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Abstract — In this paper, a new no-reference (NR) objective 
metric based on data hiding is proposed. The metric has the 
advantage of being fast and not requiring knowledge of the 
original video contents. The proposed method uses a spread-
spectrum embedding algorithm to embed a mark (binary 
image) into video frames. At the receiver, the mark is 
extracted and a measure of its degradation is used to estimate 
the quality of the video. We used data gathered from 
psychophysical experiments to help in the design of the video 
quality assessment system. We evaluated the visibility and 
annoyance of the impairments caused by the embedding 
algorithm and estimated the ‘best’ mark strength for a 
particular video. The performance of the proposed metric is 
estimated by measuring its ability to predict the Total Squared 
Error (TSE) of the host video and the Mean Observer Score 
(MOS) obtained from naive subjects in a psychophysical 
experiment. Experimental results show that the proposed 
metric had a good performance and a good correlation with 
the MOS1. 
 
Index Terms — Video quality assessment, quality metric, 

artifacts, data hiding.  

I. INTRODUCTION 

 The use of digital video has increased in recent years. 
Although there have been great advances in compression and 
transmission techniques, impairments are often introduced 
along the several stages of a communication system [1, 2]. The 
visibility and annoyance of these impairments are directly 
related to the quality of the received/processed video [3, 4]. 
For many applications, such as video conferences and 
broadcasting, it is important to have a good estimate of the 
quality of the material being received. Since in most 
applications humans are the ultimate receivers of the video 
material, the most accurate way to determine the quality of a 
video is to measure it directly using psychophysical 
experiments with human subjects [5]. Unfortunately, these 
experiments are too expensive and time-consuming to be a 
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practical method for measuring video quality in real-time 
applications.  

There is an ongoing effort to develop video quality metrics 
that are able to detect impairments and estimate their 
annoyance as perceived by human viewers. Most of the quality 
metrics proposed in the literature are Full Reference (FR) 
metrics. These metrics estimate the quality of a video by 
comparing the reference and impaired videos. Some examples 
include the works by Daly [6], Lubin [7], Watson [8], Wolf et 
al. [9], and Winkler [10]. A more complete survey of the 
available FR video quality metrics is presented in [11]. 

The major drawback of the FR approach is that a large 
amount of reference information has to be provided at the final 
comparison point. Also, a very precise spatial and temporal 
alignment of reference and impaired videos is needed to 
guarantee the accuracy of the metric. 

Reduced Reference (RR) quality metrics are metrics that 
require only partial information about the reference video. In 
general, certain features or physical measures are extracted 
from the reference and transmitted to the receiver as side 
information to help evaluate the quality of the video. Metrics 
in this class may be less accurate than the FR metrics, but they 
are also less complex, and make real-time implementations 
more affordable. Some examples include the works of Webster 
et al. [12] and Brètillon et al. [13].  

Requiring the reference video or even limited information 
about it becomes a serious impediment in many real-time 
applications. It is essential to develop no-reference (NR) video 
quality metrics that blindly estimate the quality of a video. It 
turns out that, although human observers can usually assess the 
quality of a video without using the reference, creating a 
metric that will implement this task is difficult and, most 
frequently, results in a loss of performance in comparison to 
the FR approach. 

Most of the proposed NR metrics estimate annoyance by 
detecting and estimating the strength of commonly found 
artifact signals. For example, the metrics by Wu et al. and 
Wang et al. estimate quality based on blockiness 
measurements [14, 15], while the metric by Caviedes et al. 
takes into account measurements of 5 types of artifacts [16]. 

In this paper, we propose a new NR video quality metric 
that makes an unconventional use of data hiding system to 
blindly estimate the quality of a test video. In this approach, a 
binary mark is embedded into the original video frames before 
the compression and transmission stages. At the receiver, the 
mark is extracted and a measure of the degradation of the mark 
is used to estimate the quality  of  the  test video. This  type  of  
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Fig. 1. Block diagram of the proposed video quality assessment system. A 

generic communication system is considered. 

 
metric has the advantage of being fast and not requiring the 
use of the original video. A block diagram of the proposed 
quality assessment method is shown in Figure 1. 

The metric proposed in this work follows the approach used 
by Campisi et al.  where a spread spectrum embedding  
technique was used to assess the channel quality in wireless 
video transmissions [17]. In our work, we adopt a fragile data 
hiding system, i.e., the mark degrades with the host video. 
Based on previous results, we believe that this technique is 
adequate for the video quality assessment application [18]. We 
focus on estimating the quality of standard definition videos 
compressed using MPEG-2 and our target application is 
broadcasting. A detailed description of the embedding 
algorithm used in this work is presented in Section II.  

