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ABSTRACT The most accurate way to determine the quality of a video

In this paper, we present a hybrid no-reference video qualit'S PY méasuring it using psychophysical experiments with hu

metric. The proposed metric blindly estimates the quality oman s_ubjects (subjective_ met_rics) [1]- Unfortunately,sme )
videos degraded by compression and transmission artifact%Xpe”men_tS are expensive, time-consuming _and hgrd to in-
The metric is composed by two no-reference artifact metricSC"POrate into a design process or an automatic qualityref se
that estimate the strength of blockiness and blurriness artVic€ control. Therefore, the ability to measure video gyall
facts. A combination model is used to add the packet los@ccurately and efficiently, without using human observers,
rate information to the quality estimate and eliminate tise d highly desirable in practical applications. With this inndj

turbance in the artifact metric values caused by the pack(gflst aIgonthr_ns that give a physical measure (ObleCt_'Ve met
losses. rics) of the video quality are needed to obtain an estimate of

. . _ _ ~ the quality of a video when being transmitted, received sr di
Index Terms— video quality metrics, artifacts, quality played.

assessment, no-reference quality metrics, packet-lassifyy

of service. As far as quality metrics are concerned, the network-

ing community has been using simple metrics to quantify the
quality of service (QoS) delivered to a given applicatiarcts
1. INTRODUCTION as bit error rate (BER) or packet loss rate (PLR). Likewise,
Diaital vid ication h ved int . N tWithin the signal processing community, quality measure-
f. I?(;a \:L €o cotr?mumca |onThas e\r/10 Ve bm 0an 'T][?p‘-"rta” ents have been largely limited to a few objective measures,
1€ld In the past Tew years. 1here nave been signiicant at; ., 5q peak signal-to-noise ratio (PSNR) and total squared

\éances 'g compr%Ts?n dar;_d trz?]r?shmssui_rt] tegdhnlqtuetsh, whig ror (TSE). Although these metrics are relevant for daiesli
ave made possible to delver Nigh qualily Video 10 In€ end, generic signals in which every bit is considered equally

user. In particular, the advent of new techn_ologles ha§ al'mportant within the bitstream, they are not considereddgoo

stimates of the user’s opinion about the received multianed
content [2, 3]. As a result, there is an ongoing effort to de-
velop video quality metrics that are able to accurately atete
impairments and estimate their annoyance as perceived by
human viewers.

(e.g., direct broadcast satellite, digital televisiorghdefi-
nition TV, Internet video). In these services, the level of a
ceptability and popularity of a given multimedia applicatis
clearly related to the reliability of the service and thelgya
of the content provided.

In this context, the term quality of experience (QoE) de-  To date, most of the quality metrics proposed in the lit-
scribes the quality of the multimedia service provided ® th erature are Full Reference (FR) metrics [3], i.e., mettiz t
end user. Although there has been some debate regarding t#ge the original to compute an estimate of the quality. FR
actual meaning of this term, it is generally agreed that Qopnetrics have limited applications and cannot be used in most
encompasses different aspects of the user experienceasucteal-time video transmission applications, like for exdenp
video and audio quality, user expectation, display type, anbroadcasting and video streaming. In such cases, thelinitia
viewing conditions. In this work, we are interested in esti-undistorted signal (reference) is not available or not sccce

mating video quality according to user perception. sible at the receiver side and, therefore, requiring therref

. _ _ ence video or even a small portion of it becomes a serious
This work was supported in part by Conselho Nacional de Desenjnadiment in real-time video transmission applications.
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quality metric, i.e., a metrics that blindly estimates ti@lify ~ ditions. The strength of blockiness and blurriness can be es
of the video using no information (nr) or limited informatio timated using specific artifact metrics, while the strengfth
about the original [4]. Most NR metrics have limited perfor- packet loss artifacts can be roughly estimated measuring th
mance because estimating the quality or degradation withoypacket loss rate for the video at the receiver (QoS parame-
the original is a difficult task. In fact, in the Final Repoft o ter). In this section, we present the two no-referenceaanttif
the Video Quality Experts Group (VQEG) Multimedia Phasemetrics used to estimatdockinessandblurriness

, it was found that the correlations for the submitted FR,RR

and NR metrics were around 80%, 78%, and 56%, respec-

tively, corroborating the case that, to date, NR metrids sti
have poor performance [5].

