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Abstract

Contrast thresholds of vertical Gabor patterns were measured as a function of their eccentricity, size, shape, and phase using a 2AFC
method. The patterns were 4 c/deg and they were presented for 90 or 240 ms. Log thresholds increase linearly with eccentricity at a mean
rate of 0.47 dB/wavelength. For patterns centered on the fovea, thresholds decrease as the area of the pattern increases over the entire
standard deviation range of 12 wavelengths. The TvA functions are concave up on log–log coordinates. For small patterns there is an
interaction between shape and size that depends on phase. Threshold contrast energy is a U-shaped function of area with a minimum in
the vicinity of 0.4 wavelength indicating detection by small receptive fields. Observers can discriminate among patterns of different sizes
when the patterns are at threshold indicating that more than one mechanism is involved. The results are accounted for by a model in
which patterns excite an array of slightly elongated receptive fields that are identical except that their sensitivity decreases exponentially
with eccentricity. Excitation is raised to a power and then summed linearly across receptive fields to determine the threshold. The results
are equally well described by an internal-noise-limited model. The TvA functions are insufficient to separately estimate the noise and the
exponent of the power function. However, an experiment that shows that mixing sizes within the trial sequence has no effect on thresh-
olds, suggests that the limiting noise does not increase with the number of mechanisms monitored.
� 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

Gabor patterns have become widely used in vision
research. Consequently, it is desirable to have accurate
measurements of sensitivity to Gabor patterns of different
sizes, shapes and phases. Such measurements may also con-
tribute to estimating the properties of the receptive fields of
human pattern vision mechanisms and the way in which
mechanism signals combine to determine thresholds.

There have been many attempts to use psychophysics to
determine the receptive fields of the detecting mechanisms.
These go back to early measurements of spatial summa-
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tion. Graham, Brown, and Mote (1939) proposed an
explicit model of spatial summation for uniform patches
of light, which was in essence a model of the receptive field
of the detecting unit. After it became known that receptive
fields contain both excitatory and inhibitory regions, a par-
adigm introduced by Westheimer (1967) came into use. In
the Westheimer paradigm a small spot was flashed in the
center of a steady disk. As the diameter of the disk
increased, the threshold for the flash increased and then
decreased. The size at which the threshold reached
maximum was taken to be the size of the excitatory region
of the detecting field and the size at which the threshold
ceased to decrease was taken to be the size of the inhibitory
region. Later studies made the context pattern subthresh-
old and flashed it with the target to minimize adaptation.
This came to be called the method of subthreshold
Gabor patterns of different sizes, ..., Vision Research (2006),
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summation. Some studies used a line as a target with con-
text lines on either side (Hines, 1976). Many studies were
done involving subthreshold summation of gratings. A
common paradigm was to reduce the separation between
two grating frequencies until linear summation of their
effects was obtained. This was shown to be a poor method
for estimating the bandwidth of the underlying fields due to
complications produced by probability summation (Gra-
ham & Robson, 1987). On the assumption that pattern
adaptation reduces the sensitivity of receptive fields that
respond to the pattern, bandwidths were estimated from
adaptation effects by Blakemore and Campbell (1969)
and Georgeson and Harris (1984) to be about 1.4 octaves.
However, the desensitization model that they used is not a
completely adequate account of adaptation (Foley & Chen,
1997). Legge and Foley (1980) and Wilson et al. (1983)
used pattern masking to estimate bandwidth. Both studies
used a model of masking that assumed that masking
depends on the excitation of the detecting field by the
mask. It is now clear that masking depends on inhibition
produced by the mask and this inhibition is more broadly
tuned than is the excitation of the detecting mechanism
(Foley, 1994). Further, it is now known that the extent of
the mask beyond the target can have a large effect on the
magnitude of masking (Yu & Levi, 1997, 1998). Although
there are now models that incorporate lateral context
effects (Chen & Tyler, 2001; Varadharajan & Foley, 2003;
Yu, Klein, & Levi, 2003), none of these newer models is
completely satisfactory and none has been used to estimate
receptive fields.

Absolute threshold experiments offer another way to
find out about pattern mechanisms. There have been
numerous studies of absolute contrast thresholds for pat-
terns, some of which have sought to determine the nature
of the detecting mechanisms. There is some evidence for
receptive fields matched to the stimulus pattern (Hauske,
Wolf, & Lupp, 1976; Rovamo, Luntinen, & Nasanen,
1993), even when the pattern is a sharply truncated Gabor
pattern (Syvajarvi, Nasanen, & Rovamo, 1999), but other
results are inconsistent with these. The evidence generally
points to Gabor-like receptive fields, but estimates of their
size or shape differ greatly. Most models have used circular
Gabor receptive fields that are relatively small, and there is
evidence that such fields mediate detection (Watson, Bar-
low, & Robson, 1983). However, Polat and Tyler (1999)
have presented evidence of detection by receptive fields that
are greatly elongated in the direction parallel to the stripes.
In addition to the shape issue, there is also a lack of agree-
ment about the size of these fields and whether there is
more than one size tuned to the same spatial frequency.
In practice, our ability to use detection experiments to
determine receptive fields depends on the level of accuracy
and precision in threshold measurement that can be
attained.

The extraction of receptive field estimates from such
measurements is fraught with difficulties. The principal
difficulty is that for most patterns many different receptive
Please cite this article in press as: Foley, J. M. et al., Detection of
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fields are likely to contribute to detection and these fields
may vary with the size of the pattern. For example, narrow
patterns contain a wide range of spatial frequencies and
may stimulate receptive fields tuned to very different spatial
frequencies. Large patterns undoubtedly stimulate many
receptive fields in different retinal locations, and these
may differ in spatial sensitivity.

Our approach is as follows. Our stimuli are Gabor pat-
terns. They have the same form as the two-dimensional
Gabor functions that have been shown to describe the spa-
tial sensitivity functions of V1 neurons in monkeys (Ring-
ach, 2002). Their center spatial frequency (4 c/deg) is
close to the frequency to which the system is most sensitive
at the luminance that we used. This increases the likelihood
that receptive fields tuned near to this frequency will detect
the patterns. We test this hypothesis by fitting a model
based on Gabor receptive fields to our data. We find that
a model containing a spatial array of Gabor receptive fields
tuned to our pattern frequency, whose responses are power
functions of their excitation and are summed linearly, gives
a good account of our results.

In addition to varying the size and shape of the patterns,
we have varied spatial phase relative to the center of the
pattern. We find that for small patterns phase interacts
with size and this interaction depends on phase. The model
accounts for this effect as well. We also performed related
experiments on the effect of eccentricity on thresholds, size
discrimination at threshold, and the effect of mixing differ-
ent sizes of patterns within a block of trials.

2. Background

2.1. Effect of size

There have been many studies of contrast thresholds for
sinewave gratings as a function of size. In a 1996 review
Garcia-Perez and Sierra-Vazquez (1996) counted 36 such
experiments and there have been more since then. Most
of these used rectangularly windowed sinewave gratings
that varied in width in the direction orthogonal to the bars.
A few used circular, square or Gaussian windows. Studies
of size effects are consistent in showing that for most spatial
frequencies, the threshold decreases as size increases. For
small sizes the decrease is rapid, but as size increases the
threshold decreases more slowly, appearing to approach
an asymptote for large sizes. Using grating patches, Rob-
son and Graham (1981) found an increase in sensitivity
out to at least 16 wavelengths in the fovea. There are excep-
tions to this form at very low and very high spatial frequen-
cies (Pointer & Hess, 1989). Some authors have used two
straight line segments to describe the data when plotted
on log–log coordinates (Kersten, 1984; Polat & Tyler,
1999).

A Gabor pattern is produced by multiplying a sinewave
grating by a two-dimensional Gaussian function. For
Gabor patterns the description of experimental results is
complicated by the several different measures that are used
Gabor patterns of different sizes, ..., Vision Research (2006),
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for the extent (spread) of these functions. The relations
among these are described by Graham (1989, Table 2.1).
We will use the standard deviation, which is the smallest
and the most familiar of these measures. Only a few studies
have used Gaussian windows. Kersten (1984) used sine-
waves with one-dimensional Gaussian envelopes orthogo-
nal to the grating orientation and a wide range of
standard deviations as small as 0.04 cycle. Kersten found
thresholds to decrease for standard deviations up to at least
1.4 cycles and the decrease was roughly linear on log–log
coordinates in most conditions.

There are a few studies that measure threshold for
elliptical Gabor patterns as a function of their length
and width. Watson et al. (1983), Anderson and Burr
(1991) and Polat and Tyler (1999) are the principal stud-
ies. Watson et al. measured thresholds for Gabor pat-
terns that varied in spatial frequency, length and width,
temporal frequency and duration. They point out that,
if detection is mediated by a single detector that sums
excitation linearly, the contrast energy threshold will be
minimum when the stimulus waveform matches the
weighting function of the receptive field. They present
their data in graphs of energy threshold vs. the parame-
ters of the stimulus pattern. Although they report only a
few of their measurements on a single observer, they
conclude from a larger data set that the minimum
threshold occurs at a standard deviation of about 1
wavelength in both height and width, a duration of
160 ms and a drift rate of 4 Hz. The optimum spatial fre-
quency was found to lie between 6 and 8 c/deg at their
background luminance of 340 cd/m2. Their inference of
the properties of the detector from contrast energy
thresholds depends on the assumption that a single linear
detector determines the threshold.

Anderson and Burr (1991) measured thresholds for
Gabor patterns drifting at 8 Hz. They varied length and
width in separate experiments, with the fixed dimension
equal to 1.5 cycles. They fitted a model with elliptical
Gabor receptive fields and probability summation and esti-
mated the standard deviations in wavelengths in both
directions. These increase with spatial frequency from
0.065 wavelength at 0.1 c/deg to 0.25 wavelength at 10 c/
deg.

Polat and Tyler (1999) found that the threshold for a
Gabor pattern depends strongly on the shape of the enve-
lope, decreasing much more with area for patterns elongat-
ed parallel to the grating than for those elongated
perpendicular to the grating or for patterns with circular
envelopes. They conclude that maximal detection efficiency
is achieved for standard deviations that average about 2.8
grating cycles in length and about 0.43 wavelengths in
width.

These studies show that there is quite a bit of inconsis-
tency in results with respect to how the threshold depends
on the size and shape of Gabor patterns and the implica-
tions for the size and shape of the receptive fields that medi-
ate detection.
Please cite this article in press as: Foley, J. M. et al., Detection of
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2.2. Effect of eccentricity

It is known that sensitivity to patterns decreases as a
function of eccentricity. Since this effect places an impor-
tant constraint on models of the effect of size, we examined
it first. Robson and Graham (1981) measured contrast
thresholds for a 4-cycle patch of horizontal grating present-
ed at eccentricities of 0–32 wavelengths above and below
the fixation point. They found that the log threshold
increases approximately linearly with eccentricity with a
slope of about 0.4 dB/wavelength (4.5%/wavelength). This
means that sensitivity is falling off exponentially with
eccentricity. Pointer and Hess (1989) used circular horizon-
tal Gabor patterns with standard deviations of 2.27 wave-
lengths that were counterphase modulated at 1 Hz. They
measured thresholds in horizontal and vertical meridians
and used a wider range of spatial frequencies. They also
found that the log threshold increases approximately line-
arly with eccentricity. The slope depended on the meridian,
being about 0.5 dB/wavelength for the vertical meridian
and 0.33 dB/wavelength for the horizontal meridian for
spatial frequencies >1 c/deg. For spatial frequencies of
0.2–0.8 c/deg the rate of sensitivity decrease with eccentric-
ity was about double these values.