The major contribution of this work consists of the use of 
data gathered from psychophysical experiments to help the 
design of the video quality assessment system and to test its 
performance. We first perform a psychophysical experiment to 
estimate the visibility threshold and mid-annoyance values of 
the impairments caused by the chosen embedding technique. In 
Section III, we present the details of this experiment and an 
analysis of the results obtained. Then, the video quality metric 
is designed using the knowledge acquired with the experiment 
and with simulation tests. In Section IV, we present the 
proposed video quality metric. The metric includes a step that 
estimates the ‘best’ mark strength based on the visibility 
threshold of the embedding impairments and the data hiding 
capacity of the host video [19]. The performance of the metric 
is evaluated by comparing the metric values with both the TSE 
of the test (host) videos and with the mean annoyance scores 
obtained (MOS) obtained from a second psychophysical 
experiment. Finally in Section V we draw our conclusions. 

II. THE EMBEDDING ALGORITHM 

Data embedding techniques have been used for several 
possible applications, such as, finger printing, multimedia 
indexing, and context base retrieval. A more recent application 
is the use of embedding techniques to estimate video quality at 
the receiver [18, 20, 21]. An embedding system for 
watermarking purposes has to satisfy three main constraints: 
 

• Invisibility - the mark should not affect the perceptual 
quality of the video and should not produce 
noticeable distortions in the received data.  

• Robustness - the mark cannot be altered by malicious 
(an attempt to alter the mark) or unintentional 
(compression, transmission or filtering) operations.  

• Security - the mark may not be removed from the 
video, even if the embedding scheme is known.  

However, the use of the embedding system with the purpose of 
estimating the quality of the host video changes the importance 
of these constraints. Invisibility, for example, is a very 
important constraint because our objective is drastically 
reduced if the mark is visible when the video is displayed on a 
computer or on a TV screen. Robustness, on the other hand, is 
not so important. In fact, if the mark is too robust, the 
extracted mark will not be affected unless the video is severely 
degraded. If the mark is too fragile, the extracted mark will be 
lost for small degradations making it difficult to differentiate 
between medium or highly degraded videos. Thus, for our 
application, the mark has to be   semi-fragile and ideally it 
should  degrade  at  around  the  same  rate  as  the  host video.  
Security is also not an issue for this application, since we are 
not trying to protect the video material.  

Several embedding methods have been proposed in the 
literature. The mark can be inserted in the spatial domain [22] 
or in an ad hoc transform domain such as the DCT domain 
[23], the Fourier domain [24], or the wavelet domain [25]. In 
this work, we chose to insert the mark in the DCT domain, 
since this is the domain still used by many compression 
algorithms targeted at standard definition video TV formats.  

Figure 2 depicts the block diagram of the embedding stage 
used by the proposed quality assessment method. The image 
mark m, a binary image, is embedded in each frame of the 
video using a spread-spectrum technique [23]. The embedding 
procedure can be summarized as follows. A pseudo random 
algorithm is first used to generate pseudo-noise (PN) images 

( )p i j k= , ,p  with values 1−  or 1, and with a zero mean and 

Gaussian distribution. The indices i and j correspond to the 
horizontal and vertical positions, while k corresponds to the 
video index. A different pseudo-noise image is created for 
each frame of the video to avoid temporal summation. 

The final mark to be embedded, w, is obtained by 
multiplying the binary mark image, m, by the PN image p:  

 

 ( ) ( ) ( )w i j k m i j p i j k, , = , ⋅ , , .  (1) 
 

Notice that only one mark image, m, is used for all frames (k 
index), but the PN images vary from frame to frame. Then, the 
DCT transform, LY, of the logarithm of the luminance of the 
video frame,  y, is computed:  
 
 DCT( ) DCT(log )= = .LY ly y  (2) 

 

 
Fig. 2. Block diagram of the embedding stage of the video quality 

assessment system. 
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The logarithm was used for scaling purposes since this allows 
smaller values of scaling factor α  to be used (see Eq. (3)) 
and, therefore, a smaller distortion. It has the disadvantage of 
causing a small increase in the computational complexity. 

Then, the final mark w is added only to the mid-frequency 
DCT coefficients of the frame. The final mark, w, is multiplied 
by α  before being added to the luminance DCT coefficients. 
After the embedding, the DCT coefficients are given by the 
following expression:  

 

≤≤⋅α+=
.elsewhere),,,(

,,),,,(),,(),,('
kjiLY

jikjiwkjiLYkjiLY 240120
   (3)  

 

The range of frequencies where the mark is inserted is strongly 
dependent on the application. Inserting the mark in the low 
frequencies causes visible impairments in the image, while 
inserting it in the high frequencies makes it extremely fragile. 
For the purpose of assessing the quality of a video, the mid-
frequencies are a good choice.  

