you do not set the path, MATLAB may open a 
window saying your file is not in the current directory.  In order to get by this, 
select the “Add directory to the top of the MATLAB path” button, and hit 
OK.  This is essentially the same as setting the path, as described above. 

3.5. Writing Code – After creating and saving your M-file, the next step is to begin 
writing code.  A suggested first move is to begin by writing comments at the top 
of the M-file with a description of what the code is for, who designed it, when it 
was created, and when it was last modified.  Comments are declared by placing 
a % symbol before them.  Comments appear in green in the M-file window.  See 
Figure 3.1, below, for Example 3.1. 

 
Example 3.1. 

 

 
Figure 3.1: Example of M-file 

 
3.6. Resaving – After writing code, you must save your work before you can run it.  

Save your code by going to File\Save. 
3.7. Running Code – To run code, simply go to the main MATLAB window and 

type the name of your M-file after the >> prompt.  Other ways to run the M-file 
are to press F5 while the M-file window is open, select Debug\Run, or press 
the Run button (see Figure 3.1) in the M-file window toolbar. 

 
 

Run Button



4.  Images 
4.1. Images – The first step in MATLAB image processing is to understand that a 

digital image is composed of a two or three dimensional matrix of pixels.  
Individual pixels contain a number or numbers representing what grayscale or 
color value is assigned to it.  Color pictures generally contain three times as 
much data as grayscale pictures, depending on what color representation scheme 
is used.  Therefore, color pictures take three times as much computational 
power to process.  In this tutorial the method for conversion from color to 
grayscale will be demonstrated and all processing will be done on grayscale 
images.  However, in order to understand how image processing works, we will 
begin by analyzing simple two dimensional 8-bit matrices. 

4.2. Loading an Image – Many times you will want to process a specific image, 
other times you may just want to test a filter on an arbitrary matrix.  If you 
choose to do this in MATLAB you will need to load the image so you can begin 
processing.  If the image that you have is in color, but color is not important for 
the current application, then you can change the image to grayscale.  This makes 
processing much simpler since then there are only a third of the pixel values 
present in the new image.  Color may not be important in an image when you 
are trying to locate a specific object that has good contrast with its surroundings.  
Example 4.1, below, demonstrates how to load different images.   
 
Example 4.1. 

 In some instances, the image in question is a matrix of pixel values.  For 
example, you may need something to test a filter on, but you do not yet need a 
real image to test the filter.  Therefore, you can simply create a matrix that has 
the characteristics wanted, such as areas of high and low frequency.  See 
Example 6.1, for a demonstration of this.  Other times a stored image must be 
imported into MATLAB to be processed.  If color is not an important aspect 
then rgb2gray can be used to change a color image into a grayscale image.  The 
class of the new image is the same as that of the color image.  As you can see 
from the example M-file in Figure 4.1, MATLAB has the capability of loading 
many different image formats, two of which are shown.  The function imread is 
used to read an image file with a specified format.  Consult imread in 
MATLAB’s help to find which formats are supported.  The function imshow 
displays an image, while figure tells MATLAB which figure window the image 
should appear in.  If figure does not have a number associated with it, then 
figures will appear chronologically as they appear in the M-file.  Figures 4.2, 
4.3, 4.4 and 4.5, below, are a loaded bitmap file, the image in Figure 4.2 
converted to a grayscale image, a loaded JPEG file, and the image in Figure 4.4 
converted to a grayscale image, respectively.  The images used in this example 
are both MATLAB example images.  In order to demonstrate how to load an 
image file, these images were copied and pasted into the folder denoted in the 
M-file in Figure 4.1.  In Example 7.1, later in this tutorial, you will see that 
MATLAB images can be loaded by simply using the imread function.  
However, this function will only load an image stored in: 



C:\MATLAB6p5\toolbox\images\imdemos.  Therefore, it is a good idea to 
know how to load any image from any folder.  

 

 
Figure 4.1: M-file for Loading Images 

 

              
Figure 4.2: Bitmap Image                  Figure 4.3: Grayscale Image 



             
Figure 4.4: JPEG Image                                      Figure 4.5: Grayscale Image 
 

4.3 Writing an Image – Sometimes an image must be saved so that it can be 
transferred to a disk or opened with another program.  In this case you will want 
to do the opposite of loading an image, reading it, and instead write it to a file.  
This can be accomplished in MATLAB using the imwrite function.  This 
function allows you to save an image as any type of file supported by 
MATLAB, which are the same as supported by imread.  Example 4.2, below, 
contains code necessary for writing an image. 
 