3. Our study

Our study consisted of four experiments. In the first we
measured the contrast threshold of a Gabor pattern as a
function of its eccentricity. Its goal was to provide mea-
surements of the eccentricity effect made under the same
conditions as our other experiments. These provide a con-
straint on models of the effect of size. In the second exper-
iment we measured contrast thresholds as a function of
size, shape and phase for three classes of Gabor patterns:
circular, collinearly varying (patterns whose standard devi-
ation in the direction collinear with the stripes varies), and
orthogonally varying (patterns whose standard deviation in
the direction orthogonal to the stripes varies). All three sets
of pattern shapes were created with each of three phases re
the center of the pattern: sine, cosine, and anti-cosine, pro-
ducing nine pattern sets. All the patterns were centered on
the fixation point. Here our goal was both to determine the
thresholds for these patterns and to use them as a basis for
models of pattern detection. The third experiment mea-
sured the discrimination of circular Gabor patterns of dif-
ferent sizes when their contrasts were at threshold. This
was a direct test of the hypothesis that multiple receptive
fields underlie the detection of large patterns. The fourth
experiment measured thresholds for two sizes of pattern
with size randomly varied within a trial sequence or con-
stant throughout a block of trials. This experiment tests
the following hypothesis: If internal noise increases with
the number of mechanisms monitored and an observer
adjusts the number of mechanisms monitored with the size
of the stimulus when the size is known, thresholds will be
higher in the mixed size condition.
Gabor patterns of different sizes, ..., Vision Research (2006),
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4. Methods

4.1. Apparatus

The stimuli were generated using a computer graphics
system that consisted of a PC type computer, a Cambridge
Research Systems VSG2/5 graphics board with 15 bits of
intensity resolution, and a Clinton monochrome display,
model DS2190P with a P45 phosphor operated at a resolu-
tion of 1184 · 848 pixels and a frame rate of 100 Hz. Stim-
uli were presented using VSG software. Viewed at a
distance of 114.7 cm, there were 71.4 pixels/deg and each
pixel was 0.84 min on a side. Lookup tables on the graphics
board had the dual role of controlling contrast and correct-
ing for the nonlinear relation between voltage and screen
intensity. Background luminance was 110 cd/m2.

4.2. Stimuli

We measured the absolute contrast thresholds of vertical
4 c/deg Gabor patterns of different eccentricities, sizes and
shapes. A Gabor pattern is a sinewave grating modulated
by a Gaussian window. The spatial luminance functions
of our Gabor patterns are described by the equation:

Lðx; yÞ ¼ L0 1þ C exp �ðx� xsÞ2

2r2
xs

� ðy � ysÞ
2

2r2
ys

 !"

� sinð2pfsðx� xsÞ þ /sÞ
#
; ð1Þ

where L0 is the background luminance, C is the contrast
parameter, fs is the spatial frequency, /s is spatial phase re
the pattern center, rxs and rys are the width and height param-
eters (standard deviations) of the Gaussian envelope, and xs

and ys are the coordinates of the pattern center re the fixation
point. We varied the size and shape of the patterns by varying
rxs and rys. Although a Gaussian function does not equal zero
at any point, we set its value to 0 for all points more than 3
standard deviations from the center. The temporal waveform
was rectangular with a duration of 90 or 240 ms. Appendix A
contains a list of all symbols used in this article.

4.3. Procedure

The target contrast threshold was measured with a
temporal two-interval forced-choice paradigm. The target
was randomly presented in one of the two intervals with
equal probability. Tones were presented during the inter-
vals. Other tones provided correctness feedback after
each trial. The QUEST procedure Watson and Pelli
(1983) was used to adjust the contrast so as to determine
the target threshold at the 0.82 probability correct level.
The QUEST sequence was terminated after 40 trials, or
50 trials if there were no errors on the last 20 trials. Pat-
terns had rectangular temporal waveforms with different
durations used for different observers, 90 and 240 ms.
There was a 1 s interval between the two observation
Please cite this article in press as: Foley, J. M. et al., Detection of
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intervals. The fixation mark was the intersection of a
horizontal and a vertical line, slightly brighter than the
background. When the target was centered on fixation,
there was a gap in the center. Observers fixated at the
center of the gap. The gap increased with the size of
the pattern, but was never less than 1 deg or more than
3 deg. There was at least one practice session prior to
the start of each experiment and each new spatial phase
in Experiment 2. At least six measurements were made in
each condition. An outlier test (Rousseeuw, 1991) was
used to exclude aberrant measurements. All viewing
was binocular with natural pupils. The observers made
informal phenomenological reports of the appearance
of the target at threshold in the different conditions.

5. Experiment 1: Contrast threshold of a Gabor pattern as a

function of its eccentricity

5.1. Method

In this experiment all the Gabor patterns had stan-
dard deviations of 0.18 or 0.25 deg (1 wavelength). They
were in sine or cosine spatial phase re the center of the
pattern. The principal independent variable was their ret-
inal eccentricity. The patterns were always in the center
of the screen, and the fixation mark was located along
the horizontal line through the center. There were 11
positions of the fixation mark equally spaced within the
range of ±5 deg of the target center. Thresholds at each
of these positions were measured in random order. A
complete QUEST sequence was run at one position
before changing to the next, so there was no objective
uncertainty with respect to spatial position. After two
practice measurements at each position at least 6 mea-
surements of each threshold were made. There were five
observers, two of the authors, JMF and SVR, and three
undergraduate students who were naı̈ve with respect to
pattern vision research. All had visual acuity of 20/20
or better, with or without correction.

5.2. Results

For all observers log threshold increased as an
approximately linear function of eccentricity. Outliers
occurred in 4.8% of the measurements and were excluded
from the analysis. Standard deviation averaged 1.69 dB
over all the data sets. There was a small (15%) increase
in standard deviation with eccentricity. Fig. 1 shows the
results for the two most consistent observers. The thresh-
old is defined in the conventional way as the value, Ct,
of C when the pattern is at threshold. The thresholds
are expressed in dB re 1, where CtdB = 20log10Ct. For
KRH the function is less steep in the range �1 to +1
deg and the straight lines were fitted to measurements
outside this range. For both observers thresholds increase
more slowly for stimuli to the right of the fixation point
than to the left.
Gabor patterns of different sizes, ..., Vision Research (2006),
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Fig. 1. Contrast threshold of circular Gabor patterns as a function of horizontal eccentricity. Error bars indicate ±1 standard error. Spatial frequency:
4 c/deg, pattern standard deviation: 0.25 deg, spatial phase: 0 deg (sine), duration KRH: 90 ms, JMF: 240 ms.
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The linear relation between the threshold in dB and
eccentricity implies that the threshold is an exponential
function of eccentricity.

Ct ¼ Ct0 expðkdÞ; ð2Þ

where Ct is the contrast threshold, Ct0 is the threshold at
the fixation point, d is eccentricity, and k is a constant; k

will depend on whether eccentricity is measured in degrees
or wavelengths. When expressed in dB, threshold is a lin-
ear function of eccentricity with slope 20k(log10e). Table 1
gives the slopes and intercepts of the CtdB vs. eccentricity
(TvE) plots (for eccentricity in wavelengths). Mean
threshold increases approximately 0.47 dB (5.5%) for each
one wavelength step in eccentricity. On the right of the
fixation point, fits to a straight line are not as good as
on the left, and there is more variability in the slopes.
These measurements are generally consistent with earlier
studies by Robson and Graham and Pointer and Hess cit-
ed above. The two most experienced observers produced
slightly lower slopes. There is no obvious effect of the
two different durations and two different sizes on the
slope of the TvE functions. We will use our overall mean
slope as a constraint on models of threshold as a function
of size.
Table 1
Experiment 1: Parameters of the Gabor patterns and the straight lines fitted s

Observer Gabor pattern Left of fixation

SD
(deg)

Phase Duration
(ms)

Slope
(dB/cycle)

Intercept
(dB re 1)

KC 0.18 Cos 90 �0.47 �32.3
KRH 0.25 Sin 90 �0.44 �41.2
JMF 0.25 Sin 240 �0.46 �36.8
NNS 0.18 Cos 90 �0.50 �32.9
SVR 0.18 Cos 90 �0.52 �34.8

Mean �0.48
SD 0.032

Please cite this article in press as: Foley, J. M. et al., Detection of
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6. Experiment 2: Contrast threshold as a function of the size
and shape of gabor patterns

6.1. Method

Our study is similar in several respects to that of Polat
and Tyler (1999). Our targets were vertical Gabor patterns
of different sizes and shapes. There were three sets of pat-
terns with respect to shape: (See Fig. 2.):

• Circular patterns: rx and ry were equal and varied
together.

• Collinearly varying patterns: rx was constant at 0.25 deg
(1 wavelength) and ry varied.

• Orthogonally varying patterns: ry was constant at 0.25
deg and rx varied. (We omit the subscript s in this
section because all the symbols refer to the stimulus.)

For each pattern shape set, there were three spatial
phases with respect to the center of the pattern, 0 deg
(sine), 90 deg (cosine) and 270 deg (anti-cosine). Thresholds
were measured as a function of the variable standard devi-
ation of the patterns in each of the nine pattern sets.

The order of the phase conditions was anti-cosine, sine,
cosine. All the measurements on one phase were completed
eparately to contrast thresholds to the left and right of the fixation point

Right of fixation

R2 k Slope
(dB/cycle)

Intercept
(dB re 1)

R2 k

0.91 �0.054 0.47 �32.0 0.79 0.054
0.97 �0.051 0.39 �40.3 0.96 0.045
0.98 �0.053 0.32 �36.9 0.95 0.037
0.93 �0.058 0.49 �32.6 0.86 0.056
0.91 �0.060 0.60 �36.6 0.72 0.069

0.94 �0.055 0.454 0.856 0.052
0.033 0.004 0.106 0.103 0.012

Gabor patterns of different sizes, ..., Vision Research (2006),
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Fig. 2. Examples of patterns used in Experiment 2. The patterns used in
Experiments 2 and 3 varied over a wider range than those shown here.
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before starting the next. Within each phase condition mea-
surements were blocked by shape and the order of the
shapes was counterbalanced over the course of the experi-
ment, except that for anti-cosine and sine phases all the cir-
cular pattern thresholds were measured before the elliptical
pattern thresholds.

There were two observers, JMF, one of the authors, and
HHH, a student, naı̈ve with respect to pattern vision
research. Stimulus duration was 240 ms for JMF and
90 ms for HHH. Both had 20/20 visual acuity with correc-
tion. Five or more threshold measurements were made for
each observer in each condition.