The scaling factor α is used to vary the strength of the mark. 
An increase of α increases the robustness of the mark, but also 
decreases the quality of the video. After the mark is inserted, 
the inverse DCT (IDCT) is calculated and then the exponential 
of the embedded coefficients video is taken. The video is then 
coded (compressed) and sent over the communication channel 
(see Figure 2).  

The appropriate value of α depends on the type of 
application and video format. The design of an embedding 
system requires that an appropriate values of α be chosen for 
each video or set of frames. In Section III, we present a study 
of the influence of the values of α on the visibility and 
robustness of the mark. In Section IV, we present an algorithm 
for estimating the best α values for our application according 
to the visibility threshold and the content of the video.  

Figure 3 shows the block diagram of the extraction stage of 
the video quality assessment system. If no errors are added by 
compression or transmission, the input of the extraction stage 

( )Y ′′  is equal to the output of the embedding stage ( )Y ′ .  On 

the other hand, if errors are added, then Y Y η′′ ′= + , where η  

represents the error signal. For the propose of explaining the 
extraction of the mark, we will assume that Y Y′′ ′= .  
The process of extracting the mark from the received video is 
summarized as follows. The logarithm of the  luminance  of 
the received video, ′′y , is first taken and its DCT is calculated. 

Then, we multiply the mid-frequency  DCT coefficients where 
the  mark  was  inserted  by  the  correspon- ding pseudo-noise 
image, as given by the following equation: 

 
 
 

( ) ( ) ( ) ( )
( ) ( )

( ) ( )
( ) ( ) ( )

LY i j k p i j k LY i j k p i j k

w i j k p i j k

LY i j k p i j k

m i j p i j k p i j k

α

α

′′ , , ⋅ , , = , , ⋅ , , +

+ ⋅ , , ⋅ , , =

= , , ⋅ , , +

+ ⋅ , ⋅ , , ⋅ , , ,

 (4) 

 
 

 
Fig. 3.  Block diagram of extraction stage of the video quality assessment 

system. 
 
 
 
 

for 120 , 240i j≤ ≤ . Since ( ) ( ) 1p i j k p i j k, , ⋅ , , =  because 

( )p i j k, ,  is either 1−  or +1, the above equation becomes:  
 

( ) ( ) ( ) ( ) ( )LY i j k p i j k LY i j k p i j k m i jα′′ , , ⋅ , , = , , ⋅ , , + ⋅ , , (5) 
 
Synchronization is crucial at this step because the image mark 
can only be extracted if the same PN matrix used in the 
embedding is used in (4). Some bits of synchronization 
information can be easily embedded in the video to assure 
recovery.  

The result of (5) is then averaged for a chosen number of 
frames fN . This step is necessary to eliminate the noise (PN 

signal) introduced by the spread spectrum embedding 
algorithm. The extracted binary mark is obtained by taking the 
sign of this average, as given by the following expression:  

( ) ( ) ( )
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 (6) 
Since the PN matrix has zero-mean, the sum 

( ) ( )1
fN

k LY i j k p i j k=Σ , , ⋅ , ,  approaches zero for a large value of 

fN . In general, for 10fN ≤  the mark is recovered perfectly, 

i.e., r =m m . When errors are added by the compression or 

transmission, Y Y η′′ ′= +  and the extracted mark rm  is an 

approximation of m.  
A measure of the degradation of the mark is given by the 

TSE of the extracted mark rm :  

     ( ) ( ) 2

tseE r
i j

m i j m i j= , − , .      (7) 

The less the amount of errors caused by processing, 
compression or transmission, the smaller tseE  is. On the other 

hand, the more degraded the video, the higher tseE  is. 

Therefore, the measure given by tseE  can be used as an 

estimate of the degradation of the host video.  
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III. PSYCHOPHYSICAL EVALUATION OF EMBEDDING 

IMPAIRMENTS 
 

The process of embedding data into a video may introduce 
undesired distortions or impairments that reduce the perceived 
quality of the video [26]. The main types of impairments 
introduced by embedding algorithms are:  

 

• Flicker - Results from visible changes of the mark 
between consecutive frames.  

• High Frequency Noise - Fundamental fingerprint of most 
embedding algorithms.  

 
 

The visibility and annoyance of these impairments depend on 
several factors like the domain where the mark is being inserted, 
the embedding algorithm, and the strength of the mark (α). The 
stronger the mark, the more robust the detection is and, 
unfortunately, the more visible the impairments become.  

To design a video quality system using data hiding techniques 
we have to make sure that (i) the embedding impairments are not 
visible and (ii) the mark is fragile and degrades at roughly the same 
rate as the the video. In this section we concentrate on (i), while in 
Section IV we will address (ii). In this section, we present the 
description of an experiment performed with the goal of estimating 
the detectability and annoyance of the impairments caused by the 
embedding algorithm. 