Example 4.2 
In order to save an image you must use the imwrite function in MATLAB.  The 
M-file in Figure 4.6 contains code for saving an image.  This M-file loads the 
same bitmap file as described in the M-file pictured in Figure 4.1.  However, 
this new M-file saves the grayscale image created as a JPEG image.  Just like in 
Example 4.1, the “splash2” bitmap picture must be moved into MATLAB’s 
work folder in order for the imread function to find it.  When you run this M-
file notice how the JPEG image that was created is saved into the work folder.  

 



 
Figure 4.6: M-file for Saving an Image 

 
5. Image Properties 

5.1. Histogram – A histogram is bar graph that shows a distribution of data.  In 
image processing histograms are used to show how many of each pixel value 
are present in an image.  Histograms can be very useful in determining which 
pixel values are important in an image.  From this data you can manipulate an 
image to meet your specifications.  Data from a histogram can aid you in 
contrast enhancement and thresholding.  In order to create a histogram from an 
image, use the imhist function.  Contrast enhancement can be performed by the 
histeq function, while thresholding can be performed by using the graythresh 
function and the im2bw function.  See Example 5.1, for a demonstration of 
imhist, imadjust, graythresh, and im2bw.  If you want to see the resulting 
histogram of a contrast enhanced image, simply perform the imhist operation 
on the image created with histeq. 

5.2. Negative – The negative of an image means the output image is the reversal of 
the input image.  In the case of an 8-bit image, the pixels with a value of 0 take 
on a new value of 255, while the pixels with a value of 255 take on a new value 
of 0.  All the pixel values in between take on similarly reversed new values.  
The new image appears as the opposite of the original.  The imadjust function 
performs this operation.  See Example 5.1 for an example of how to use 
imadjust to create the negative of the image.  Another method for creating the 
negative of an image is to use imcomplement, which is described in Example 
7.5. 
 
Example 5.1 
In this example the JPEG image created in Example 4.2 was used to create a 
histogram of the pixel value distribution and a negative of the original image. 
The contrast was then enhanced and finally the image was transformed into a 
binary image according to a certain threshold value.  Figure 5.1, below, contains 
the M-file used to perform these operation.  Figure 5.2 contains the histogram of 



the image pictured in Figure 4.3.  As you can see the histogram gives a 
distribution between 0 and 1.  In order to find the exact pixel value, you must 
scale the histogram by the number of bits representing each pixel value.  In this 
case, this is an 8-bit image, so scale by 255.  As you can see from the histogram, 
there is a lot of black and white in the image.  Figure 5.3 contains the negative 
of the image pictured in Figure 4.3.  Pixel values have been rotated about the 
midpoint in the histogram.  Figure 5.4 contains a contrast enhanced version of 
the image in Figure 4.3.  As you can see, there is some blurring around the 
edges of the object in the center of the image.  However, it is slightly easier to 
read the words in the image.  This is an example of the trade-offs that are 
common in image processing.  In this case, sacrificing fine edges allowed us to 
see the words better.  Figure 5.5 contains a binary image of the image in Figure 
4.3.  This particular binary image was created according to the threshold level, 
thresh.  The value for thresh was displayed in the MATLAB Command Window 
as: 
 >>  
thresh = 
 
    0.5020 
MATLAB chooses a value for thresh that minimizes the intraclass variance of 
black and white pixels.  If this value does not meet your expectations, use a 
different value when using the im2bw function.  Another function new to this 
example was im2double.  This function converts the image from its current 
class to class double.  Many MATLAB functions cannot perform operations on 
class unit8 or unit16, so they must first be converted into class double.  This is 
due to the unsigned nature of class unit.  Certain mathematical functions must 
be able to output to a floating point array in order to operate.  When writing an 
image, MATLAB converts the data back to class unit.   
 