6.2. Results

We define the nominal area of a Gabor pattern as prxry

for the purpose of describing our results. Mean thresholds
as a function of the variable pattern area for the nine pat-
tern sets are shown in Fig. 3. The standard deviation of the
measurements averaged 1.30 dB and the standard error
Please cite this article in press as: Foley, J. M. et al., Detection of
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averaged 0.51 dB. Variability was relatively constant across
conditions. For each of the pattern sets, the contrast
threshold decreases rapidly with pattern size when the pat-
terns are small and more slowly as the patterns get larger.
The threshold decreases over our entire range of pattern
standard deviations (up to 12 wavelengths). The threshold
functions are generally concave upward. For cosine and
anti-cosine patterns, threshold decrease is less than propor-
tional to the increase in area. However, for small sine phase
patterns that are circular or orthogonal, the threshold
decreases by a larger factor than the area increases. For
this phase there is a size at which the threshold is inversely
proportional to the area of the pattern, but there is no evi-
dence for a range of sizes over which proportionality holds;
that would require that the threshold decrease by 20 dB
when the area increases by one log unit. For the largest pat-
terns the threshold decreases less than 1/4 log unit (5 dB)
for a log unit change in area in most cases. The smooth
curves correspond to a model that will be described below.

Circular patterns were found to usually have lower
thresholds than elliptical patterns of the same area. An
exception occurs for small narrow patterns (orthogonally
varying pattern set), which have slightly lower thresholds
than circular patterns of the same area. As will be shown
in the Models section, this is a consequence of the receptive
fields being slightly elongated in the collinear direction.

For small patterns, there is an interaction between shape
and size in the determination of thresholds and the direc-
tion of the effect depends on pattern phase. In sine phase,
thin patterns have higher thresholds than wide patterns
of the same area. In cosine and anti-cosine phase, the oppo-
site is true. These effects only occur when the orthogonally
varying pattern is very thin. These interactions do not
occur for large patterns (rx and ry P 0.25 deg). For large
patterns, tall thin patterns have essentially the same thresh-
olds as short wide patterns of the same area. Thus, we do
not confirm the main result of Polat and Tyler (1999), even
though our experiment was very similar to one of their two
experiments in which their 4 c/deg elliptical patterns had a
fixed standard deviation of 1 wavelength and a duration of
80 ms.

Although the contrast threshold is the usual measure of
detection performance, it is of interest to transform con-
trast thresholds into contrast energy thresholds. The con-
trast energy of a pattern is the integral of the square of
the contrast function over the pattern, and for vertical
Gabor patterns it is given by:

e ¼ C2

2
Tprxry 1� cosð2/Þ exp � 4p2r2

x

k2

� �� �
; ð3Þ

where T is duration in seconds and the other symbols are
the same as in Eq. (1). The derivation of Eq. (3) is given
in Appendix B.

As noted above, contrast energy thresholds are of inter-
est because, if the threshold depends on the integral of the
product of a receptive field sensitivity function times the
Gabor patterns of different sizes, ..., Vision Research (2006),



Fig. 3. Experiment 2. Contrast threshold as a function of the area of the Gabor pattern. The figures on the left are for JMF and those on the right for
HHH. Each panel shows data for one phase of the pattern re the center of the envelope. The collinear and orthogonal patterns had a fixed standard
deviation of 0.25 deg (1 wavelength) in the horizontal and vertical directions, respectively. The smooth curves correspond to a model fitted to the data that
is described below. The straight line in the upper left panel has a slope of �20 dB per log unit of area (threshold inversely proportional to area).
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contrast function, then contrast energy will be minimum
when the receptive field function has the same form as
the stimulus pattern and differs from it by at most a scaling
factor (Kersten, 1984; Watson et al., 1983). This is a corol-
lary of a well known result in communication theory on
matched filter design that states that the most efficient filter
or ideal detector for detecting a signal in white noise is one
that matches the signal in this sense. Absolute thresholds
are limited by internal noise in the visual system. The stim-
ulus with the lowest contrast energy threshold will match
Please cite this article in press as: Foley, J. M. et al., Detection of
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the receptive field of the detecting mechanism, only if a sin-
gle receptive field mediates detection. If a spatial array of
receptive fields is involved, as appears to be the case, and
receptive field responses are combined nonlinearly, the pat-
tern that produces the lowest energy threshold will not
match any one of the receptive fields contributing to detec-
tion. As will be shown below, if receptive fields are Gabor-
like and their responses are raised to an exponent greater
than one and then summed to determine the threshold, at
least one of the contributing fields has to have a size smaller
Gabor patterns of different sizes, ..., Vision Research (2006),
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than the single receptive field that would produce the min-
imum. So energy thresholds can directly provide informa-
tion about the size of receptive fields, but the relation is
not as simple as previous analyses have suggested.

Fig. 4 shows graphs of the contrast energy threshold in
deg2 sec as a function of the variable standard deviation of
the pattern. We plot threshold against standard deviation
here because it shows the standard deviations at which con-
trast energy is minimum. Most of the functions have a clear
minimum at a standard deviation of 0.12 deg or smaller.
Energy thresholds are highest for circular patterns, but that
is a consequence of plotting threshold vs. standard devia-
Fig. 4. Experiment 2. Contrast energy threshold as a function of the variable
curves correspond to a model that will be described below.

Please cite this article in press as: Foley, J. M. et al., Detection of
doi:10.1016/j.visres.2006.09.005
tion. For the same area, thresholds for circular patterns
are lowest, except for small orthogonal patterns, as seen
in Fig. 3. Here again one sees the same interaction between
phase and pattern shape that was apparent in the graphs of
contrast threshold vs. standard deviation, so this interac-
tion cannot be entirely explained by differences in the con-
trast energy of these small patterns. Cosine phase patterns
produced slightly lower thresholds than the other two
phases, particularly for JMF, but this may be a learning
effect since the cosine thresholds were measured last.

In Experiment 3 and the Models section we will show
that in many cases more than one receptive field is involved
standard deviation of patterns of different shape and phase. The smooth

Gabor patterns of different sizes, ..., Vision Research (2006),
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in detecting a pattern, but when this is the case, the mini-
mum of the contrast energy threshold function will occur
at a size which is at least as large as the smallest receptive
fields. So these energy threshold data indicate that Gabor
patterns are detected by receptive fields that are at least this
small.

7. Experiment 3: Size discrimination among circular Gabor

patterns

Researchers who use phenomenological reports in the
study of perceptual systems commonly make the assump-
tion that a single mechanism evokes a single percept that
varies in intensity, but not in quality, as the mechanism
response varies. This hypothesis can be traced back at least
to Johannes Mueller’s specific ‘‘energies’’ of nerves and was
proposed to apply to single neurons by Helmholtz (Warren
& Warren, 1968). This is consistent with the hypothesis
that a neuron response has only one information carrying
dimension, response rate, which is related to perceived
intensity or contrast, and that a single neuron evokes a sin-
gle percept except for intensity or contrast. This labeled
response hypothesis cannot be said to be established, but
it has been used by Watson and Robson (1981) to estimate
the tuning of detectors for spatial and temporal frequency.
It is of interest to ask whether observers can discriminate
patterns of different sizes when they are at threshold. A
positive result would be consistent with the involvement
0.50

0.60

0.70

0.80

0.90

Number of Steps in Size Difference

P
ro

p
o

rt
io

n
 C

o
rr

ec
t

JMF

S
ca

le
 V

al
u

e
S

ca
le

 V
al

u
e

0.50

0.60

0.70

0.80

0.90

1.00

0 2 4 6 8

0 2 4 6 8

Number of Steps in Size Difference

P
ro

p
o

rt
io

n
 C

o
rr

ec
t

HHH

Fig. 5. (Left) Proportion correct as a function of the number of steps in size
discrimination results. Since the origin on this scale is arbitrary, a number was
size.

Please cite this article in press as: Foley, J. M. et al., Detection of
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of more than one mechanism in the detection task. We
did an experiment to determine this.

7.1. Method

The patterns were the circular Gabor patterns used in
Experiment 2. After measuring their thresholds we set the
contrast of each to threshold, the contrast at which
responses were 82% correct. Two of these threshold pat-
terns of different sizes were presented on each temporal
forced-choice trial. The observer’s task was to indicate
which of the two patterns was larger. The patterns were
selected randomly and presented in random order with
the constraint that each pattern was presented the same
number of times and equally often in the first and second
interval. No feedback was provided. If the set of receptive
fields that mediates detection increases with the size of the
pattern and the responses of the receptive fields are labeled,
for example in position, then we would expect that patterns
of different sizes would look different at threshold and be
discriminated. Each pattern pair was presented at least 15
times to each observer.

7.2. Results

Fig. 5 presents two different analyses of the results for
two observers, JMF and HHH. On the left are graphs of
the proportion correct as a function of the number of size
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between patterns. (Right) Thurstone Case V scale of size based on size
added to each scale value so that a 0 scale value would correspond to a 0
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steps between the two stimuli. (We use size steps, because
all steps do not correspond to the same ratio of sizes.
The average step was 1.7 times the standard deviation or
2.9 times the area.) It is clear that both observers can dis-
criminate patterns of different sizes when they are at con-
trast threshold. Performance improves with the difference
between the pattern sizes and appears to reach an asymp-
tote between 70% and 90% correct. One would not expect
performance to ever be perfect in this task because at
threshold the patterns are not always seen. On the right
is a graph of the scale values of the stimuli determined by
fitting Thurstone’s Case V model to the data (Torgerson,
1958). The difference in scale values between two stimuli
indicates how well they are discriminated. The graph shows
that discrimination is best among the small patterns and
declines as the patterns get larger. For both observers scale
value increases as approximately the square-root of stan-
dard deviation, although HHH discriminates much better
than JMF, as indicated by the larger range of scale values.

7.3. Appearance at threshold

Observers were asked to attend to the appearance of the
stimuli at threshold and to describe their appearance. They
initially performed a free response task and then were
asked questions to clarify the appearance of the patterns.
The smallest patterns evoked percepts that were described
as one, two, or three short vertical stripes. Often only a sin-
gle stripe was seen and it was more often dark than bright.
Larger patterns evoked percepts of grating patches. These
were much smaller than the stimuli, but usually several
adjacent stripes were seen. The overall shape varied from
trial to trial and was sometimes irregular. A common shape
was ellipse-like with the long axis horizontal. The percept
was often not centered on the fixation point. The patch
was usually one continuous region of roughly uniform per-
ceived contrast except at the edges where contrast faded.
These reports are consistent with the hypothesis that detec-
tion of the larger patterns is mediated by an array of recep-
tive fields each of which evokes a local percept. The fact
that the percepts are almost always continuous patches
suggests that interpolation in the visual system may con-
tribute to filling in the percept.

8. Experiment 4: Effect on thresholds of mixing pattern sizes

within blocks of trials

In many experiments it makes a difference whether or
not an observer knows what stimulus will be presented
on a given trial. Thresholds are lower when an observer
has this knowledge. This result is usually explained by
models in which the observer can take advantage of this
knowledge by basing the decision only on signals from
mechanisms that are sensitive to the known stimulus. See,
for example, Foley and Schwarz (1998). The model
assumes that, if the observer combines signals from mech-
anisms that are insensitive to the stimulus and signals from
Please cite this article in press as: Foley, J. M. et al., Detection of
doi:10.1016/j.visres.2006.09.005
sensitive mechanisms that the variance of the decision var-
iable will be greater than when only signals from sensitive
mechanisms are combined, and consequently a higher con-
trast will be required at threshold.