A. Psychophysical Experiment Method  
 

We used 20 test subjects drawn from a pool of students in the 
introductory psychology class at UCSB. The students were 
thought to be relatively naïve concerning video impairments and 
the associated terminology. They were asked to wear any vision 
correcting devices (glasses or contacts) that they normally wear to 
watch television. A Sony PVM-1343 monitor was used to display 
the test video sequences. The experiment was run with one subject 
at a time and lasted for approximately 50 minutes. Each subject is 
seated straight ahead of the monitor, located at or slightly below 
eye height for most subjects. The subjects are positioned at a 
distance of four screen heights (80 cm) from the video monitor.  

The experimental session consists of five stages: instructions, 
training, practice trials, experimental trials, and interview. In the 
first stage, the subject is verbally given instructions. In the training 
stage, the subject is shown the original videos followed by 
examples of videos with the strongest impairments found in the 
experiment. These sequences represent the impairment extremes 
for the experiment and are used to establish the annoyance value 
range. The most annoying videos in the training stage should be 
assigned a value of ‘100’. In the practice stage, the test subjects run 
through several practice trials. The practice trials are identical to 
the experimental trials and are used to allow the responses to 
stabilize and to familiarize the test subject with the experiment [5].  

The experimental trials stage is performed with the complete set 
of test sequences presented in a random order. In this stage, the 
subjects were asked to perform two different tasks: (1) detection 
and (2) annoyance. The detection task consisted of detecting 
impairments in the test sequences. The subjects are instructed to 
search each video for impairments. After each test sequence is 

played the subjects are asked “Did you see a defect or an 
impairment?.” The subject is supposed to choose a ‘yes’ or ‘no’ 
answer. The annoyance task consisted of giving a numerical 
judgment of how annoying/bad the detected impairment is. The 
subject is instructed to enter a positive numerical value indicating 
how annoying the impairment is after each test sequence is played. 
Any defect as annoying as the worst impairments in the training 
stage should be given ‘100’, half as annoying ‘50’, ten percent as 
annoying ‘10’, and so forth. Although the subjects are asked to 
enter annoyance values in the range of ‘0’ to ‘100’, they are told 
that values greater than ‘100’ can be assigned if they think the 
impairment is worse than the most annoying impairments in the 
training stage.  

After the experimental trials are complete, the test subjects are 
asked a few questions before they leave. These questions gather 
interesting information that cannot be gathered during the 
experiment. Nevertheless, they represent the subject’s general 
impression of the set of test sequences and cannot be associated 
with specific sequences. However they are useful in guiding the 
design of future experiments.  

B. Test Sequence Generation 
 

To generate the test video sequences, we start with a set of five 
original video sequences of assumed high quality: ‘Bus’, 
‘Cheerleaders’, ‘Flower’, ‘Football’, and ‘Hockey’. This set of 
videos is commonly used in video quality research and is publicly 
available [27]. Representative frames of the original videos used in 
this work are shown in  Figure 4.  These  videos are all five 
seconds long and are in ITU-R BT.601 format (formerly CCIR-
601), i.e., the videos are 60 Hz (NTSC), 4:2:0 YCrCb format, 486 
lines×720 columns.  Two kinds of mark images used in our 
experiments were: the Random image and the Logo image shown 
in Figure 5. The marks are 88×88 size binary images. 

 

  

   

  

Fig. 4. Sample frame of original videos ‘Bus', ‘Cheerleaders', ‘Football’, 

‘Flower', and ‘Hockey'. 
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Fig. 5. Images used as marks: Random (left)  and Logo (right). 

 

   

Fig. 6. Zoomed version of the 10th frame of  ‘Cheerleaders’: original 

(left) and embedded with mark Logo and α = 0.6 (right). 

The test sequences are generated by embedding each 
original with both marks as described in the previous section. 
In order to be able to study the visibility and annoyance of 
embedding impairments, the contrast of these impairments 
(error patterns) must range from nearly imperceptible to highly 
annoying. This is obtained by varying the scaling factor (α) 
used in (3). The values of α  used in this experiment were 0.1, 
0.2, 0.3, 0.4, 0.5, and 0.6. For illustration, in  Figure 6 details 
of the 10th frame of the video ‘Cheerleaders’ with and without 
mark are shown. The picture on the left corresponds to the 
original video, while the picture on the right corresponds to the 
same video embedded with the mark Logo.  

The  total  number of test sequences used in this experiment 
was 65, which includes 60 test sequences (5 originals × 6 
strength factors× 2 mark images) plus the 5 original sequences. 