 



Figure 5.1: M-file for Creating Histogram, Negative, Contrast Enhanced and   
Binary Images from the Image Created in Example 4.2 

 

             
    Figure 5.2: Histogram              Figure 5.3: Negative  
 

             
        Figure 5.4: Contrast Enhanced   Figure 5.5: Binary  

 
 

6.  Frequency Domain 
6.1. Fourier Transform – In order to understand how different image processing 

filters work, it is a good idea to begin by understanding what frequency has to 
do with images.  An image is in essence a two dimensional collection of discrete 
signals.  Therefore, the signals have frequencies associated with them.  For 
instance, if there is relatively little change in grayscale values as you scan across 
an image, then there is lower frequency content contained within the image.  If 
there is wide variation in grayscale values across an image then there will be 
more frequency content associated with the image.  This may seem somewhat 
confusing, so let us think about this in terms that are more familiar to us.  From 



signal processing, we know that any signal can be represented by a collection of 
sine waves of differing frequencies, magnitudes and phases.  This 
transformation of a signal into its constituent sinusoids is known as the Fourier 
Transform.  This collection of sine waves can potentially be infinite, if the 
signal is difficult to represent, but is generally truncated at a point where adding 
more signals does not significantly improve the resolution of the recreation of 
the original signal.  In digital systems, we use a Fourier Transform designed in 
such a way that we can enter discrete input values, specify our sampling rate, 
and have the computer generate discrete outputs.  This is known as the Discrete 
Fourier Transform, or DFT.  MATLAB uses a fast algorithm for performing a 
DFT, which is called the Fast Fourier Transform, or FFT, whose MATLAB 
command is fft.  The FFT can be performed in two dimensions, fft2 in 
MATLAB.  This is very useful in image processing because we can then 
determine the frequency content of an image.  Still confused?  Picture an image 
as a two dimensional matrix of signals.  If you plotted just one row, so that it 
showed the grayscale value stored within each pixel, you might end up with 
something that looks like a bar graph, with varying values in each pixel 
location.  Each pixel value in this signal may appear to have no correlation to 
the next one.  However, the Fourier Transform can determine which frequencies 
are present in the signal.  In order to see the frequency content, it is useful to 
view the absolute value of the magnitude of the Fourier Transform, since the 
output of a Fourier Transform is complex in nature.  See Example 6.1, below, 
for a demonstration of how to perform a two dimensional FFT on an image. 

 
Example 6.1 
In this example, we will construct an 8x8 test matrix, A, and perform a two 
dimensional Fast Fourier Transform on it.  The M-file used to do this is pictured 
in Figure 6.1, below.  When viewed, the original image is a white rectangle on a 
black background, as shown in Figure 6.2.  In MATLAB, black is denoted as 0, 
while white is the highest number in the matrix.  In this case white is 1.  When 8 
bits are used to represent grayscale, white is 255.  Figure 6.3, below, is the mesh 
plot of the original image pictured in Figure 6.2.  Mesh plots are created using 
the mesh function. 

 



 
Figure 6.1: M-File for Fourier Transform 

 
   Figure 6.4, below, is the image of the two dimensional FFT of the image in 

Figure 6.2.  As you can see, Figure 6.4 is quite different from Figure 6.2.  Figure 
6.2 is a representation of the matrix’s pixel values in space, while Figure 6.4 is a 
representation of which frequencies are present within the matrix (the 0, DC, 
frequency is in the center).  When moving from left to right across the center of 
the image in Figure 6.2, you encounter a short pulse, which requires many more 
sine terms to represent it than the wide pulse you encounter as you move 
vertically across the image in Figure 6.2.  This is evident in Figure 6.4.  As you 
can see, as you move from left to right across the image, you encounter more 
instances of frequencies being present in the original image.  As you move 
vertically, you do not encounter as many instances of frequencies being present.  
A shorter pulse requires more frequency components to represent it.  Figure 6.5, 
below, is the mesh plot of the image in Figure 6.4.  

