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ABSTRACT

In this paper, we present a hybrid no-reference video quality
metric. The proposed metric blindly estimates the quality of
videos degraded by compression and transmission artifacts.
The metric is composed by two no-reference artifact metrics
that estimate the strength of blockiness and blurriness arti-
facts. A combination model is used to add the packet loss
rate information to the quality estimate and eliminate the dis-
turbance in the artifact metric values caused by the packet
losses.

Index Terms— video quality metrics, artifacts, quality
assessment, no-reference quality metrics, packet-loss, quality
of service.

1. INTRODUCTION

Digital video communication has evolved into an important
field in the past few years. There have been significant ad-
vances in compression and transmission techniques, which
have made possible to deliver high quality video to the end
user. In particular, the advent of new technologies has al-
lowed the creation of many new telecommunication services
(e.g., direct broadcast satellite, digital television, high defi-
nition TV, Internet video). In these services, the level of ac-
ceptability and popularity of a given multimedia application is
clearly related to the reliability of the service and the quality
of the content provided.

In this context, the term quality of experience (QoE) de-
scribes the quality of the multimedia service provided to the
end user. Although there has been some debate regarding the
actual meaning of this term, it is generally agreed that QoE
encompasses different aspects of the user experience, suchas
video and audio quality, user expectation, display type, and
viewing conditions. In this work, we are interested in esti-
mating video quality according to user perception.
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The most accurate way to determine the quality of a video
is by measuring it using psychophysical experiments with hu-
man subjects (subjective metrics) [1]. Unfortunately, these
experiments are expensive, time-consuming and hard to in-
corporate into a design process or an automatic quality of ser-
vice control. Therefore, the ability to measure video quality
accurately and efficiently, without using human observers,is
highly desirable in practical applications. With this in mind,
fast algorithms that give a physical measure (objective met-
rics) of the video quality are needed to obtain an estimate of
the quality of a video when being transmitted, received or dis-
played.

As far as quality metrics are concerned, the network-
ing community has been using simple metrics to quantify the
quality of service (QoS) delivered to a given application, such
as bit error rate (BER) or packet loss rate (PLR). Likewise,
within the signal processing community, quality measure-
ments have been largely limited to a few objective measures,
such as peak signal-to-noise ratio (PSNR) and total squared
error (TSE). Although these metrics are relevant for data links
and generic signals in which every bit is considered equally
important within the bitstream, they are not considered good
estimates of the user’s opinion about the received multimedia
content [2, 3]. As a result, there is an ongoing effort to de-
velop video quality metrics that are able to accurately detect
impairments and estimate their annoyance as perceived by
human viewers.

To date, most of the quality metrics proposed in the lit-
erature are Full Reference (FR) metrics [3], i.e., metrics that
use the original to compute an estimate of the quality. FR
metrics have limited applications and cannot be used in most
real-time video transmission applications, like for example,
broadcasting and video streaming. In such cases, the initial
undistorted signal (reference) is not available or not acces-
sible at the receiver side and, therefore, requiring the refer-
ence video or even a small portion of it becomes a serious
impediment in real-time video transmission applications.To
measure video quality in such applications, it is essentialto
use a no-reference (NR) or a reduced reference (RR) video



quality metric, i.e., a metrics that blindly estimates the quality
of the video using no information (nr) or limited information
about the original [4]. Most NR metrics have limited perfor-
mance because estimating the quality or degradation without
the original is a difficult task. In fact, in the Final Report of
the Video Quality Experts Group (VQEG) Multimedia Phase
I, it was found that the correlations for the submitted FR, RR,
and NR metrics were around 80%, 78%, and 56%, respec-
tively, corroborating the case that, to date, NR metrics still
have poor performance [5].

In this paper, we propose a hybrid quality metric that con-
sists of a combination of a QoS metric and an NR objective
quality metric: the QoS metric takes into account packet loss
rates, while the NR metric consists of two no-reference arti-
fact metrics. The main advantage of this approach is the fact
that it gives an estimate of quality without requiring the ref-
erence, while, at the same time, it uses additional, network-
related information in order to leverage the NR metric per-
formance. To assess the effectiveness of our hybrid metric,
we evaluate the quality of H.264/AVC digital video transmis-
sions subjected to packet loss patterns typical of the Internet
backbone.