 

C. Experimental results 

Standard statistical methods are used to analyze the data 
provided by the test subjects [5]. The logarithm of the Total 
Squared Error (TSE) used in the analysis is given by:   

     [ ]2
TSE ( ) ( )o

k i j

y i j k y i j k= , , − , , ,    (8) 

where y  is the impaired video and oy  is the original video,   

and  i, j are the spatial coordinates, and k corresponds to the 
frame index.  

To analyze the subjects’ answers to detection tasks, we first 
convert the ‘yes/no’ answers to binary scores. The ‘yes’ is 
saved as ‘1’, while ‘no’ is saved as ‘0’. The probability of 
detection (PD) of impairment is then estimated by counting the 
number of subjects who detect this impairment and dividing it 
by the total number of subjects. The mean observer score 
(MOS) is calculated by averaging the annoyance scores over 
all observers for each test sequence: 

0

1
MOS ( )

L

l

Annoyance Annoyance l
L =

= = ⋅ ,   (9) 

where Annoyance is the score reported by the l-th subject and 

L is the total number of subjects. We also calculated the 
sample standard deviation:  

   ( )
1 2

2

0

1
( )

L

i

STD Annoyance i Annoyance
L

/

=

= ⋅ − ,  (10) 

and the internal standard error of S :  
STDSTD

L
=   (11) 

This analysis is valid under the assumption that the scores are 
independent. The confidence interval for the ‘true’ MOS of a 

test sequence is given by 2LS t STDα, /± ,  where 2Lt α, /  

corresponds to the Student t coefficient [28].  
We divide the sequences into test groups composed of test 

sequences corresponding to the same original, with different 
levels of scaling factors and, consequently, annoyances. Using 
the probability of detection data, we can estimate the visibility 
detection threshold of the embedding impairments. The 
probability of detection as a function of the log(TSE) 
(psychometric function) is fitted using the Weibull function 
[5], which has an S-shape similar to the experimental data and 
is defined as:  

( ) ( )1 2 TS xPD x
κ⋅= − ,       (12) 

where ( )PD x  is the probability of detection, x is the 

log( )TSE  of the sequence, TS  is the sensitivity, and κ  is a 

constant that determines the steepness of the function. The 
50% detection threshold in logarithmic error energy, Tx , is 

given by 1 TS/ .  

Figures 7 and 8 depict the psychometric functions for the 
impairments caused by embedding the mark image Logo and 
Random in the videos ‘Cheerleaders’ and ‘Football’. Each 
figure contains two curves, one for each of the mark images. 
As can be seen, for all figures both curves are very similar 
implying that the choice of a different mark image does not 
have a significant effect on the visibility of the impairments.  

Columns 3 and 4 of Table 1 present the estimated 50% 
detection threshold for each test group in terms of TSE and 

10log TSE . Overall, the threshold values do not change 

considerably over the test groups and remain practically 
constant when only the embedded image mark is changed. 
Because we only tested a finite number of α values, the exact 
α corresponding to the estimated visibility threshold ( Tα ) will 

most probably lie within one of the subintervals of the tested α 
values. In Column 5 of Table 1 the intervals containing the 

Tα or each test group are presented. 

Table 1 also includes other curve fit parameters. The 
parameter sensitivity TS  (shown in Column 6) corresponds to 

the inverse of the log-threshold and therefore has an inverse 
behavior. The parameter κ  (shown in Column 7), which 
represents the steepness of the probability of detection curve, 
varies between different test groups. This may be due to 
variations in the video content. The same impairment at  the 
same strength will  vary in  visibility  depending on the  texture  
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Fig. 7. Psychometric functions for embedding the marks Logo and 

Random into the video ‘Cheerleaders’. 

 

 
Fig. 8. Psychometric functions for embedding the marks Logo and 

Random into the video ‘Football’. 

 

and luminance characteristics of the background of the video. 
In particular, it was noticed that white and/or smooth 
backgrounds facilitate the visibility of the embedding 
impairments. For example, it was not possible to estimate the 
visibility threshold for the video ‘Hockey’ because more than 
half of all subjects saw the weakest impairment. It was also not 
possible to estimate the threshold for the video Flower 
embedded with the mark Logo.  

With the annoyance data (MOS in (11)), we can estimate the 
mid-annoyance values of the embedding impairments. The 
MOS as a function of the 10log TSE  (annoyance function), is 

fitted with the standard logistic function [5]:  
 

( )
( )( )1

max min
min x x

y y
y y

exp η
−

−
= + ,

+ −
      (13) 

 

where y is the predicted annoyance and 10log TSEx = . The 

parameters maxy  and miny  establish the limits of the annoyance 

value range. The parameter x  (mid-annoyance value) 
translates the curve in the x-direction and the parameter η  

controls the steepness of the curve.  
Figures 9 and 10 depict the annoyance functions for the 

impairments caused by embedding the mark image Logo and 
Random, respectively, into the videos ‘Cheerleaders’, and 
‘Football’. Each figure contains two curves, one for each mark. 
Again, the two curves look very similar, implying that the mid- 

TABLE 1.  PSYCHOMETRIC FUNCTION CURVE FIT PARAMETERS FOR 

EMBEDDING IMPAIRMENTS. 