   



             
        Figure 6.2: Original Image     Figure 6.3: Mesh Plot of Original Image  

 

             
  Figure 6.4: 2-D FFT of Original Image              Figure 6.5: Mesh Plot of 2-D FFT 
 

6.2. Convolution – Convolution is a linear filtering method commonly used in 
image processing.  Convolution is the algebraic process of multiplying two 
polynomials.  An image is an array of polynomials whose pixel values represent 
the coefficients of the polynomials.  Therefore, two images can be multiplied 
together to produce a new image through the process of convolution.  If the 
convolution kernel, or filter, is large, this can be a very tedious process 
involving many multiplication steps.  However, the convolution theorem states 
that convolution is the same as the inverse Fourier Transform of the 
multiplication of two Fourier Transforms.  In MATLAB, conv2 is used to 
perform a two-dimensional convolution of two matrices.  This can also be 
accomplished by taking the ifft2 of the multiplication of two fft2’s.  When this 
is done, though, both matrices’ dimensions must be the same.  This is not 
required when using conv2.  Convolution is a neighborhood operation, since it 
uses the values of neighboring pixels in determining what the new pixel value 
will be.  When MATLAB performs a convolution, it rotates the convolution 
kernel by 180o and multiplies it with a selected area on the original image, 
centered about a specific pixel.  This pixel takes on the value of the sum of each 
original pixel value multiplied with its corresponding pixel value in the 



convolution kernel.  Then the kernel slides to the next pixel and the process is 
repeated, until all pixel values have been changed.  If a 3x3 kernel is convolved 
with an image, each pixel will take on a new value related to the sum of itself, 
multiplied by the center of the convolution kernel, and its eight neighboring 
pixels multiplied by their own corresponding pixel value in the kernel.  Example 
6.2, below, for a demonstration of convolution. 
 
Example 6.2 
This example demonstrates that the convolution of two images is the same as 
inverse Fourier Transform of the multiplication of the Fourier Transforms of the 
two images.  The M-file in Figure 6.6 contains the code necessary to 
demonstrate this task.   
 

 
Figure 6.6: M-file for Convolution 

 
The “image” is the same as that used in Example 6.1.  The convolution kernel is 
a 3x3 matrix with all values the same and scaled to the size of the matrix.  This 
type of kernel, as you will see, has a low pass characteristic that tends to smooth 
out high frequency content in the original image.  The plots that were created by 
this M-file are all displayed as mesh plots so that it is easier to view what effect 
the convolution kernel has on the original image.  New to this example is the 
use of subplot.  This function allows the user to place more than one plot in a 
figure window.  In this case, there are three images in the figure window.  
Figure 6.7, below, depicts the original image (“A”), the convolution kernel 



(“k”), and the result of the convolution of these two matrices (“Convolution 1”).  
Figure 6.8, below, is an image of the inverse two-dimensional FFT of the 
multiplication of the two-dimensional FFT’s of the two matrices.  Notice how 
both methods provide the same results.  The low pass characteristics of the 
convolution kernel are evident in the result.  The peak has been eroded away 
and is now not as intense as before.   
   

 
Figure 6.7: Convolution using conv2(A,k) 

 

 
Figure 6.8: Convolution Using ifft2(fft2(A).*fft2(k)) 

 
 



7. Filters 
7.1. Filters – Image processing is based on filtering the content of images.  Filtering 

is used to modify an image in some way.  This could entail blurring, deblurring, 
locating certain features within an image, etc…  Linear filtering is accomplished 
using convolution, as discussed above.  A filter, or convolution kernel as it is 
also known, is basically an algorithm for modifying a pixel value, given the 
original value of the pixel and the values of the pixels surrounding it.  There are 
literally hundreds of types of filters that are used in image processing.  
However, we will concentrate on several common ones. 

7.2. Low Pass Filters – The first filters we will talk about are low pass filters.  
These filters blur high frequency areas of images.  This can sometimes be useful 
when attempting to remove unwanted noise from an image.  However, these 
filters do not discriminate between noise and edges, so they tend to smooth out 
content that should not be smoothed out.  Example 6.2, above, provides an 
example of a basic low pass filter.  The convolution kernel values can be 
modified to achieve desired low pass filter characteristics. See Example 7.1, 
below, on how to load an image and then apply a low pass filter to it. 
 
Example 7.1 
This example demonstrates how to load an image that is stored in MATLAB’s 
files, and how to filter the content of the image.  The same image is filtered by 
two different low pass filters.  The goal is to remove the noise present in the 
image.  The M-File in Figure 7.1, below, contains the code for this example.  
The image, eight.tif, is a MATLAB example image.   
 