2. ARTIFACT METRICS

In this work, we focus on three of the most common artifacts
present in digital videos: blockiness, blurriness, and packet
loss. Blockinessis a type of artifact characterized by a block
pattern visible in the picture. It is due to the independent
quantization of individual blocks in block-based DCT coding
schemes (usually, 8×8 pixels in size), leading to discontinu-
ities at the boundaries of adjacent blocks. The blocking effect
is often the most visible artifact in a compressed video, given
its periodicity and the extent of the pattern. Modern codecs,
like the H.264, use a deblocking filter to reduce the annoyance
caused by this artifact.Blurrinessis characterized by a loss of
spatial detail and a reduction of edge sharpness. In the com-
pression stage, blurriness is introduced by the suppression of
the high-frequency coefficients due to coarse quantization.

In video transmission over IP networks, video packets
typically traverse a number of links to get to its destination.
Packet losses may occur due to buffer overflow at network
routers (caused by network congestion) or signal transmis-
sion/reception errors at the physical layer. Typical impair-
ments caused by these errors arepacket-loss, jitter, and de-
lays. Among these, packet-loss is probably the most annoying
impairment. As the name suggests, packet-loss impairments
are caused by a complete loss of the packet being transmitted,
as a consequence of transmission errors. As a consequence,
parts (blocks) of the video are missing for several frames.

Figures 1(a) and 1(b) depict two sample frames of videos
affected by packet-loss and a combination of blockiness and
blurriness, respectively. The severity of the impairmentscan
vary tremendously depending on the bitrate and network con-

ditions. The strength of blockiness and blurriness can be es-
timated using specific artifact metrics, while the strengthof
packet loss artifacts can be roughly estimated measuring the
packet loss rate for the video at the receiver (QoS parame-
ter). In this section, we present the two no-reference artifact
metrics used to estimateblockinessandblurriness.

(a) (b)

Fig. 1. Sample video frames containing medium and severe
intensity packet-loss impairments.

2.1. Blockiness Metric

Vlachos’ algorithm estimates the blockiness signal strength
by comparing the cross-correlation of pixels inside (intra) and
outside (inter) the borders of the coding blocking structure
of a frame [6]. The algorithm considers that the size of the
enconding blocks isbs × bs, with bs = 8. The frameY (i, j)
is partitioned into blocks and sampled to yield sub-images,
given by:

s(m,n) = {Y (i, j) : m = i modbs, n = j modbs} , (1)

where(i, j) are frame pixel coordinates andx mod y de-
notes congruence (remainder of integer divisionx/y).

The sub-images(m,n) contains the subset of pixels
which are congruent with respect to block size. We can think
of s(m,n) as a sub-image obtained from sub-sampling the
frameY by bs pixels in both horizontal and vertical direc-
tions. Clearly, if before downsampling a shift is given to the
frameY , i.e., Ys = Y (i + m, j + n), different sub-images
will be generated. This shift can be understood as a sampling
phase. We represent a sub-image with sampling phase(m,n)
by sm,n.

To estimate blockiness, seven sub-images with different
sampling phases are considered. Figure 2 displays a zoom of
this sampling structure where the different symbols represent
a pixel of each different sub-image. The set composed of the
pixels in sub-imagess0,0, s0,7, s7,0, ands7,7 make out the set
of inter-block pixels, while the set composed of pixels ins0,0,
s0,1, s1,0, ands1,1 make out the set of intra-block pixels.

The correlation between a pair of images provides a mea-
sure of their similarity. To measure the correlation between
two given images,x andy, we first calculate the correlation
surface [7] using the following expression:

Cx,y = F−1

(

F ∗(x) · F (y)

|F ∗(x) · F (y)|

)

, (2)



Fig. 2. Frame sampling structure for correlation-based block-
iness metric in both horizontal and vertical directions.

whereF andF−1 denote the forward and inverse two dimen-
sional discrete Fourier transform, respectively, and * denotes
the complex conjugate.

For identical images, the correlation surface has a unique
peak, which is the two dimensional Dirac delta function. For
non-identical images, which is usually the case, several peaks
can be simultaneously present. The magnitude of the highest
peak is used as a measure of correlation betweenx andy [7] :

p(x, y) = max
i,j

{Cx,y(i, j)} , (3)

where(i, j) are the horizontal and vertical coordinates. One
problem with this equation is that the periodic nature of the
Fourier transform introduces sharp transitions at the borders
[8]. So, before the maximum is taken, it is necessary to filter
Cx,y using a Hamming window to force the elements to a
constant value around the borders.