  Detection threshold ( Tx ) Curve Fit Parameters 

Orig. Mark TSE 
10log TSE   Tα  interval TS   κ   

Bus Logo 15488 4.19 0 2 0 3Tα. < < .  0.2407 27.71  

Bus Random 16218 4.21 0 2 0 3Tα. < < .  0.2378 31.17   

Cheer Logo 27542 4.44 0 2 0 3Tα. < < .  0.2259 37.66  

Cheer Random 28184 4.45 0 2 0 3Tα. < < .  0.2256 42.38  

Flower Random 39811 4.60 0 1 0 2Tα. < < .  0.2179 87.50  

Foot Logo 26303 4.42 0 2 0 3Tα. < < .  0.2270 25.68  

Foot Random 26303 4.42 0 2 0 3Tα. < < .  0.2273 27.38  

 

 
Fig. 9. Annoyance functions for embedding the marks Logo and Random 

into the video ‘Cheerleaders’. 
 

 
Fig. 10. Annoyance functions for embedding the marks Logo and 

Random into the video ‘Football’. 

 

annoyance values are not greatly affected by the choice of the 
image mark. 

Table 2 summarizes the fitting parameters for the 
annoyance functions. This table also shows the maximum, 
minimum, and the average MOS for each test group. As can be 
seen from Table 2, the steepness of the annoyance function, η  

(Column 7), does not vary significantly for different marks, but 
it does vary between test groups. The same is true for the 
parameter x  (Column 6). The video ‘Hockey’ presented the 
highest mean, minimum, and maximum MOS values (Columns  
3,  4, and 5, respectively). This can be  explained by  the  fact  
that this scene contains large smooth white areas which greatly 
contrast with the embedding impairments (for an example of 
this effect, see Figure 6).  
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TABLE 2. ANNOYANCE FUNCTION FITTING PARAMETERS FOR EMBEDDING 

IMPAIRMENTS. 

Test 

Sequence 

Mark Min Max Mean x  η  Res.  

Bus Logo 7.86 58.95 32.80 4.58 0.21 5.72  

Bus Random 9.80 63.05 32.71 4.55 0.2 2.91  

Cheer Logo 12.83 74.23 43.15 4.7 0.18 4.36  

Cheer Random 11.00 74.91 44.78 4.68 0.16 4.5  

Flower Logo 13.46 84.45 43.54 4.86 0.15 4.11 

Flower Random 13.25 85.82 43.92 4.85 0.14 4.5  

Foot Logo 6.25 66.91 33.55 4.71 0.18 5.06  

Foot Random 8.75 76.91 37.45 4.65 0.18 1.98  

Hockey Logo 30.00 95.55 65.19 4.61 0.12 2.11  

Hockey Random 41.00 96.95 68.64 4.58 0.12 6.46  

IV. VIDEO QUALITY ASSESSMENT SYSTEM 

 

The proposed system to blindly estimate the quality of a video 
is based on the assumption that the embedded image mark and 
the host video degrade at a similar rate. Therefore, the 
degradation of the extracted mark (Etse in (9)) can be used as a 
measure of the quality of the distorted host video. We divided 
the design of the quality system in three steps. The first step 
consists in the development of an automated algorithm for 
estimating the ‘best empirical’ value of α for each video. This 
algorithm is an addition to the embedding stage presented in 
Section II and does not affect the extraction of the mark.  

Once the adequate value of  α is found, our second step 
consists of testing the proposed metric for different 
compression bit rates and comparing the results with a 
commonly used fidelity metric - the TSE. Comparing the 
values of the quality metric with TSE (or other type of fidelity 
metric) is common practice and it gives a good idea of the 
performance of the quality metric. Nevertheless, we believe 
that a more significant test consists of comparing the results of 
the quality metric with subjective results gathered from 
subjects. Therefore, the last step of the design of the video 
quality assessment system consists of comparing Etse values 
with the MOS values obtained from a second psychophysical 
experiment that measured annoyance of MPEG-2 compressed 
videos [29].  

According to the results presented in Section III, the choice 
of the mark is not critical to the visibility of the mark. 
Nevertheless, in order to obtain a better precision we decided 
to use a slightly larger mark image, which has less uniform 
areas and looks more like a natural image. We have chosen a 
(binary) dithered version of the image Lenna (seen in Figure 
11) as our image mark for this section. 