 
Figure 7.1: M-file for Low Pass Filter Design 

 



The images generated by the M-file in Figure 7.1 are pictured in Figures 7.2-
7.5.  Figure 7.2 is a MATLAB image with salt and pepper noise added to it.  
Figure 7.3 is the result of a 3x3 Gaussian filter with low pass characteristics 
applied to the image in Figure 7.2.  Figure 7.4 is the frequency response of a 
3x3 averaging filter with all values equal and scaled to the size of the filter.  
Notice the low pass characteristics of this filter.  Figure 7.5 is the result of the 
filter depicted in Figure 7.4 applied to the image in Figure 7.2. 

 

       
               Figure 7.2: Noisy Image         Figure 7.3: Gaussian Filtered Image     
 

       
  Figure 7.4: Averaging Filter Response       Figure 7.5: Averaging Filtered Image 
 

As you can see some of the noise apparent in the image in Figure 7.2 has been 
blurred by both filters.  However, neither does a good job removing the noise.  
In fact, if the noise was to be adequately attenuated, the coins in the images 
would become so blurred, the filtered image would be much worse than the 
original image.  Low pass filters are pretty good at removing noise with pixel 
values close to the surrounding pixel values.  However, this is not always the 



case.  Fortunately, low pass filters are not the only filters capable of removing 
noise.     

7.3. Median Filters – Median Filters can be very useful for removing noise from 
images.  A median filter is like an averaging filter in some ways.  The averaging 
filter examines the pixel in question and its neighbor’s pixel values and returns 
the mean of these pixel values.  The median filter looks at this same 
neighborhood of pixels, but returns the median value.  In this way noise can be 
removed, but edges are not blurred as much, since the median filter is better at 
ignoring large discrepancies in pixel values.  See Example 7.2, below, for how 
to perform a median filtering operation. 

 
Example 7.2    
This example uses two types of median filters that both output the same result.  
The first filter is medfilt2, which takes the median value of the pixel in question 
and its neighbors.  In this case it outputs the median value of nine pixels being 
examined.  The second filter, ordfilt2, does the exact same thing in this 
configuration, but can be configured to perform other types of filtering.  In this 
case, it looks at every pixel in the 3x3 matrix and outputs the value in the fifth 
position of rank, which is the median position.  In other words it outputs a 
value, where half the pixel values are greater and half are less, in the matrix. 
 

    
Figure 7.6: M-file for Median Filter Design 

 



            
                Figure 7.7: medfilt2    Figure 7.8: ordfilt2 

 
Figure 7.6, above depicts the M-file used in this example.  The original image in 
this example is the image in Figure 7.2.  Figure 7.7, above, is the output of the 
image in Figure 7.2, filtered with a 3x3 two-dimensional median filter.  Figure 
7.8, above, is the same as Figure 7.7, but was achieved by filtering the image in 
Figure 7.2 with ordfilt2, configured to produce the same result as medfilt2.  
Notice how both filters produce the same result.  Each is able to remove the 
noise, without blurring the edges in the image too much. 

7.4    Erosion and Dilation – Erosion and Dilation are similar operations to median 
filtering in that they both are neighborhood operations.  The erosion operation 
examines the value of a pixel and its neighbors and sets the output value equal 
to the minimum of the input pixel values.  Dilation, on the other hand, examines 
the same pixels and outputs the maximum of these pixels.  In MATLAB erosion 
and dilation can be accomplished by the imerode and imdilate functions, 
respectively, accompanied by the strel function. Example 7.3 below, 
demonstrates erosion and dilation.   

 
Example 7.3 
In order to erode or dilate and image you must first specify to what extent and in 
what way you would like to erode or dilate the image.  This is accomplished by 
creating a structured element by using the strel function.  There are many types 
of structuring elements, each with their own unique properties.  For this 
example, the square shape provides a 5x5 square structuring element.  To find 
other shapes for structuring elements, look up strel in MATLAB’s help.  Figure 
7.9 contains the M-file for this example.  The image used in this example is the 
same image of quarters used in the previous two examples.  Figure 7.10 depicts 
erosion of the original image, while Figure 7.11 contains a dilation of the 
original image.  The intent of this example was to exaggerate the results of the 
erosion and dilation operations.  As you can see in the eroded image, the 
quarters are very dark, while in the dilated image the quarters are especially 
bright.  In actual applications the structuring element must be configured to 
process the image according to desired results.  