The results of Experiment 3 suggest that there is a spa-
tial array of mechanisms in the region of the retina where
the patterns are imaged. The subset of mechanisms that
are sensitive to a pattern increases with pattern size. If
the observer bases his or her decision on the responses of
increasing numbers of mechanisms as pattern size increas-
es, and the variance of the decision variable increases with
the number of mechanism responses that are combined,
then we would expect that thresholds would be higher in
conditions in which different sizes are randomly intermixed
within a block of trials. Specific predictions depend on the
observer’s strategy in the mixed condition. If the observer
always combines responses from the set of mechanisms
sensitive to the larger pattern, then the threshold for the
smaller pattern will increase. If the observer combines
responses from the set of mechanisms sensitive to the
smaller pattern, the threshold for the larger pattern will
increase. With any other strategy, both thresholds will
increase.

We did an experiment to determine the effect of present-
ing different sizes in random order within a single block of
trials. The patterns were circular Gabor patterns with stan-
dard deviations of 0.063 and 1 deg (ratio of areas: 1:255).
The method was the same as in Experiment 2 except that
in each condition there were two Quest sequences that were
interleaved randomly. The pattern size in the two sequenc-
es was either the same (blocked sizes) or different (mixed
sizes). There were two observers JMF, who participated
in all the experiments and VHN, who participated only
in this one. For JMF the patterns were in cosine phase with
a duration of 240 ms and there were 8 measurements in
each condition; for VHN patterns were sine phase with a
duration of 90 ms and there were 12 measurements in each
condition. The results are given in Table 2. There are very
small and inconsistent differences between the Blocked and
Mixed conditions, none of which approach statistical
significance. Meese, Hess, and Williams (2005, Expt. 2)
reported a similar study in which there were four pattern
sizes presented in either blocked or mixed sequences.
They found essentially a very small effect in favor of the
blocked trials (<.25 dB) for two subjects and no effect for
the third.

9. Models

We examined a large number of models that are similar,
but differ in some respects. The models are elaborations of
the model proposed by Foley (1994) and Foley and Chen
(1999). According to these models, detection is mediated
by one or more mechanisms that are characterized by a
receptive field that sums contrast linearly followed by a
nonlinear transformation from this sum to the response
of the mechanism. Here the original model is elaborated
Gabor patterns of different sizes, ..., Vision Research (2006),



Table 2
Experiment 4: Contrast thresholds for two sizes of Gabor patterns in blocked and mixed experimental designs

Observer Blocked sizes – Pattern
SD (deg)

Mixed sizes – Pattern SD
(deg)

Blocked–Mixed –
Pattern SD (deg)

Probability of t under
null hypothesis

0.0625 1 0.0625 1 0.0625 1 0.0625 1

JMF �27.75 �48.25 �28.00 �47.63 0.25 �0.63 >0.25 >0.25
VHN �31.33 �48.50 �30.50 �48.83 �0.83 0.33 >0.10 >0.25
Mean �29.54 �48.38 �29.25 �48.23 �0.29 �0.15
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by specifying the form of the receptive field sensitivity func-
tions (Gabor functions) and estimating their parameters.

Two-dimensional Gabor functions have often been used
to represent the spatial receptive fields of visual neurons in
V1 and V2 (Marcelja, 1980; Ringach, 2002). When the sen-
sitivity modulation is in the horizontal direction and the
envelope is symmetrical about the x and y axes this func-
tion is given by the following equation:

sðx; yÞ ¼ S exp �ðx� xfÞ2

2r2
xf

� ðy � yfÞ
2

2r2
yf

" #
sinð2pffðx

� xfÞ þ /fÞ; ð4Þ

where S is a sensitivity parameter, xf, yf, are the coordi-
nates of the center of the receptive field, rxf and ryf are
the standard deviations of the field in the horizontal and
vertical directions, respectively, ff is the spatial frequency
of the receptive field, and /f is the phase of the sinewave
re the center of the receptive field. To account for our data
we found that we needed a spatial array of receptive fields
of this form.

According to the model, detection is mediated by one
or more mechanisms that are characterized by a receptive
field that sums contrast linearly followed by a nonlinear
transformation to a response. The mechanism responses
are summed to compute a detection variable that deter-
mines the threshold. Here we are concerned only with
the absolute threshold of patterns in the absence of con-
text patterns. We assume that near absolute threshold
divisive inhibition is sufficiently small that it can be
ignored.

In this study our patterns are vertical Gabor patterns.
We assume that their detection is mediated by linear verti-
cal Gabor receptive fields. Foley and Chen (1999) showed
that receptive fields having four phases re the fixation point
(0, 90, 180, and 270 deg) are sufficient to account for phase
effects in masking. We assume the same four phase types.

We define the excitation Eij of specific receptive field j

produced by specific pattern i as:

Eij ¼
Z 1

�1
dy
Z 1

�1
dxciðx; yÞsjðx; yÞ: ð5Þ

In Appendix C we derive an equation for Eij. The expres-
sion for Eij may be expressed as:

Eij ¼ CiSjF ij; ð6Þ
where Ci is the contrast parameter of the pattern, Sj, is the
sensitivity parameter of the receptive field (S in Eq. (4)),
Please cite this article in press as: Foley, J. M. et al., Detection of
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and Fij is a factor that depends on both the pattern and
the receptive field. (See Appendix C, Eq. (C17), (C18).)
Based on our measurements and others in the literature,
we assume that the sensitivity parameter of the receptive
fields decreases as an exponential function of the eccentric-
ity, dj, thus:

Sj ¼ S0adj ; ð7Þ
where S0 is the sensitivity factor for a receptive field cen-
tered on the pattern and a = e�k is an eccentricity parame-
ter, the factor (a < 1) by which sensitivity decreases for
each wavelength increase in eccentricity. If we define the
sensitivity of receptive field j to pattern i, sij, as:

sij ¼ S0adjF ij; then : Eij ¼ Cisij: ð8Þ
We assume that negative excitation does not produce a re-
sponse, and therefore we define effective sensitivity, s 0ij, and
effective excitation, E0ij, as:

s0ij ¼ maxð0; sijÞ and E0ij ¼ Cis0ij: ð9Þ

The response of a mechanism when contrast is near thresh-
old is:

Rj ¼ ðE0ijÞ
m
: ð10Þ

The detection variable for the pattern i, Di, is the sum of
the responses over the mechanisms:

Di ¼
Xn

j¼1

Rj ¼
Xn

j¼1

ðCis0ijÞ
m ¼ Cm

i

Xn

j¼1

ðs0ijÞ
m

" #
: ð11Þ

At threshold, Di = 1 and the contrast threshold Ct is:

Ct ¼
Xn

j¼1

ðs0ijÞ
m

 !�1=m

: ð12Þ

Given this general model, we fitted a large number of spe-
cific versions of it to our data.

It is important to distinguish among the several different
‘‘sensitivities’’ referred to in this paper. An observer’s sen-
sitivity to a stimulus is the reciprocal of the observer’s
threshold for that stimulus. In the model we distinguish
between the sensitivity function of a receptive field s(x,y),
the sensitivity parameter of that receptive field, S, and
the sensitivity of a receptive field j to a particular pattern
i, sij, which is the reciprocal of the threshold of that recep-
tive field to the pattern, and s0ij, which is the effective sensi-
tivity of j to i.
Gabor patterns of different sizes, ..., Vision Research (2006),
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When we sum responses over receptive fields to form a
detection variable, we assume that the information about
the individual receptive field responses and their position
labels is not lost. If it were lost, observers would be unable
to discriminate size at absolute threshold. These responses
determine the percept and are the basis for the size discrim-
ination shown in Experiment 3.

Each version of the model assumes a regular array of
one or more vertical Gabor receptive fields. The center field
is centered on the fixation point and the other fields are
separated from it horizontally at intervals of 2, 1, and 0.5
wavelengths. This implies that for the intervals of 2 and 1
wavelengths, only the fields having the same phase as the
pattern will be excited and, for the interval of 0.5 wave-
lengths, only the fields in phase and half a wavelength
out of phase will be excited. All the receptive fields in each
array were tuned to the same spatial frequency and had the
same standard deviations. They differed in position, and
their sensitivity, S, decreased as an exponential function
of eccentricity in wavelengths. The sensitivity parameter
of the center receptive field, S0, the standard deviations
of the receptive fields, rxf and ryf, and the response expo-
nent, m were free parameters in most fits. In some fits the
center frequency, ff, the phase, /f, or the eccentricity factor,
a, were free parameters.

When the receptive field center frequency and phase
were free parameters, estimates of both parameters varied,
although 5/6 of the spatial frequency estimates were
between 3.97 and 4.01, close to the spatial frequency of
the patterns (4 c/deg). Goodness of fit was little improved
by allowing these parameters to be free and in some cases
there were several fits with different parameters that were
about equally good. Consequently, we fixed the spatial fre-
quency parameter to 4 c/deg and the phases to be 0, 90, 180
and 270 deg. Likewise, when the eccentricity parameter, a,
was a free variable, estimates varied with data set. Since we
have an independent estimate of this value from Experi-
ment 1, we fixed a at that value (a = 0.947). When we
restricted the number of parameters there was usually
one clearly best fit. The principal parameters that we
explored were the size and shape of the receptive fields,
their number and layout, and the exponent to which recep-
tive field excitation was raised to give the response of the
mechanism. For each array of receptive fields we compared
models with circular and elliptical receptive fields. For
some of our models these best fits are very good with little
systematic error. Thus, relatively simple models describe
performance well. They are undoubtedly simpler than the
visual system.

We started with a model having a single receptive field
centered on the pattern. We compared this with models
in which the receptive fields were laid out in square lattices
containing 25, 49, and 169 receptive fields. For each of these
arrays the outermost receptive field centers lay on a square 6
wavelengths on a side centered on the pattern. The spacing
between receptive field centers was 2, 1, and 0.5 wave-
lengths, respectively. We also fitted a model with a
Please cite this article in press as: Foley, J. M. et al., Detection of
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hexagonal array of receptive field centers. This had 1 wave-
length spacing horizontally and 1.15 wavelength spacing
vertically and the outermost receptive field centers lay on
a hexagon 6 wavelengths wide and 6.92 wavelengths high.

The data allow us (i) to test the hypothesis that the pat-
terns are detected by receptive fields whose sensitivity
functions are two-dimensional Gabor functions, (ii) to
estimate the parameters of those receptive fields, and (iii)
to examine the effects of different arrays of receptive fields.
Each of the six data sets from one observer and one pat-
tern phase was fitted separately. Data for all three pattern
sets, circular, collinearly varying, and orthogonally vary-
ing, were fitted together using a single array of receptive
fields. The criterion of least root mean squared error
(RMSE) was used to determine the best fit. Our fitting
routine first performed an array search over a large array
of possible parameter values, decreasing the ranges of the
values on each pass until a criterion of failure to improve
was met. It then took the best values from array search as
input to a minimization routine based on the MATLAB
function fminsearch. To compare nested models we used
F-tests (Khuri & Cornell, 1987) to determine if the
improvement in goodness of fit obtained by allowing the
receptive field to be elliptical or allowing the spatial sum-
mation parameter, m, to vary over data sets was statisti-
cally significant. Only nested models can be compared
by this test. Table 3 summarizes some of the models and
gives the parameters of best fit.

