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ABSTRACT

In this paper we present a no-reference video quality metric based
on individual measurements of three artifacts: blockiness, blurri-
ness, and noisiness. The set of artifact metrics (physical strength
measurements) was designed to be simple enough to be used in
real-time applications. The metrics are tested using a proposed
procedure that uses synthetic artifacts and subjective data obtained
from previous experiments. The technique has the advantage of
allowing us to test each metric on videos which contain only the
desired artifact signal or a combination of artifact signals. Models
for the overall annoyance based on a combination of the artifact
metrics using both a Minkowski metric and a linear model are de-
veloped. Both models present a very good correlation with the
data and show no statistical difference in their performances.

1. INTRODUCTION

In the past few years, considerable attention has been paid to the
development of better video quality metrics that correlate well with
the human perception of quality [1, 2]. Although many metrics
have been proposed, most of them are very complex and require
the original video for estimating the quality. As a result, their use
in real-time transmission applications is very difficult. Although
human observers can usually assess the quality of a video without
using the reference, designing ano-referencemetric is a difficult
task and only a few of such video quality metrics have been pro-
posed in the literature so far [3, 4].

In a previous work, we have found that it is possible to predict
the overall annoyance of an impaired video using a combination
of perceptual strengths of individual artifacts [5]. In this work, our
goal is to investigate if a combination of physical strength mea-
surements of individual artifact signals (artifact metrics) can be
used to estimate the overall annoyance of impaired videos. The
assumption here is that the strength of the artifact signal is cor-
related with the perceptual strength of the artifact. To this end,
we developed a set ofno-referenceartifact metrics for blockiness,
blurriness, and noisiness that are simple enough to be used in real-
time applications. We, then, obtained models for overall annoy-
ance using the Minkowski metric and the linear model. The pro-
posed models focus on estimating the quality of standard defini-
tion videos compressed using MPEG-2 and its target application
is broadcasting.
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2. ARTIFACT METRICS

The general approach for developing and testing artifact metrics
consists of using video sequences with different levels of artifact
strengths generated by compressing or by transmitting the original
video at different bit-rates or conditions. In this work, we propose
a different approach that provides a robust test and allows a better
comparison among different metrics. To be able to control the
type, proportion, and strength of the artifacts, we tested the artifact
metrics using synthetically generated artifacts and subjective data
gathered from specifically designed psychophysical experiments.

In this work, we used the data gathered from a previous ex-
periment where blocky, blurry, and noisy artifacts were inserted
into specific regions of the videos for a short time interval (de-
fect regions). We asked subjects to detect them and rate their an-
noyance. A total of six originals were used - ‘Bus’, ‘Calendar’,
‘Cheerleader’, ‘Flower’, and ‘Hockey’ [2]. Three defect regions
were used for each original to prevent the test subjects from learn-
ing the locations of the defects. We varied the artifact strength
by scaling the pixel-by-pixel difference between the corrupted and
the original videos [6]. Table 1 shows the total squared error (TSE)
of the test sequences corresponding to the original video ‘Bus’1.
In this section we present the blockiness, blurriness, and noisiness
metrics which performed better in our simulation tests.

2.1. Blockiness Metric

The proposed blockiness metric is a modification of the metric pro-
posed by Vlachos [7]. Vlachos’ algorithm estimates the blockiness
signal strength by comparing the cross-correlation of pixels inside
(intra) and outside (inter) the borders of the coding blocking struc-
ture of a frame. In his work, the frameY (i, j) is partitioned into
bs × bs blocks and simultaneously sampled in vertical and hori-
zontal directions. This sampling structure assumes that all visible
blockiness artifacts have a visible corner. Nevertheless, frequently,
only one of the borders of the blocking structure is visible. To re-
flect this, instead of down-sampling the frame simultaneously, we
splitted the process into two separate parts. This modification im-
proves the performance of the algorithm, with a small increase in
complexity.