 
Figure 7.9: M-file for Erosion and Dilation 

 
 

             
    Figure 7.10: Erosion              Figure 7.11: Dilation 
 

7.5    Edge Detectors – Edge detectors are very useful for locating objects within 
images.  There are many different kinds of edge detectors, but we will 
concentrate on two: the Sobel edge detector and the Canny edge detector.  The 
Sobel edge detector is able to look for strong edges in the horizontal direction, 
vertical direction, or both directions.  The Canny edge detector detects all strong 
edges plus it will find weak edges that are associated with strong edges.  Both of 
these edge detectors return binary images with the edges shown in white on a 
black background.  Example 7.4, below, demonstrates the use of these edge 
detectors.  
 
Example 7.4 
The Canny and Sobel edge detectors are both demonstrated in this example.  
Figure 7.12, below, is a sample M-file for performing these operations.  The 



image used is the MATLAB image, rice.tif, which can be found in the manner 
described in Example 4.1.  Two methods for performing edge detection using 
the Sobel method are shown.  The first method uses the MATLAB functions, 
fspecial, which creates the filter, and imfilter, which applies the filter to the 
image.  The second method uses the MATLAB function, edge, in which you 
must specify the type of edge detection method desired.  Sobel was used as the 
first edge detection method, while Canny was used as the next type.  Figure 
7.13, below, displays the results of the M-file in figure 7.12.  The first image is 
the original image; the image denoted Horizontal Sobel is the result of using 
fspecial and imfilter.  The image labeled Sobel is the result of using the edge 
filter with Sobel specified, while the image labeled Canny has Canny specified.  
 

 
Figure 7.12: M-File for Edge Detection 

 
The Zoom In tool was used to depict the detail in the images more clearly.  As 
you can see, the filter used to create the Horizontal Sobel image detects 
horizontal edges much more readily than vertical edges.  The filter used to 
create the Sobel image detected both horizontal and vertical edges.  This 
resulted from MATLAB looking for both horizontal and vertical edges 
independently and then summing them.  The Canny image demonstrates how 
well the Canny method detects all edges.  The Canny method does not only look 
for strong edges, as in the Sobel method, but also will look for weak edges that 
are connected to strong edges and show those, too.   
 



 
Figure 7.13: Images Created by Different Edge Detection Methods 
 

7.6. Segmentation – Segmentation is the process of fractioning an image into its 
component objects.  This can be accomplished in various ways in MATLAB.  
One way is to use a combination of morphological operations to segment 
touching objects within an image.  This is illustrated in Example 7.5.  Another 
method is to use a combination of dilation and erosion to segment objects.  The 
MATLAB function bwperim performs this operation on binary images.    

 
Example 7.5 
This example demonstrates the process of Watershed segmentation.  The M-file 
for this demonstration is pictured in Figure 7.14.  The first step in this process is 
to load an image in the way described in Example 7.1.  The next step is to create 
a structural element, using strel, that resembles the objects present in the image.  
In this case the structural element shape “diamond” was used, however, “line” 
would have also worked.  The third step is to perform both top-hat and bottom-
hat filtering on the image according to the structuring element using imtophat 
and imbothat, respectively.  Top-hat filtering is used to intensify valleys in an 
image, while bottom-hat filtering enhances contrast.  The next step is to enhance 
the contrast even more by combining the products of the top-hat and bottom-hat 
filtering using imsubtract and imadd, which subtract and add images, 
respectively.  The next step is to complement the enhanced image, using 
imcomplement, which is the same as creating the negative of the object.  The 
next step is to use both the imextendedmin function and the imimposemin 
function to create larger valleys and set the valley value to the minimum 

Zoom In



possible for the class size, or zero.  The last step is to perform watershed 
segmentation on the product of these morphological operations, using the 
watershed function.  In order to view the watershed segments better the image 
was then converted to RGB, using the label2rgb function, enabling each labeled 
watershed segment as a different color.  Figure 7.15, below, contains the 
original image and the segmented image. 
 
 

 
Figure 7.14: M-file for Watershed Segmentation 

 

 
Figure 7.15: Original Image and Segmented Image 

 