9.1. Single receptive field models

We first fitted a single Gabor receptive field (RF) model
to each of the six data sets. We varied the sensitivity of this
field and its standard deviations to find the best fit. The
RMSE of the best circular Gabor model was 1.86 dB and
that of the best elliptical Gabor model was 1.78 dB.
Although the fit is not extremely bad, in every case there
is the same systematic error. Predicted thresholds are too
high for small and large patterns and too low for middle-
sized patterns, and the predicted function is more curved
than the empirical one.

We then asked if a single receptive field model would fit
the data for the small patterns. We restricted the fit to pat-
terns with a variable standard deviation less than or equal
to 0.125 deg (0.5 wavelength). In this case the fits were sub-
stantially better with average RMSE equal 1.30 for the cir-
cular RF and 1.04 for the elliptical RF. The RF’s providing
the best fit are very small with average r = 0.10 deg for the
circular RF and rx = 0.09 deg and ry = 0.11 deg for the
elliptical RF. However, this model is clearly inadequate
for large patterns; it predicts thresholds that are far too
high. For two of the six data sets (JMF, cosine and anti-co-
sine phase), an elliptical receptive field about 1.5 times
longer in the collinear direction than the orthogonal direc-
tion gave significantly better fit than the circular model. In
the other four cases the elliptical model was not significant-
ly better than the circular one.
Gabor patterns of different sizes, ..., Vision Research (2006),



Table 3
Comparison of Model Fits

Model Single RF Single RF Square 25a Square 49 Square 169 Square 169

Small patterns m = 2.9 m = 2.9 m = 2.9 m = 2.49 m = 3.08

Number RF’s 1 1 25 49 169 169
Layout Square Square Square Square
Spacing of RF’s (wl.) 2 1 0.5 0.5
Size of array (wl.) 0 0 6 · 6 6 · 6 6 · 6 6 · 6

Parameter values and RMSE HHH only JMF only
Circular RF Model

S0 2210 3405 3147 3282 3646 5838 2144
r (deg) 0.157 0.101 0.102 0.089 0.067 0.051 0.077
m 1 1 2.9 2.9 2.9 2.49 3.08
RMSE 1.86 1.30 1.14 1.05 0.99 0.87 1.04

Elliptical RF Model
S0 2232 3449 3160 3303 3695 6070 2085
rx (deg) 0.136 0.092 0.093 0.082 0.060 0.048 0.065
ry(deg) 0.186 0.111 0.112 0.097 0.075 0.053 0.095
m 1 1 2.9 2.9 2.9 2.49 3.08
Ratio: ry/rx 1.37 1.20 1.20 1.19 1.25 1.09 1.47
RMSE 1.78 1.04 1.04 0.95 0.89 0.81 0.89

In this table the subscript f is omitted because all standard deviations are for receptive fields.
a In this model alternate rows and columns of RF centers were offset by one wavelength. Within each row and column centers were separated by 2

wavelengths.

J.M. Foley et al. / Vision Research xxx (2006) xxx–xxx 13

ARTICLE IN PRESS
9.2. Multiple receptive field models

At this point we could have looked for an alternative to
the Gabor sensitivity function. However, the facts that the
Gabor model fits thresholds for small patterns very well
and the percept of a Gabor pattern at threshold increases
in perceived size with the size of the pattern suggest that
more than one receptive field mediates the detection of
large patterns. Consequently, we examined models in
which an array of mechanisms with Gabor receptive fields
mediates detection. We determined the value of the nonlin-
ear response parameter, m, by making it a free parameter
(in addition to the sensitivity parameter and standard devi-
ations) and then taking the mean over all data sets
(m = 2.9) or the three data sets for each observer
(m = 2.49, 3.08). We then fixed m at these values and used
our model fitting routine to determine the best values of the
other parameters. The smooth curves in Figs. 2 and 3 cor-
respond to the predictions of the best such model that we
found. This model is described in the two rightmost col-
umns of Table 2. This model has 169 receptive fields
arranged in a square array with half wavelength spacing
in the horizontal and vertical directions. The best fields
are elliptical with ry greater than rx. Mean RMSE is
0.89 dB for JMF and 0.81 for HHH. Fig. 3 shows that
the model fits well with little systematic error. Thus, an
array of receptive fields all of the same size and shape
can mediate detection of patterns with a wide range of sizes
and shapes.

We fitted several other models that differed in the num-
ber of receptive fields and their layout. Table 3 summarizes
a few of these models. The number of receptive fields varied
from 25 to 169. Most were square arrays, but one was
Please cite this article in press as: Foley, J. M. et al., Detection of
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hexagonal. All of these models fit the data well, but good-
ness of fit increases slowly with the density of the receptive
fields. For small arrays the best receptive field standard
deviations are about 0.1 deg, but they become progressively
smaller as the density of receptive fields increases, averag-
ing about 0.065 deg when the spacing is half a wavelength.
Since the differences in RMSE among these models are not
great, we are left with some uncertainty about the tradeoff
between receptive field size and density. However, it is clear
that the best receptive fields have standard deviations in the
range of 0.05–0.1 deg (0.2–0.4 wavelengths).

For every data set and every model, an elliptic receptive
field fitted the data better than the circular field. The best
receptive field was almost always longer in the vertical (col-
linear) direction. However, for 4 out of 6 data sets the
improvement in fit of the elliptic model over the circular
model was not statistically significant. The exceptions were
JMF cosine and anti-cosine. For the best model (smooth
curves in Figs. 2 and 3), mean ry/rx was 1.47 for JMF
and 1.09 for HHH. We conclude that at least in some cases
the best receptive field shape is elliptical with the long axis
collinear with the stripes.

When the response parameter, m, is free to vary, best
values are found between 2.3 and 4.2 for the different data
sets. The average value across data sets and observers is
about 2.9 and it varies very little across models. The good-
ness of fit is not very sensitive to the value of m. This is
shown by the fact that allowing m to be a free parameter
that varies with data set almost never produces a significant
improvement in fit over the case where m = 2.9. So we can-
not be confident about the values of m. However, when we
fitted the 169 receptive field model with the exponent con-
strained to be 1, for every data set the RMSE was much
Gabor patterns of different sizes, ..., Vision Research (2006),
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higher and this difference is statistically significant with
P < 0.001. So the data are not consistent with linear sum-
mation across receptive fields. Our values for m are lower
than those found in some studies, but they are consistent
with the values determined from psychometric functions
by Foley and Legge (1981), including those of one of our
observers, JMF, and they are also consistent with values
estimated from several different models of the ModelFest
data (Watson & Ahumada, 2005). Our hexagonal array
model had 37 receptive fields and produced a RMSE
between the RMSE’s for square arrays of 25 and 49 recep-
tive fields. Thus, the data do not appear to discriminate
between square and hexagonal arrays.

It is of interest to examine the effects of the different
parts of the receptive field array on the system threshold.
We have done that by computing the contrast thresholds
and contrast energy thresholds separately for the center
receptive field and those of successive squares of receptive
fields going out from the center. Graphs showing the
thresholds for these subsets of receptive fields and for the
entire set are shown in Fig. 6.

The top graphs are for a square array of 49 receptive
fields with 1 wavelength spacing. They show that patterns
with standard deviations less than 0.1 deg are detected by
a single mechanism and that the minimum in the energy
Fig. 6. (Top) 49 receptive fields, spaced 1 wavelength center to center. Thresho
fields going out from the center. Parameters are the best fitting values for JMF
graphs show that for this model the center receptive field alone mediates detecti
(Bottom) 169 receptive fields, spaced at 0.5 wavelengths. Parameters are the
m = 2.9. In this model the first square contributes to the detection of the mo
deviation larger than that of the smallest receptive field.

Please cite this article in press as: Foley, J. M. et al., Detection of
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threshold function occurs at this standard deviation. The
bottom graphs are for an array of 169 receptive fields with
0.5 wavelength spacing. In this case for patterns with stan-
dard deviations greater than 0.05 deg, both the center
mechanism and the innermost square of mechanisms con-
tribute to detection. The minimum in the energy function
is between the minima for the center receptive field and
the minimum for the inner square alone. This illustrates
why it is that, when the array is dense, the receptive fields
estimated from the model fit must be smaller than the pat-
tern at the minimum of the energy function.

9.3. Explanation of the shape by size interaction

It is apparent in Figs. 3 and 4 that for small patterns
there is an interaction between shape and size that depends
on phase. These interactions are completely accounted for
by the model. To understand these interactions, consider
what happens when a narrow vertical Gabor pattern
becomes increasingly narrow. If the pattern is in sine phase,
its peak amplitude and contrast energy decrease rapidly.
On the other hand, for a pattern of constant width that
becomes increasingly short, the peak amplitude remains
constant and contrast energy decreases slowly. However,
this stimulus difference is not the entire explanation, since
ld for the center receptive field alone and each of the squares of receptive
circular RF, sine phase, S0 = 2072, rx = 0.094, ry = 0.094, m = 2.9. The

on of patterns with standard deviations less than 0.1 deg (0.4 wavelengths).
best fitting values for JMF sine phase, S0 = 70, rx = 0.078, ry = 0.078,
st visible pattern and the minimum in the function occurs at a standard

Gabor patterns of different sizes, ..., Vision Research (2006),
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the energy thresholds also show the interaction. As the two
patterns get smaller, the sensitivity of the regions of the sine
phase receptive field that underlie the pattern also change
in a similar way resulting in a further increase in the thresh-
old difference. In addition, the elliptical shape of the recep-
tive fields affects the sensitivity of the regions underlying
the two patterns and influences the magnitude of the inter-
action. When the pattern and the receptive field are of
cosine or anti-cosine phase, the effects are opposite to those
for sine phase. As the thin cosine or anti-cosine pattern gets
thinner, its peak amplitude does not change at all and its
contrast energy changes slowly, more slowly than that of
a pattern of the same area that is getting shorter. Likewise,
the same relative changes occur in the sensitivity of the
regions of the receptive field underlying these patterns.

9.4. Other models

We have shown that a model in which the receptive field
sensitivity is a two-dimensional Gabor function of space
and there is an array of receptive fields, identical except
for an exponential decrease in sensitivity with eccentricity
and arranged in a square lattice, gives a good account of
these data. The model assumes that the spatial frequency
and spatial phase of the receptive fields matches that of
the stimuli. However, it is unrealistic to expect that there
is a receptive field matching every spatial frequency and
phase. We explored the effect of a mismatch by making fits
with frequency constrained to values between 3.5 and 4.5 c/
deg in the 169 receptive field model. Within this range a fre-
quency mismatch had very little effect on goodness of fit.