To estimate the blockiness signal strength, we measure the
correlation between the intra- and inter-block sub-images. In
other words, we find the highest peaks of the phase correlation
surfaces computed between the pairs of subimages. Consid-
ering the following subimagess0 = s(0, 0), s1 = s(0, 1),
s2 = s(1, 0), s3 = s(1, 1), s4 = s(0, 1), s5 = s(7, 7),
s6 = s(0, 7), s7 = s(7, 0), s8 = s(0, 0), the blockiness mea-
sure is given by the ratio between a measure of intra-block
similarity and a measure of inter-block similarity:

Block =
Pintra

Pinter

, (4)

wherePintra =
∑3

i=1
p0,i andPinter =

∑8

i=6
p5,i.

The more blockiness is introduced, the values ofPinter

become smaller and, consequently, the value of Block in-
creases. The blockiness measure for the set of all frames
is obtained by taking the median of the measures over all
frames.

2.2. Blurriness Metric

Most of the existing blurring metrics are based on the idea
that blur makes the edges larger or less sharp [9, 10]. In this
work, we implemented ano-referenceblur (blurriness signal)

metric which also makes use of this very simple idea. The
algorithm measures blurriness by measuring the width of the
edges in the frame. The first step consists of finding strong
edges using the Canny edge detector algorithm. The output of
the Canny algorithm gives the magnitude of the edge pixels,
M(i, j), and their orientation,O(i, j). We selected only the
strong edges of the frame (M(i, j) > 25).

The width of an edge is defined as the distance between
the two local extremes,P1 andP2, on each side of the edge,
as shown in Figure 3.
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Fig. 3. The width of the edge is used as a measure of the
blurriness signal strength.P1 is the first local extreme andP2

is the second one.

If the edge is horizontal,P1 will be located above the edge
pixel, while P2 will be below it. If the edge is vertical,P1

will be located to the left of the edge pixel, whileP2 will be
to the right of it. The width of the edge,width(i, j), at posi-
tion (i, j) is given by the difference between the two extremes
P1(i, j) andP2(i, j). The blurriness signal strength measure
for a frame was obtained by averaging widths over all strong
edges of this frame. So, given that a frameY hasL strong
edges pixels, the blurriness signal strength measure for this
frame is given by:

Blur =
1

L

N
∑

i=0

M
∑

j=0

width(i, j). (5)

The blurriness signal strength measure for the whole video
is obtained by taking the median of the measures over all
frames.

3. THE HYBRID QUALITY METRIC

In order to obtain a hybrid quality metric, we investigate the
performance of each indvidual quality metric across a set
of typical video sequences subject to different bitrates and
packet loss levels. Once their individual performance is as-
sessed, we propose a final combination model for the hybrid
quality metric. Figure 4 summarizes the overall idea of the
proposed hybrid metric.



Fig. 4. Block diagram of the proposed hybrid quality metric.

For our study, we used publicly-available videos in CIF
format (352× 288 pixels), YUV 4:2:0 color format, with 300
frames. The videos we used were ‘foreman’, ‘mother’, ‘mo-
bile’, ‘news’, and ‘paris’, all compressed with target bitrates
of 50k, 100k, 150k, 200k, 250k, 300k, 350k, and 400k bps.
In order to simulate packet losses in a given bitstream, we
used thetransmitter simulator[11], a software that simulates
the transmission of H.264/AVC bitstreams over error-prone
channels. For simulation of packet losses, thetransmitter
simulatormakes use of error pattern files that are based on
actual experiments carried out on the Internet backbone. The
error pattern files correspond to packet loss rates (PLR) of
0.1%, 0.4%, 1%, 3%, 5%, and 10%, respectively. For anal-
ysis, we considered H.264/AVC bitstreams that were packe-
tized according to the Real-Time Transfer Protocol (RTP). In
simulations, all packets were treated equally regarding their
succeptibility to loss (i.e., we did not focus on specific types
of packets, such as those carrying intra-coded slices, for ex-
ample).

To illustrate the quality range of the videos used in this
work, Figures 5 and 6 show the Peak Signal to Noise Ratio
(PSNR) values for different bitrates and PLR values for the
videos foreman and paris. Observe that, for PLR values less
than or equal to 1%, the PSNR values increase with the target
bitrate. But, for PLR values greater than 1%, the PSNR values
do not necessarily increase with the target bitrate.