 

Α. Automated System for Estimating α 
 

While extracting the mark, it was noticed that some of the 
videos were more robust than others, i.e., for videos embedded 
with the same mark strength (α) and submitted to the same  

 
Fig. 11. Dithered image, Lenna, used as an embedding mark for quality 

measurement. 

 
degradations, the extracted marks resulted in different ranges 
of Etse. This indicates that for different video contents different 
values of α are necessary. Therefore, an automated system for 
estimating appropriate values for α according to the video 
content has to be added to the embedding stage, as shown in 
Figure 12. No modifications are needed in the extraction stage, 
since this stage does not require the knowledge of the Etse 
value.  

For our application in video quality assessment system, 
good α values should correspond to Etse values which:  

 

• have a good range, i.e., the Etse values are not 
concentrated in a very small range.  

• are consistent, i.e., greater Etse values should correspond 
to higher TSE or MOS, and smaller Etse values should 
correspond to smaller TSE or MOS.  

 

Our approach to find the best empirical values for α consisted 
of generating a set of test sequences embedded with different 
values of α and checking which α values satisfied the above 
conditions and were below the visibility threshold. To generate 
the test sequences we inserted the mark in each of the original 
videos with five different values of α (0.0125, 0.025, 0.050, 
0.1, and 0.2). We compressed and decompressed each 
embedded video at compression rates ranging from 0.5 to 10 
Mbps. Then, we extracted the mark and checked which values 
of α satisfied our criteria. 

In Figure 13, we show the plot of tseE  versus host video 

TSE for different values of α and different compression levels 
corresponding to the original ‘Football’. We can see from this 
graph that the value of α which better satisfied our criteria is 
0.025. The tseE  values obtained for 0 025α = .  were not too 

low  ( mark  being  recovered too well )  and  the  degradations  
 

 

Fig. 12. Block diagram of the embedding stage of the video quality 

assessment system with an automatic estimation of best α. 



IEEE Transactions on Consumer Electronics, Vol. 51, No. 3, AUGUST 2005 990 

 

Fig. 13. tseE  versus TSE of the host video for different values of α 

corresponding to the original ‘Football’. 

 

were well captured by the curve. It also well below the visibil- 
ity threshold. A similar procedure was used to find appropriate 
α values for the other originals.  

In Column 5 of Table 3, we present the ‘best emperical’ α 
values according to the analysis over the test sequences and 
the results of the psychophysical experimental presented in 
Section III. As can be seen from Table 3, the α values 
corresponding to the visibility threshold ( Tα  in Column 4) and 

the ‘best empirical’ α values are not correlated. 
The data hiding capacity of a video is given by the 

following expression [19]:   

 
2

2
0 5 log 1 mark

video

C
σ
σ

= . ⋅ +  (14) 

where 2
markσ  is the variance of the mark embedded and 2

videoσ  

is the variance of the (host) video. The capacity and the 

standard deviation ( )σ  of the videos are shown in Columns 2 

and 3 of Table 3, respectively. We can notice from Columns 3 
and 5 that the standard deviation and the ‘best empirical’ α 
values are correlated.  

In Figure 14 we plotted the ‘best empirical’ α versus the 
standard deviation for all videos. An exponential curve was 
fitted to this data:  
 

 ( ) ( )expp a bα σ σ= ⋅ ⋅  (15) 

where pα  is the predicted value for α, σ is the standard 

deviation of the host video. The values of a and b obtained 
from the fitting are 0.0162 and 0.1530, respectively. The 
correlation of the fit is 98.32%. Therefore, an automated 
system for estimating the value of α for each video can be 
implemented by simply measuring the standard deviation of 
the video frames and using (14). 

B. Objective Metric Simulation Results for Compressed 
Videos 

In this section, we present the simulation results of using the 
proposed metric to assess the quality of MPEG-2 compressed 
videos at several bit-rates. For this test we embedded the mark 
into five videos:  ‘Bus’,  ‘Cheerleaders’,  ‘Flower’,  ‘Football’,  

TABLE 3.  DATA HIDING CAPACITY, STANDARD DEVIATION,   INTERVALS 

FOR THE VISIBILITY THRESHOLD, AND ‘BEST EMPIRICAL’   VALUES. 