We further explored the effects of mismatches using a
program that simulated the 169 receptive field model.
The sensitivity of a frequency mismatched receptive field
depends on its size, shape, and sensitivity parameter as well
as its frequency and phase. If its standard deviation is
inversely proportional to its spatial frequency and its sensi-
tivity parameter is the same as the best field, small mis-
matches in frequency or phase do not affect the form of
the TvS function for individual receptive fields. For pat-
terns with standard deviations less than 0.1 deg, effects of
small mismatches in frequency are negligibly small. For
larger patterns receptive fields tuned to higher frequencies
have higher thresholds. Receptive fields tuned to lower fre-
quencies may have lower thresholds due to their larger size,
so it is possible that patterns of different sizes could be
detected by receptive fields tuned to different frequencies.
The effect of a phase mismatch is to increase thresholds
for all pattern sizes. A mismatch of 0.3 radians increases
thresholds by about 1 dB. So our results are insufficient
to determine the spatial frequency or phase of the detecting
receptive fields, except that they cannot be greatly different
from those of the patterns. Further, we cannot rule out the
possibility that more than one type of receptive field medi-
ates performance for a single pattern. We have simulated
cases in which there are three types of receptive fields that
differ in spatial frequency and/or phase. If they are all sim-
Please cite this article in press as: Foley, J. M. et al., Detection of
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ilar to the pattern, they will be sensitive to it and have the
effect of decreasing the threshold below that for a single
mechanism type. The TvS function for a set of receptive
fields that are similar to the matched receptive field will
be similar in form to that of the single matched field.

The model presented above is a deterministic model. It
does not account for the fact that responses to a constant
stimulus vary randomly from trial to trial or take into
account the noise in the visual system that manifests itself
in many experiments. As such it belongs to a large set of
deterministic models that describe some phenomena well,
but not all.

There are a large number of multiple mechanism, inter-
nal-noise-limited detection models that vary in the proba-
bility distributions of the noise and the nature of the
detection process. Graham (1989) analyzes many of these
models. One of these is Quick’s high threshold pooling
model (Quick, 1974), which assumes that each mechanism
either detects or does not detect the pattern on every trial.
Although the model is probabilistic, the equations can be
interpreted deterministically to predict thresholds without
making all the assumptions. The rule for combining
responses across mechanisms is very similar to Eq. (11),
except that Quick raises the sum of responses to the 1/m
power. In our case this power has no effect since the sum
is equal to 1 at threshold. Without the 1/m power, the mod-
el implies that the excitations of the receptive fields are
raised to a power and then summed linearly to yield the
detection variable. Quick’s model describes a lot of results
fairly well, but fails in critical tests (Graham, 1989). We
note the formal similarity of our predictions to those made
by the Quick model. Although we sum the nonlinear mech-
anism responses linearly, the data do not require this.
Since, at threshold, the left side of Eq. (11) is 1, the right
side could be raised to any power and it would still equal
1. Thus, the Quick model can account for our threshold
data. However, it is not the only model that can do this.

There are many models that assume that the mecha-
nisms can produce a range of response values. Some make
optimal use of the signals available; others do not. To date
there is no clear best model of pattern detection. The most
commonly assumed probability distributions are Gaussian
and there is evidence that variance increases with mean
response (Kontsevich, Chen, & Tyler, 2002). Decision rules
are usually based either on sums of responses across mech-
anisms or maxima of responses across mechanisms. Models
differ in whether only responses of mechanisms that are
sensitive to the stimulus are taken into account or the deci-
sion is based on responses of a larger set of mechanisms
possibly as a consequence of objective and/or subjective
uncertainty as to which mechanisms are sensitive to the
particular stimulus being presented.

According to signal detection theory (Green & Swets,
1966) the threshold for any stimulus, i, depends on a deci-
sion variable that varies randomly from trial to trial. In the
absolute threshold case, the threshold depends on the ratio,
d 0, of the mean response, to the standard deviation of the
Gabor patterns of different sizes, ..., Vision Research (2006),
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responses, ri. To create a signal detection model of our
data, we assume that the mean response equals Di. Then:

d 0i ¼
Di

ri
¼ 1

ri
Cm

i

Xn

j¼1

ðs0ijÞ
m

" # !
: ð13Þ

At threshold we assume that d 0i ¼ 1, which implies that:

ri ¼ Cm
i

Xn

j¼1

ðs0ijÞ
m

" #
: ð14Þ

Thus, in this model there is a trade-off between the value of
m and the function ri that relates the standard deviation of
the decision variable to the parameters of the pattern. The
deterministic model is equivalent to the signal detection
model with m equal to a fixed value (2.49 or 3.08 for our
two observers) and ri equal to 1. Any other value of m re-
quires that ri vary with the size and shape of the pattern. In
Fig. 7, we plot the function r(Ai) for the case of JMF and
circular patterns. It can be seen that when m < 3.08, r(Ai)
increases with area and asymptotes for areas greater than
1 deg2. If m > 3.08 standard deviation must decrease as
area increases. A decrease does not seem plausible.

So, although it is likely that the responses are perturbed
by noise, our data do not determine whether this noise is
constant over different sizes of patterns or increases with
the size of the pattern. What might cause the standard devi-
ation to vary with the size of the pattern? One hypothesis is
that, since the trials are blocked by pattern size, the observ-
er takes advantage of that information and sums responses
over only a subset of the array of receptive fields, a subset
of fields that are most sensitive to the pattern. If the noise is
independent across fields, the variance of this sum will be
the sum of the variances of the summed responses and will
increase with the number of fields that contribute to this
Fig. 7. Signal detection model. Trade-off between the value of m and the
function relating the standard deviation of the decision variable to the area
of the pattern (based on the data of JMF, sine phase, circular patterns).
The value of m estimated from the deterministic model is 3.08. This
corresponds to the signal detection model with decision variable standard
deviation constant and equal to 1.

Please cite this article in press as: Foley, J. M. et al., Detection of
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sum. If this were the case, we would expect that if patterns
of different sizes were presented in random order within
blocks of trials, performance would be worse. An alterna-
tive model in which the observer’s decision is based on
the maximum response taken over a set of mechanisms that
varies with pattern size, makes this same prediction (Tyler
& Chen, 2000).

Experiment 4 tested this hypothesis and rejected it. This
result implies that either the number of mechanisms whose
responses are combined does not vary with stimulus size, or
the standard deviation of the decision variable does not
vary with the number of mechanisms whose responses are
combined, or both. Since there is evidence that in other
conditions the number of mechanisms whose responses
are combined varies, the latter seems to be the more likely.

10. Discussion

Although the general form of our threshold vs. size
functions is similar to others in the literature, ours are con-
sistent in showing that the general form of the relation
between contrast threshold and size is concave up on
log–log coordinates. Although segments of these functions
can be fitted with straight lines with a wide range of nega-
tive slopes, we think that the smooth curves predicted by
the single Gabor receptive field model provide the best
account of thresholds for small patterns. The hypothesis
that templates are available to match each pattern or a
range of patterns is not excluded by the data, but it requires
that this set of templates has the same sensitivity to each
pattern as our single receptive field. This is not a parsimo-
nious model. For large patterns, it is clear that some kind
of nonlinear summation over RF excitations is operating.
We have described one model of this summation, but we
cannot exclude other models.

Our data are well fitted by a model in which there is an
array of receptive fields whose sensitivity functions are two-
dimensional Gabor functions. The fields are identical,
except for a sensitivity parameter that decreases exponen-
tially with eccentricity. These fields have standard devia-
tions of 0.2–0.4 wavelengths at 4 c/deg, and the standard
deviation is on average 30% longer in the direction collin-
ear to the stripes. Fig. 8 shows cross-sections of the sensi-
tivity functions for receptive fields of these sizes. Since
goodness of fit varies little between these two models, we
are left with this range of possible receptive field densities
and associated receptive field sizes.

When the standard deviation is reduced from 0.4 to 0.2
wavelengths, the two outer lobes almost disappear, greatly
increasing the bandwidth. A standard deviation of 0.2
wavelengths is very small. It is almost a small blob detector
and has a very broad bandwidth. This is inconsistent with
other results and may indicate that the receptive field spac-
ing is more than 1/2 wavelength. On the other hand, the
ModelFest stimulus with the lowest contrast energy thresh-
old was a small Gaussian blob (Watson & Ahumada,
2005).
Gabor patterns of different sizes, ..., Vision Research (2006),
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Fig. 8. Cross-sections of the sensitivity functions of sine and cosine receptive fields for two values of the standard deviation. These two standard deviations
correspond approximately to the limits of the range consistent with our data and models. The standard deviation increases with the sparseness of the
receptive field array.
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Table 4 compares our estimates of size and shape with
those of other studies that have used Gabor patterns as
stimuli. All of them used detection tasks except Watson
and Turano (1995), who used a direction discrimination
task. These estimates vary greatly and the explanation
for this variation is not clear. There were differences in
the way that the estimates were made, and this likely
accounts for some of the variance. We would expect
bandwidth to decrease as frequency increases on the basis
of evidence that the mean bandwidth of single striate cor-
tex units decreases as their best frequency increases
(DeValois, Albrecht, & Thorell, 1982). None of the other
studies took account of the likely possibility that the
threshold depends on more than one receptive field, a
Table 4
Estimates of the size and shape of receptive fields from experiments using Ga

Spatial
frequency

Ratio
ry/rx

Standard
deviation

Fu
at

rx Wx

c/deg Cycles Cy
2.3

Watson et al. (1983) 8.0 1 1.0608 2.4
Anderson and Burr (1991) 0.1 1 0.0600 0.1

10.0 1 0.2600 0.6
Watson and Turano (1995) 3.0 1 0.5266 1.2
Polat and Tyler (1999) 4.0 6.5 Coll. 2.7660 6.5

4.0 Orth. 0.4256 1.0
Foley et al. (2006) (present paper) 4.0 1.2 Max. 0.4000 0.9

4.0 Min. 0.2000 0.4
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factor that we have shown to reduce the estimated size
of the fields.

It is of interest to compare our model receptive fields
with measurements of receptive fields in animals. Single
unit studies of macaque striate cells showed them to have
a wide range of bandwidths from about 0.4 to more than
2.6 octaves and averaging about 1.4 octaves (DeValois
et al., 1982). Ringach (2002) used a reverse correlation
method to determine the two-dimensional sensitivity func-
tions of V1 receptive fields. He found that the receptive
fields are well described by Gabor functions, as had been
proposed earlier by Marcelja (1980). Ringach found that
there was considerable variation in size and bandwidth,
but most of the cells had standard deviations of less than
bor patterns

ll-width
0.5 max

Full-width
at 1/e max

Full equivalent
width

Full bandwidth
at 0.5 max

Full bandwidth
at 0.5 max

2a Q Wf

cles Cycles Cycles c/deg Octaves
5 rx 2.828 rx 2.507 rx .8825*f/Wx

93 3.000 2.659 2.832 0.516
41 0.170 0.150 0.626 Uncomputable
11 0.735 0.652 14.444 2.632
38 1.489 1.320 2.139 1.076
00 7.822 6.934 – –
00 1.204 1.067 3.529 1.367
40 1.131 1.003 3.755 1.470
70 0.566 0.501 7.511 4.986
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0.5 wavelength. Many were approximately circular with a
tendency to be slightly elliptical with the longer axis collin-
ear with the stripes. Mean rx = 0.33 wavelengths; mean
ry = 0.44 wavelengths. Cells were tuned to the whole range
of phases, with phases near 0, 90, 180, and 270 deg being
more frequent than intermediate phases. This phase differ-
ence had not been found in earlier studies. There was also a
tendency for receptive fields tuned to sine phase to be larger
than those tuned to other phases. Ringach points out that
these receptive fields are more varied and on average small-
er than those predicted by models of efficient natural image
coding. Similar receptive fields have been reported in area
17 of the cat (Jones & Palmer, 1987).