Figures 7 and 8 depict the blockiness metric output val-
ues for the videos ‘foreman’ and ‘paris’, respectively, under
different target bitrates, PSNR, and PLR values. Once again,
notice that for PLR values equal or less than 1%, blockiness
strength values decrease with the target bitrate (and PLR).
But, for PLR values greater than 1%, blockiness strength val-
ues are disturbed by the packet losses and do not have a ‘reli-
able’ behaviour. Figures 9 and 10 depict the blurriness metric
output values for the videos ‘foreman’ and ‘paris’, respec-
tively, under different target bit rate, PSNR, and PLR values.
We can notice from these graphs that the behaviour of the
blurriness metric is more robust against the influence of PLR
than the blockiness metrics.

Figure 11 depicts the relationship between packet loss rate
(PLR) and PSNR values for the ‘foreman’ video sequence. In
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Fig. 5. PSNR values for ‘foreman’ video under different bit
rates and packet loss rates.

this graph, each point corresponds to a different bitrate. As we
can clearly observe, a zero PLR (or very low PLR value such
as 0.1%, 0.4%, and 1.0%) does not necessarily mean a high-
quality video, since it also depends on the coding scheme,
as expressed by the wide range of PSNR values observed
for these cases. On the other hand, as the PLR increases
(3%, 5%, and 10%, respectively), not only the PSNR values
decrease across all bitstreams, but their variability alsode-
creases, indicating that PLR becomes a more consistent qual-
ity measure within this range, in spite of the coding scheme
(similar behavior is also observed with the other video se-
quences). Therefore, it is exactly where the blockiness and
blurriness metrics present their lower performance that the
PLR becomes a more consistent measure of overall video
quality. Based on such observations, we propose the hybrid
quality metricQ, which is given by

Q = (1− β) f1(Blur,Block) + βf2(PLR), (6)

where β is a weighting factor, andf1(Blur,Block) and
f2(PLR) are quality estimators based on the blockiness,
blurriness, and PLR metrics, respectively, given by

f1(Blur,Block) = −14.7 · Block− 1.1 · Blur + 42.2 (7)
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Fig. 6. PSNR values for the ‘paris’ video under different bit
rates and packet loss rates.
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Fig. 7. Blockiness values for the ‘foreman’ video under dif-
ferent bit rates and PSNR values and different PLR values.

f2(PLR) = −2.1 · ln(PLR) + 29.1, (8)

where the functional forms off1 andf2 were found by fitting
the artifact metrics and PLR values to the PSNR values.

This hybrid quality metricQ takes into account the fact
that, at low PLR values, the quality is well predicted by the
picture metrics. But, as the PLR increases, the results for
the no-reference artifact metrics start degrading becausethe
packet losses introduce “new content” to the video in a highly
nonlinear way. Because of that, we introduce the weighting
factorβ = PLR/α, whereα works as a scaling factor that
expresses the value above which the PLR becomes unbearable
for the streaming video. In our tests, we foundα = 11.

Figure 12 depicts the results of applying the hybrid qual-
ity metric Q to the videos ‘foreman’ and ‘paris’, each com-
pressed with target bitrates of 50k, 100k, 150k, 200k, 250k,
300k, 350k, and 400k bps, and PLR values of 0.1%, 0.4%,
1%, 3%, 5%, and 10%. The combination model hasr =
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Fig. 8. Blockiness values for the ‘paris’ video under different
bit rates and PSNR values.
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Fig. 9. Blurriness values for the ‘foreman’ video under differ-
ent bit rates and PSNR values.

78.94%, presenting, therefore, a good performance for a no-
reference quality metric.

4. CONCLUSIONS

In this paper, we presented a hybrid no-reference video qual-
ity metric targeted at the transmission of videos over the In-
ternet. The proposed metric blindly estimates the quality of
videos degraded by compression and digital transmission ar-
tifacts. The metric is composed by two no-reference artifact
metrics that estimate the strength of blockiness and blurriness
artifacts. A combination model is used to add the packet loss
rate information to the metric, eliminating the disturbance in
the artifact metrics values caused by higher packet loss rates.
Further studies are needed in order to better understand and
characterize the interactions among the different types ofar-
tifacts and their relation to video quality.
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Fig. 10. Blurriness values for the ‘paris’ video under different
bit rates and PSNR values.
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Fig. 11. Packet loss rate values for the ‘foreman’ video under
different bit rates and PSNR values.
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