Test 

Sequence 
Capacity videoσ  Tα  interval 

‘Best 

empirical’ α 

Flower 0.009 11.8955 0 1 0 2Tα. < < .  0.100  

Bus 0.021 7.671 0 2 0 3Tα. < < .  0.050  

Cheerleaders 0.025 7.0195  0 2 0 3Tα. < < .  0.050  

Football 0.0718 1.2685  0 2 0 3Tα. < < .  0.025  

Hockey 0.1549 0.8271  0 0 0 1Tα. < < .  0.0125  

 

Fig. 14. Predicted tseE  versus standard deviation of the host video. 

 
and ‘Hockey’.  The videos were embedded using the system 
shown in Figure 12, with α values calculated using (14). Once 
all the videos were embedded with the mark, they were 
compressed with an MPEG-2 codec at several bit-rates: 0.5, 1, 
2, 3, 4, 5, 6, 7, 8, 9, and 10 Mbps, respectively. The videos 
were then decompressed and the marks were extracted. 
Finally, the tseE between the inserted and extracted marks were 

calculated.  
Figures 15 and 16 depict the graphs of tseE  versus the  

10log TSE   between  the  original  and  degraded  video.   The 

graphs show that, as expected, the tseE  values increase 

monotonically with TSE of the host video. The range of the 
degraded video TSE varies  depending  on  the  video  content, 
while the range  of the  proposed  metric is  always  between  0 

 

Fig. 15. tseE of the mark versus for video ‘Cheerleaders’. 
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Fig. 16. tseE of the mark versus for video ‘Football’. 

TABLE 4  

FITTING PARAMETERS FOR CURVES OF tseE VERSUS 10log TSE . 

 log( )TSE   

Test Sequence xmean β 

Bus 3.4631 0.2527  

Cheerleaders 3.9671 0.1576  

Flower 4.2532 0.2156  

Football 3.4113 0.2018  

Hockey 2.7802 0.1703  

 
and 2. The curves were fit using a logistic function [5]. The 

graphs also show the fit correlation value ( )2R  and the 

confidence intervals. The values of 2R  are all greater than 
87% indicating a high correlation. The fitting parameters are 
shown in Table 4. 

C. Objective Metric versus Mean Observer Score 

The best performance metrics are full-reference metrics which 
make use of human visual system models, most of which are 
rather complex. Our metric is a no-reference metric with a 
much simpler approach. Our target application is on-line 
measurement of quality for broadcasting. We certainly do not 
expect to outperform full-reference metrics. Nevertheless, to 
be useful, our metric needs to demonstrate a significant 
correlation with the subjective data.  

We compared the values obtained with our metric with the 
MOS values obtained from data gathered from a previous 
psychophysical experiment [29]. In this experiment, 
annoyance and detection of MPEG-2 impairments were 
measured. The same equipment, originals, and methodology 
described in Section II were used in this experiment. A total of 
32 test subjects were used.  

To create the test sequences we first generated sequences 
with high level of compression (1 Mbps). Then, we linearly 
combined the original video and the impaired video in 
different proportions. By varying their relative weights, we 
could weaken the artifact (allowing the original to dominate), 
strengthen the artifact (allowing the artifact to dominate), or 
even exaggerate the artifact (boost the difference between the 
artifact and original). This procedure guarantees that the 
appearance of the MPEG-2 impairments do not change, only 

their strength varies. The basic formula for combining the 
videos is:  

 ( )0 11Y X r r X= ⋅ − + ⋅  (16) 

where Y is the result, 0X  is the original, 1X  is the degraded 

sequence, and r is the scaling factor. The defects are added 
only to pre-defined areas of the frames. All other areas are not 
distorted. The total number of test sequences used in this 
experiment was 95, which included 90 test sequences (5 
originals times 6 strength factors times 3 defect zones) plus the 
5 original sequences. The sequences are shown in a random 
order during the main experiment.  

Figure 17 depicts the mean annoyance curves versus the 

tseE for the set containing all videos. We can see that our 

metric is able to track the MOS of a video. Although the 
degradation will vary from video to video depending on their 
data hiding capacity, the tseE provides consistent values and a 

good range for all the videos tested. tseE  also has a good cor-

relation (0.8833) with the MOS values. The fitted line in the 
graphs is the quadratic function 28.10 52.35y x x= − + . The 

correlation coefficient for this fit is 2 80.11%R = .  
 

 
Fig. 17. MOS versus tseE  for the complete set of test sequences. 

V. CONCLUSIONS 

In this paper, a new NR objective metric using data hiding 
system is proposed. The metric has the advantage of being fast 
and not requiring the use of the original video. To evaluate the 
visibility and annoyance of the impairments caused by the 
chosen embedding algorithm, we performed a psychophysical 
experiment. The results of this experiment enabled us to study 
the relation between the visibility/annoyance of the mark and 
the mark strength. The system also includes an algorithm for 
estimating the ‘best’ strength of the mark based on its visibility 
and the data hiding capacity of the host video. The 
performance of the proposed metric is estimated by measuring 
its ability to predict the TSE of the host video and the MOS 
obtained from subjects in a psychophysical experiment. 
Although very simple, the proposed metric performed well and 
has a good correlation with the MOS.  
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