First, we down-sampled the frame only in the vertical direc-
tion, obtaining the vertical sub-sampled imagesv:

sv(m, n) = {Y (i, j) : m = i, n = j modbs} . (1)

where(i, j) are the horizontal and vertical co-ordinates. Then, we
down-sampled the frame in the horizontal direction, obtaining the
horizontal sub-sampled imagesh:

sh(m, n) = {Y (i, j) : m = i modbs, n = j} . (2)
1For lack of space, we will only show the results corresponding to the

test video ‘Bus’. The results obtained for other videos were similar.



Table 1. Total Square Error values for test sequences containing
blocky, blurry, and noisy artifacts.

defect artifact TSE
region strength blocky blurry noisy
Top 1 109.09 40.18 157.97
Top 2 197.82 243.44 427.99
Top 3 396.44 621.94 1328.56
Top 4 670.46 1370.61 2622.14
Top 5 996.53 2382.24 4186.98
Top 6 1415.09 3626.78 6093.68
Middle 1 423.19 527.46 675.01
Middle 2 801.39 3283.43 1803.30
Middle 3 1563.37 8454.29 5474.06
Middle 4 2558.25 18919.50 10529.10
Middle 5 3771.61 33360.10 16317.20
Middle 6 5227.33 51554.00 22467.90
Bottom 1 436.23 241.95 227.86
Bottom 2 824.24 1499.86 614.08
Bottom 3 1651.10 3875.24 1899.68
Bottom 4 2752.66 8701.84 3726.34
Bottom 5 4092.39 15392.20 5899.88
Bottom 6 5715.65 23852.10 8397.98

The size of the block,bs can be adjusted according to the appli-
cation. In this work,bs = 8 because we are targeting MPEG-2
codecs.

Figures 1 (a) and (b) display the modified sampling structures
for the horizontal (sh) and vertical (sv) directions, respectively, for
a 24× 24 area of the frame. The dark symbols inside the grid cor-
respond to pixels in the resulting sampled sub-images. Different
symbols correspond to different sub-images. The set of inter-block
pixels in the vertical direction corresponds to the sub-imagess7

ands0 (Figure 1(b)), while the set of inter-block pixels in the hor-
izontal direction corresponds to the sub-imagess7 ands1 (Figure
1(a)). The set of intra-block pixels corresponds to the sub-images
s0 ands1 for the vertical direction, ands1 ands3 for the horizontal
direction.

The correlation between two given images,sm andsn, is given
by the following expression:

Cm,n(i, j) = F−1

(
F ∗(sm(i, j)) · F (sn(i, j))

|F ∗(sm(i, j))F (sn(i, j))|
)

, (3)

whereF andF−1 denote the forward and inverse two dimensional
discrete Fourier transform, respectively, and * denotes the complex
conjugate. The magnitude of the highest peak was used as a mea-
sure of correlation betweensm andsn. Before the maximum was
taken, the array elements were filtered using a Hamming window
to force the elements to a constant value around the borders.

To estimate the blockiness signal strength, we measured the
correlation between the intra- and inter-block sub-images in both
directions. The vertical intra-block correlation is given by:

PVintra = max
i,j

{C7,0(i, j)} , (4)

while the vertical inter-block correlation is given:

PVinter = max
i,j

{C0,1(i, j)} . (5)

The horizontal correlations,PHinter andPHintra, are obtained
in a similar way. The blockiness measure for the frame is given by
the following expression:
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Fig. 1. Frame sampling structure for correlation-based blockiness
metric: (a) horizontal and (b) vertical directions.
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Fig. 2. Blockiness metric results for test sequence ‘Bus’ contain-
ing only blockiness.

blockiness= 2.0−
[

PVintra

PVinter
+

PHintra

PHinter
,

]
(6)

For frames with no blockiness, the value ofPVintra is close to
PVinter andPHintra is close toPHinter. As blockiness is in-
troduced, the values ofPVinter andPHinter become smaller and,
consequently, the value of the blockiness metric increases. The
blockiness signal measurement for the set of all frames was ob-
tained by averaging the measures over all frames.