We conclude that the detection of our 4 c/deg vertical
Gabor patterns is well described by a deterministic model
in which the patterns stimulate an array of closely spaced
linear receptive fields whose sensitivity functions are two-
dimensional Gabor functions. The receptive fields have
standard deviations of 0.2–0.4 wavelengths and are 10–
50% longer in the direction collinear to the stripes and their
sensitivity decreases as an exponential function of eccen-
tricity. Mechanism responses are power functions of the
excitation of the receptive fields with powers of about 2.5
and 3.1 for our two observers. Detection of all except the
smallest patterns is mediated by a sum of responses over
multiple receptive fields. The data are equally consistent
with an internal-noise-limited model. The function relating
the standard deviation of the decision variable trades-off
with the value of m, and our data are insufficient to sepa-
rate these two factors. However, the fact that mixing sizes
in a stimulus sequence does not increase thresholds sug-
gests that the limiting noise does not depend on the expect-
ed size of the stimulus.
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Appendix A. Symbols used in the article

x,y coordinates of a point re the fixation point speci-
fied in deg of visual angle

Stimulus pattern
c(x,y) contrast of the pattern as a function of x and y

xs,ys horizontal and vertical coordinates of the pattern
center

rxs,rys standard deviations of the stimulus pattern in the
horizontal and vertical directions

fs spatial frequency of the underlying sinewave (c/
deg)

/s spatial phase of the underlying sinewave re the ori-
gin (rad)

C contrast parameter of the pattern
Please cite this article in press as: Foley, J. M. et al., Detection of
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Ct value of the contrast parameter of the pattern at
threshold (target contrast threshold)

Receptive field

s(x,y) sensitivity of the receptive field as a function of x
and y

xf,yf horizontal and vertical coordinates of the receptive
field center

rxf,ryf standard deviations of the receptive field in the
horizontal and vertical directions

ff spatial frequency of the underlying sinewave
/f spatial phase of the underlying sinewave re the ori-

gin
S sensitivity parameter of the receptive field

Model

S0 sensitivity parameter of the receptive field centered
on the stimulus

k parameter of threshold vs. eccentricity function
a factor by which sensitivity parameter decreases for

each wavelength of eccentricity
dj distance from fixation point to center of receptive

field j in wavelengths
Fij symbol for the expression after S in Appendix C,

Eq. (C17) for pattern i and receptive field, j

Eij excitation of a receptive field j by pattern i

E0ij effective excitation of receptive field j by pattern i

sij sensitivity of receptive field j to pattern i
s0ij effective sensitivity of receptive field j to pattern i

Rj response of mechanism j

Di detection variable
m power to which excitation is raised to produce the

response of the mechanism
d 0i decision variable in noise limited model
ri standard deviation of decision variable
i index for pattern
j index for receptive field

Appendix B. Contrast energy of Gabor patterns

The contrast function of a vertical luminance spatial
Gabor pattern centered at 0, 0 is described by the following
equation:

cðx; yÞ ¼ C exp � x2

2r2
x

� y2

2r2
y

 !
sin

2p
k

xþ /

� �
f ðtÞ; ðB1Þ

where x and y are the horizontal and vertical coordinates
of a point, C, k, and / are the contrast, wavelength, and
spatial phase (re 0, 0) of the sinewave, rx and ry are the
standard deviations of the Gaussian envelope, and f(t) is
the temporal envelope. All spatial dimensions are usually
specified as visual angles. When / = 0 deg, we have posi-
tive sine phase in which a bright stripe appears to the right
Gabor patterns of different sizes, ..., Vision Research (2006),
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of the center of the pattern and when / = 180 deg we have
negative sine phase in which the bright band appears to the
left of the center. Similarly when / = 90 deg, we have po-
sitive cosine phase in which there is a bright stripe in the
center of the pattern and when / = 270 deg, we have
negative cosine phase in which there is a dark stripe in
the center. We will consider the case where the pattern
has a rectangular temporal envelope, so that f(t) = 1 during
the interval when the pattern is on and 0 otherwise.

Contrast energy is defined as the squared integral of the
pattern:

e ¼
Z 1

�1
dy
Z 1

�1
dxcðx; yÞ2: ðB2Þ

The following steps show the derivation of the expression
for the contrast energy:

e ¼ C2

Z 1

�1
dy
Z 1

�1
dx

� exp � x2

r2
x

� y2

r2
y

 !
sin2 2p

k
xþ /

� �Z T

0

dt; ðB3Þ

where T is the duration of the pattern in seconds.
Using the trigonometric identity, cos2h = 1 � 2sin2h

and solving the time integral, we get,

e ¼ C2

2
T
Z 1

�1
dy exp � y2

r2
y

 !
Z 1

�1
dx exp � x2

r2
x

� �
1� cos

4p
k

xþ 2/

� �� �
: ðB4Þ

Let Iy ¼
R1
�1 dy exp � y2

r2
y

� �
, and Ix ¼

R1
�1 dx exp � x2

r2
x

� �
.

Therefore, Eq. (B4) becomes,

e ¼ C2

2
TIy Ix �

Z 1

�1
dx exp � x2

r2
x

� �
cos

4p
k

xþ 2/

� �� �
:

ðB5Þ
First, let us determine the value of Iy:

Iy ¼
Z 1

�1
dy exp � y2

r2
y

 !
: ðB6Þ

We know thatZ 1

�1
dy exp �ay2

� �
¼

ffiffiffi
p
a

r
: ðB7Þ

This implies that a ¼ 1
r2

y
yieldingZ 1

�1
dy exp � y2

r2
y

 !
¼ Iy ¼

ffiffiffi
p
p

ry : ðB8Þ

Similarly,

Ix ¼
ffiffiffi
p
p

rx: ðB9Þ
To simplify the other integral in Eq. (B5) we make use of
the trigonometric identity

cosðAþ BÞ ¼ cosðAÞ cosðBÞ � sinðAÞ sinðBÞ: ðB10Þ
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Therefore,Z 1

�1
dx exp � x2

r2
x

� �
cos

4p
k

xþ 2/

� �

¼
Z 1

�1
dx exp � x2

r2
x

� �
cos

4p
k

x
� �

cosð2/Þ
	

� sin
4p
k

x
� �

sinð2/Þ



¼ cosð2/Þ
Z 1

�1
dx exp � x2

r2
x

� �
cos

4p
k

x
� �

� sinð2/Þ
Z 1

�1
dx exp � x2

r2
x

� �
sin

4p
k

x
� �

: ðB11Þ

But,

sinð2/Þ
Z 1

�1
dx exp � x2

r2
x

� �
sin

4p
k

x
� �

¼ 0;

since the integrand is an odd function. Therefore Eq. (B11)
becomes,Z 1

�1
dx exp � x2

r2
x

� �
cos

4p
k

xþ 2/

� �

¼ cosð2/Þ
Z 1

�1
dx exp � x2

r2
x

� �
cos

4p
k

x
� �

ðB12Þ

¼ cosð2/Þ
ffiffiffi
p
p

rx exp � 4p2r2
x

k2

� �
;

where we have used the known resultZ 1

�1
dx expð�ax2Þ cosðbxÞ ¼

ffiffiffi
p
a

r
exp � b2

4a

� �
; ðB13Þ

in the second equality of Eq. (B12). Substituting Eqs.
(B12), (B9) and (B8) in Eq. (B5), we obtain a general equa-
tion for the contrast energy of the class of vertical Gabor
patterns considered here:

e ¼ C2

2
Tprxry 1� cosð2/Þ exp � 4p2r2

x

k2

� �� �
: ðB14Þ
Appendix C. Excitation of a Gabor receptive field at any

location by a Gabor pattern centered on the fixation point

Let the stimulus be a vertically oriented Gabor pattern
centered at (xs,ys) with contrast C, pattern standard devia-
tions rxs and rys, and spatial frequency fs, in /s phase with
respect to its center. The contrast function of such a pat-
tern is given by

cðx; yÞ ¼ C exp � x� xsð Þ2

2r2
xs

� y � ysð Þ2

2r2
ys

" #

� sin 2pfs x� xsð Þ þ /sð Þ: ðC1Þ

The pattern is detected by a mechanism with a receptive
field whose spatial sensitivity function, s(x,y), is also de-
scribed by a vertically oriented Gabor function centered
at (xf,yf) with sensitivity parameter S, standard deviations,
Gabor patterns of different sizes, ..., Vision Research (2006),
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rxf and ryf, spatial frequency ff, and a phase of /f re the
center of the receptive field:

sðx; yÞ ¼ S exp �ðx� xfÞ2

2r2
xf

� ðy � yfÞ
2

2r2
yf

" #

� sinð2pffðx� xfÞ þ /fÞ: ðC2Þ

Excitation of the mechanism by the pattern is defined as:

E¼
Z 1

�1
dy
Z 1

�1
dxcðx;yÞsðx;yÞ

E¼CS

Z 1

�1
dy

Z 1

�1
dx

exp �ðx� xsÞ2

2r2
xs

�ðy� ysÞ
2

2r2
ys

�ðx� xfÞ2

2r2
xf

�ðy� yfÞ
2

2r2
yf

" #
ðC3Þ

� sinð2pffðx� xfÞþ/fÞsinð2pfsðx� xsÞþ/sÞ;

which can be rewritten as:

E ¼ CS

Z 1

�1
dy exp �ðy � ysÞ

2

2r2
ys

� ðy � yfÞ
2

2r2
yf

" #

�
Z 1

�1
dx exp �ðx� xsÞ2

2r2
xs

� ðx� xfÞ2

2r2
xf

" #

� sinð2pfsðx� xsÞ þ /sÞ sinð2pffðx� xfÞ þ /fÞ: ðC4Þ

Let Iy be the first integral and Ix be the second integral.

Iy ¼
Z 1

�1
dy exp �ðy � ysÞ

2

2r2
ys

� ðy � yfÞ
2

2r2
yf

" #
; ðC5Þ

Ix ¼
Z 1

�1
dx exp �ðx� xsÞ2

2r2
xs

� ðx� xfÞ2

2r2
xf

" #

� sinð2pfsðx� xsÞ þ /sÞ sinð2pffðx� xfÞ þ /fÞ: ðC6Þ

Making the assumption that the Gaussian stimulus envelope
is centered at (0, 0), (i.e., xs = 0 and ys = 0) Eq. (C5) becomes,

Iy ¼
Z 1

�1
dy exp � y2

2r2
ys

� ðy � yfÞ
2

2r2
yf

" #

¼
Z 1

�1
dy exp � y2

r2
yf þ r2

ys

2r2
ysr

2
yf

� y
yf

r2
yf

þ y2
f

2r2
yf

 !" #
: ðC7Þ

Using the known identityZ 1

�1
dy exp½�ðax2 þ bxþ cÞ� ¼

ffiffiffi
p
a

r
exp

b2 � 4ac
4a

� �
; ðC8Þ

in Eq. (C7), we obtain
Iy ¼
ffiffiffiffiffiffiffiffiffiffiffi

p
r2

yf
þr2

ys

2r2
yf

r2
ys

vuut exp

yf

r2
yf

� �2

� r2
yf
þr2

ys

r2
ysr

2
yf

� �
y2

f

r2
yf

� �

2
r2

yf
þr2

ys

r2
ysr

2
yf

� �
0
BBB@

1
CCCA:
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After simplification we obtain

Iy ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pr2

yfr
2
ys

r2
yf þ r2

ys

s
exp

y2
f

2r2
yf

r2
ys

r2
ys þ r2

yf

� 1

 ! !
: ðC9Þ

To evaluate Ix we use the trigonometric identities:

cosðA� BÞ ¼ cosðAÞ cosðBÞ � sinðAÞ sinðBÞ
sinðA� BÞ ¼ sinðAÞ cosðBÞ � cosðAÞ sinðBÞ
2 sinðAÞ sinðBÞ ¼ cosðA� BÞ � cosðAþ BÞ

Applying these to Ix, taking account of the fact that xs = 0:

2 sinð2pfsxþ /sÞ sinð2pffðx� xfÞ þ /fÞ
¼ cos½2pfsxþ /s � 2pffðx� xfÞ � /f � � cos½2pfsx

þ /s þ 2pffðx� xfÞ þ /f �
¼ cos½2pxðfs � ffÞ þ ð/s � /f þ 2pffxfÞ� � cos½2pxðfs þ ff

þ ð/s þ /f � 2pffxfÞ�
¼ cos½2pxðfs � ffÞ� cos½/s � /f þ 2pffxf �
� sin½2pxðfs � ffÞ� sin½/s � /f þ 2pffxf �
� cos½2pxðfs þ ffÞ� cos½ð/s þ /f � 2pffxfÞ�
þ sin½2pxðfs þ ffÞ� sin½ð/s þ /f � 2pffxfÞ�: ðC10Þ

Substituting Eq. (C10) into Eq. (C6), we get

Ix ¼
1

2

Z 1

�1
dx exp � x2

2r2
xs

� ðx� xfÞ2

2r2
xf

" #

cosð2pxðfs � ffÞÞ cosð/s � /f þ 2pffxfÞ

� 1

2

Z 1

�1
dx exp � x2

2r2
xs

� ðx� xfÞ2

2r2
xf

" #
sinð2pxðfs � ffÞÞ

sinð/s � /f þ 2pffxfÞ

� 1

2

Z 1

�1
dx exp � x2

2r2
xs

� ðx� xfÞ2

2r2
xf

" #
cosð2pxðfs þ ffÞÞ

cosð/s þ /f � 2pffxfÞ

þ 1

2

Z 1

�1
dx exp � x2

2r2
xs

� ðx� xfÞ2

2r2
xf

" #
sinð2pxðfs þ ffÞÞ

sinð/s þ /f � 2pffxfÞ: ðC11Þ

The second and fourth terms (integrals) in the above
expression for Ix equal zero (because the integrands are
odd function and the integral limits are symmetric). There-
fore, we have,

Ix ¼
1

2

Z 1

�1
dx exp � x2 r2

xf þ r2
xs

2r2
xsr

2
xf

� x
xf

r2
xf

þ x2
f

2r2
xf

� �� �
cosð2pxðfs � ffÞÞ cosð/s � /f þ 2pffxfÞ;

� 1

2

Z 1

�1
dx exp � x2 r2

xf þ r2
xs

2r2
xsr

2
xf

� x
xf

r2
xf

þ x2
f

2r2
xf

� �� �
cosð2pxðfs þ ffÞÞ cosð/s þ /f � 2pffxfÞ: ðC12Þ
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It can be shown that2

I ¼
Z 1

�1
dx exp½�ðax2 þ bxþ cÞ� cosðkxÞ

¼
ffiffiffi
p
a

r
exp �cþ b2

4a

� �
cos

kb
2a

� �
exp � k2

4a

� �

¼
ffiffiffi
p
a

r
exp �cþ b2 � k2

4a

� �
cos

kb
2a

� �

¼
ffiffiffi
p
a

r
exp

�4acþ b2 � k2

4a

� �
cos

kb
2a

� �
: ðC13Þ

Applying this to Eq. (C12), for the two integrals we get:
2 Derivation of Eq. (C13): Solution to the integral used in the analysis
Eq. (C12). We start by completing the square of the quadratic term in the
exponent

I ¼
Z 1

�1
dx exp½�ðax2 þ bxþ cÞ� cos½kx�

¼
Z 1

�1
dx exp �

ffiffiffi
a
p

xþ b
2
ffiffiffi
a
p

� �2

þ c� b2

4a

 !" #
cos½kx�

¼ exp �cþ b2

4a

� � Z 1

�1
dx exp �

ffiffiffi
a
p

xþ b
2
ffiffiffi
a
p

� �2
" #

cos½kx�:

Using a change of variable

y ¼
ffiffiffi
a
p

xþ b
2
ffiffiffi
a
p with dy ¼

ffiffiffi
a
p

dx yields

I ¼ exp �cþ b2

4a

� �
1ffiffiffi
a
p

Z 1

�1
dy exp½�y2� cos

kffiffiffi
a
p y � kb

2a

� �
:

Using the expression:

cosðA� BÞ ¼ cosðAÞ cosðBÞ þ sinðAÞ sinðBÞ;

we obtain for I:

I ¼exp �cþ b2

4a

� �
1ffiffiffi
a
p
Z 1

�1
dy exp½�y2�cos

kffiffiffi
a
p y
� �

cos
kb
2a

� �

� exp �cþ b2

4a

� �
1ffiffiffi
a
p
Z 1

�1
dy exp½�y2�sin

kffiffiffi
a
p y
� �

sin
kb
2a

� �
:

Because the second term is an odd function and the limits are symmetric,
we obtain:

I ¼ exp �cþ b2

4a

� �
cos

kb
2a

� �
1ffiffiffi
a
p

Z 1

�1
dy exp½�y2� cos

kffiffiffi
a
p y
� �

:

GivenZ 1

�1
dx exp½�ax2� cos½bx� ¼

ffiffiffi
p
a

r
exp � b2

4a

� �
;

we obtain:

I ¼ exp �cþ b2

4a

� �
cos

kb
2a

� � ffiffiffi
p
a

r
exp � k2

4a

� �
:
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Z 1

�1
dxexp � x2 r2

xf þr2
xs

2r2
xsr

2
xf

� x
xf

r2
xf

þ x2
f

2r2
xf

� �� �
cosð2pxðfs� ffÞÞ

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pr2

xsr
2
xf

r2
xf þr2

xs

s
exp

�x2
f �4p2r2

xsr
2
xfðfs� ffÞ2

2ðr2
xf þr2

xsÞ

" #

� cos
2pxfr2

xsðfs� ffÞ
ðr2

xf þr2
xsÞ

� �
; ðC14Þ

andZ 1

�1
dx exp � x2 r2

xf þ r2
xs

2r2
xsr

2
xf

� x
xf

r2
xf

þ x2
f

2r2
xf

� �� �
cosð2pxðfs þ ffÞÞ

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pr2

xsr
2
xf

r2
xf þ r2

xs

s
exp

�x2
f � 4p2r2

xsr
2
xfðfs þ ffÞ2

2ðr2
xf þ r2

xsÞ

" #

� cos
2pxfr2

xsðfs þ ffÞ
ðr2

xf þ r2
xsÞ

� �
: ðC15Þ

Substituting Eqs. (C14) and (C15) in Eq. (C12), we get,

Ix ¼
1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pr2

xsr
2
xf

r2
xf þ r2

xs

s
exp

�x2
f � 4p2r2

xsr
2
xfðfs � ffÞ2

2ðr2
xf þ r2

xsÞ

" #(

� cos
2pxfr2

xsðfs � ffÞ
ðr2

xf þ r2
xsÞ

� �
cosð/s � /f þ 2pffxfÞ

� exp
�x2

f � 4p2r2
xsr

2
xfðfs þ ffÞ2

2ðr2
xf þ r2

xsÞ

" #
cos

2pxfr2
xsðfs þ ffÞ

ðr2
xf þ r2

xsÞ

� �

� cosð/s þ /f � 2pffxfÞ
)
: ðC16Þ

Substituting Iy, Eq. (C9) and Ix, Eq. (C16) in Eq. (C4), for
the mechanism excitation we get:

E ¼ CSp

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2

ysr
2
yf

r2
ys þ r2

yf

s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2

xsr
2
xf

r2
xs þ r2

xf

s
exp

y2
f

2r2
yf

r2
ys

r2
ys þ r2

yf

� 1

 ! !

�
(

cosð/s � /f þ 2pff xfÞ

� exp
�x2

f � 4p2r2
xsr

2
xfðfs � ffÞ2

2ðr2
xs þ r2

xfÞ

" #
cos

2pr2
xsxfðfs � ffÞ
r2

xs þ r2
xf

� �

� cosð/s þ /f � 2pff xfÞ exp
�x2

f � 4p2r2
xsr

2
xfðfs þ ffÞ2

2ðr2
xs þ r2

xfÞ

" #

� cos
2pr2

xsxfðfs þ ffÞ
r2

xs þ r2
xf

� �

: ðC17Þ

Thus, the excitation of a mechanism by a pattern is equal
to the contrast parameter of the pattern, Ci, times the sen-
sitivity parameter of the mechanism, Sj, times an expres-
sion that depends on both the pattern and the receptive
field, Fij:

Eij ¼ CiSjF ij: ðC18Þ

We define Ct as the threshold contrast of the pattern. In the
case in which a single mechanism mediates detection, we
assume that at threshold, E = 1. Substituting these values
in Eq. (C17) and solving for Ct we get:
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Ct ¼ Sp

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2

ysr
2
yf

r2
ys þ r2

yf

s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2

xsr
2
xf

r2
xs þ r2

xf

s
exp

y2
f

2r2
yf

r2
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r2
ys þ r2

yf

� 1

 ! !"

� cosð/s �/f þ 2pff xfÞ exp
�x2

f � 4p2r2
xsr

2
xfðfs � ffÞ2

2ðr2
xs þ r2

xfÞ

" #(

� cos
2pr2

xsxfðfs � ffÞ
r2

xs þ r2
xf

� �
� cosð/s þ/f � 2pff xfÞ

� exp
�x2

f � 4p2r2
xsr

2
xfðfs þ ffÞ2

2ðr2
xs þ r2

xfÞ

" #
cos

2pr2
xsxfðfs þ ffÞ
r2

xs þ r2
xf

� �)#�1

:

ðC19Þ

The reciprocal of Ct is the sensitivity of the receptive field
to the stimulus, Sij.

Contrast thresholds can be transformed into contrast
energy thresholds as follows:

The contrast energy of the circular Gabor pattern when
it is at threshold is given by Eq. (B14) in Appendix B.

e ¼ C2

2
Tprxsrys 1� cos 2/sð Þ exp � 4p2r2

xs

k2

� �� �
: ðC20Þ

Substituting Ct for C and defining et as the energy of the
target pattern at threshold, we get:

et ¼
C2

t

2
Tprxsrys 1� cosð2/sÞ exp � 4p2r2

xs

k2

� �� �
: ðC21Þ

To determine contrast energy at threshold predicted by
the model, substitute the expression for Ct from Eq.
(C19) in Eq. (C21).

Appendix D. Supplementary data

Supplementary data associated with this article can be
found, in the online version, at doi:10.1016/
j.visres.2006.09.005.
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