Figure 2 displays the results after applying this metric on test
sequences containing only synthetic blocky artifact signals for the
original ‘Bus’. Thex-axis of the graph correspond to the six block-
iness signal strengths shown in the third column of Table 1 and
represented, for simplification, by the integers 1-6, where 1 refers
to the smallest strength and 6 to the largest one. They-axis cor-
responds to the blockiness signal measurements. The three curves
correspond to the three defect regions of the video (‘top’, ‘middle’,
and ‘bottom’). Similar results have been found for the other origi-
nal videos. As can be seen, the blockiness metric increases as the
blockiness signal strength increases. Simulation results showed
that the metric was robust, had a good performance, and was not
very sensitive to content effect. Overall, the metric performed bet-
ter (the correlation with the subjective data wasr = 0.860) than
other metrics which estimate blockiness in the spatial [8] and fre-
quency [4] domain (r ≈ 0.40).

2.2. Blurriness Metric

Most of the existing blurring metrics are based on the idea that blur
makes the edges larger or less sharp [9, 10, 11]. In this work, we
implemented ano-referenceblur (blurriness signal) metric which
also makes use of this very simple idea. The algorithm measures
blurriness by measuring the width of the edges in the frame. The
first step consists of finding strong edges using the Canny edge
detector algorithm. The output of the Canny algorithm gives the
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Fig. 3. The width of the edge is used as a measure of the blurriness
signal strength.P1 is the first local extreme andP2 is the second
one.
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Fig. 4. Blurriness metric results for test sequences ‘Bus’ contain-
ing only blurriness for videos.

magnitude of the edge pixels,M(i, j), and their orientation,O(i, j).
We selected only the strong edges of the frame (M(i, j) > 25).

The width of an edge is defined as the distance between the
two local extremes,P1 andP2, on each side of the edge, as shown
in Figure 3. If the edge is horizontal,P1 will be located above the
edge pixel, whileP2 will be below it. If the edge is vertical,P1

will be located to the left of the edge pixel, whileP2 will be to the
right of it. The width of the edge,width(i, j), at position(i, j)
is given by the difference between the two extremesP1(i, j) and
P2(i, j). The blurriness signal strength measure for a frame was
obtained by averaging widths over all strong edges of this frame.
So, given that a frameY hasL strong edges pixels, the blurriness
signal strength measure for this frame is given by:

blurriness=
1

L

N∑
i=0

M∑
j=0

width(i, j). (7)

The blurriness signal strength measure for the whole video was
obtained by averaging the measurements for all frames.

Figure 4 displays the results of applying this metric on the test
sequence containing only blurriness for the original ‘Bus’. Thex-
axis of the graphs corresponds to the six blurriness signal strengths
(see the fourth column of Table 1) and they-axis corresponds to
blurriness metric. Each curve corresponds to one different region
of the video. As can be seen from this figure, the blurriness met-
ric increases as the artifact signal strength increases. This metric,
although very simple, was very robust and insensitive to contents.

2.3. Noisiness Metric

Most existing noisiness metrics are designed for still images and,
frequently, they require some information about the original [12].
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Fig. 5. Noisiness metric results for test sequence ‘Bus’ containing
only noisiness.

Blindly estimating noise in an image or video is still a difficult
problem. The proposed noisiness metric is based on the work by
Lee [13] that uses the well known fact that the noise variance of
an image can be estimated by the local variance of a flat area. To
reduce the content effect we used a cascade of 1-D filters as a pre-
processing stage [12].

After the preprocessing, we sub-divided the image in8 × 8
blocks and calculated the local variance of each of the 9 overlap-
ping3×3 sub-blocks inside each block. An estimationσ̂2

l of thel-
th block noise variance was calculated by averaging the 4 smallest
sub-block variances. Then, we calculated the histogramh(σ̂) of
the block variances. An initial global estimate for the frame noise
variance was obtained by calculating the mean squared value of
the histogram [13]:

s2
1 =

∑kmax
k=0 k2h(k)∑kmax

k=0 h(k)
. (8)

Since the pre-processing stage does not do a perfect job in elim-
inating the content effect, Eq. (8) usually overestimates the vari-
ance. This problem was reduced by implementing a fade-out of
the histogram using a simple cutoff function with thresholdβ1 =
1.5 · s1.

An improved value of the mean squareds2 was computed it-
eratively using the following expression:

s2
l+1 =

∑σmax
σ=0 σ2gl(σ)h(σ)∑σmax

σ=0 gl(σ)h(σ)
, (9)

whereσmax is the maximum value forσ obtained while calcu-
lating the histogram. The initial values1 was taken from Eq. (8)
and the mean squared value was refined successively. After three
to five iterations, convergence was achieved. The final estimate
of the frame noise variance and, therefore, of the noisiness signal
strength, is given bys2

lmax
, wherelmax indicates the total number

of iterations used. The noisiness signal measure for the set of all
frames was obtained by averaging the measures for each frame.

Figure 5 shows the results of applying this algorithm to the test
sequence with only noisy artifacts for the original ‘Bus’. Thex-
axis of the graphs correspond to the six noisiness signal strengths
(see fifth column of Table 1) and they-axis correspond to noisi-
ness metric. As can be noticed, the noisiness metric increases as
the signal strength of the noisiness increases. Notice that there is a
considerable difference between the three curves corresponding to
different regions of the video. This reflects the fact that the outputs
of noisiness metrics are very influenced by the video content. Nev-
ertheless, the correlation of the noisiness metric with the percep-
tual artifact strengths given by the subjects was good (r = 0.74)
and the metric performed well for our purposes.
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Fig. 6. Observed MAV versus predicted annoyance for the set of
all test sequences for the linear model.

3. OVERALL ANNOYANCE ESTIMATION

If a video is affected by one or more types of artifacts, the total
annoyance can be estimated from the individual artifact perceptual
strengths using a combination rule. In this section, we want to
investigate if the same type of model can be used to estimate over-
all annoyance by using, instead, individual artifact signal physical
strength measurements (artifact metrics). So, after choosing the
best artifact metrics, our goal is to obtain a model for overall an-
noyance using a combination rule of these metrics. We propose a
no-referenceannoyance model that uses the blockiness, blurriness,
and noisiness metrics using the weighted Minkowski metric:

Yp = (α · Blockinessp + β · Blurrinessp + γ · Noisinessp)1/p

(10)
If p = 1, it becomes a linear model.

Then, we performed a nonlinear least-squares data fitting us-
ing both Minkowski metric and linear model to the mean annoy-
ance values obtained from a second psychophysical experiment [5]
and the output of the artifact metrics. This second psychophysical
experiment independently measured the strength and annoyance of
blocky, blurry, and noisy artifacts when presented alone or in com-
bination. The data set consisted of 120 test sequences - 4 originals
(‘Bus’, ‘Cheerleader’, ‘Football’, and ‘Hockey’)× 30 combina-
tions of blocky, blurry, and noisy artifacts.

Both models produced a good correlation with the data (r =
0.86). Although the linear model is a simpler and more restric-
tive model, we found that there was no significant statistical dif-
ference, in performance, between the linear and the more generic
Minkowski models. Figure 6 shows a plot of the measured versus
predicted annoyance using linear metric. The fit for the Minkowski
metric returned an exponent equal to 0.66 and scaling coefficients
equal to 0.91, 3.40, and 2.51, corresponding to blockiness, blur-
riness, and noisiness, while for the linear model the scaling co-
efficients were equal to 3.41, 7.40, and 5.39, corresponding to
blockiness, blurriness, and noisiness. The annoyance models us-
ing the artifact metrics had similar parameters to the ones found
for the annoyance models obtained using the artifact perceptual
strengths [5]. Further improvements in the models can be obtained
by adding simple human visual systems to the metrics.

4. CONCLUSIONS

The goal of this paper was to test the possibility of predicting the
overall annoyance of videos impaired with combinations of block-
iness, blurriness, and noisiness metrics. With this purpose we de-

signed a set of artifact metrics for blockiness, blurriness, and noisi-
ness. To evaluate the performance of each artifact metric, we tested
its ability to detect and estimate the artifact signal strength for test
sequences containing only the artifact being measured. Finally, we
obtained a model for overall annoyance based on a combination of
the artifact metrics using both a Minkowski metric and a linear
model. Both models presented a very good correlation with the
data and no statistical difference in performance.
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