In this paper, we propose a hybrid quality metric that con-
sists of a combination of a QoS metric and an NR objective
quality metric: the QoS metric takes into account packet los
rates, while the NR metric consists of two no-reference arti ,
fact metrics. The main advantage of this approach is the fact @) (b)
that it gives an estimate of quality without requiring thé re
erence, while, at the same time, it uses additional, networkFig. 1. Sample video frames containing medium and severe
related information in order to leverage the NR metric perintensity packet-loss impairments.
formance. To assess the effectiveness of our hybrid metri% 1 Blockiness Metric
we evaluate the quality of H.264/AVC digital video transmis =™
sions subjected to packet loss patterns typical of thedeter Viachos' algorithm estimates the blockiness signal stieng
backbone. by comparing the cross-correlation of pixels inside (inamad

outside (inter) the borders of the coding blocking struetur
2 ARTIFACT METRICS ofa frame [6]. Th_e algorithm considers that the si;e pf the
enconding blocks is; x bs, with b, = 8. The frameY (i, j)

In this work, we focus on three of the most common artifactdS Partitioned into blocks and sampled to yield sub-images,

present in digital videos: blockiness, blurriness, anckpac 91ven by:
loss. Blockinesss a type of artifact characterized by a block . . .

pattern visible in the picture. It is due to the independent s(m,n) = {Y(i,j) : m =imodbs, n = jmodb.}, (1)
guantization of individual blocks in block-based DCT caglin
schemes (usually,»88 pixels in size), leading to discontinu-
ities at the boundaries of adjacent blocks. The blockingoff The sub-images(m,n) contains the subset of pixels
is often the most visible artifact in a compressed videoe@iv hich are congruent with respect to block size. We can think
its periodicity and the extent of the pattern. Modern Codecsof s(m,n) as a sub-image obtained from sub-sampling the
like the H.264, use a deblocking filter to reduce the annogancframe}’, by b, pixels in both horizontal and vertical direc-
caused by this artifacBlurrinessis characterized by aloss of o Clearly, if before downsampling a shift is given te th
spatial detail and a reduction of edge sharpness. In the COMameY, ie. Y, = Y(i + m,j + n), different sub-images

pression stage, blurriness is introduced by the suppreséio will be generated. This shift can be understood as a sampling

the hlgh-frequency gogﬁlments due to coarse ql_Jantlzatlon phase. We represent a sub-image with sampling phase)
In video transmission over IP networks, video packetsbys
m,mn-

typically traverse a number of links to get to its destinatio To estimate blockiness, seven sub-images with different

Packet losses may occur due to buf_fer overfl_ow at netwo_rgampling phases are considered. Figure 2 displays a zoom of
routers (caused by network congestion) or signal transmispis sampling structure where the different symbols regres

sion/reception errors at the physical layer. Typical impai 5 niyel of each different sub-image. The set composed of the
ments caused by these errors peeket-lossijitter, and de- _pixels in sub-imageso o, so.7, 570, ands; ; make out the set

lays. Among these, packet-loss is probably the most angoyiny¢ inter-plock pixels, while the set composed of pixelsin,
impairment. As the name suggests, packet-loss impairments 1, s1.0, ands; ; make out the set of intra-block pixels’.

are caused by a complete Ios_s o_f the packet being transmitted” The correlation between a pair of images provides a mea-
as a consequence of transmission errors. As a CONSequUeNggye of their similarity. To measure the correlation betwee
parts (blocks) of the video are missing for several frames. given imagesy andy, we first calculate the correlation

Figures 1(a) and 1(b) depict two sample frames of videog, t5ce [7] using the following expression:
affected by packet-loss and a combination of blockiness and
F*(z) - F(y) )

where (i, j) are frame pixel coordinates and mod y de-
notes congruence (remainder of integer divisigg).

blurriness, respectively. The severity of the impairmesas

_ —1
vary tremendously depending on the bitrate and network con- Coy=F (|F*(z) -F(y)] @)



= *A . metric which also makes use of this very simple idea. The
algorithm measures blurriness by measuring the width of the
edges in the frame. The first step consists of finding strong
edges using the Canny edge detector algorithm. The output of
the Canny algorithm gives the magnitude of the edge pixels,
M(i, ), and their orientation)(i, j). We selected only the
strong edges of the fram@4(i, j) > 25).

The width of an edge is defined as the distance between
u e e the two local extremes?; and P,, on each side of the edge,
as shown in Figure 3.

||
*0
3 |
*0

Fig. 2. Frame sampling structure for correlation-based block
iness metric in both horizontal and vertical directions.

250

whereF andF~! denote the forward and inverse two dimen-

sional discrete Fourier transform, respectively, and *ales
the complex conjugate.

For identical images, the correlation surface has a unique 150l
peak, which is the two dimensional Dirac delta function. For

non-identical images, which is usually the case, sevetpe 10}
can be simultaneously present. The magnitude of the highest
peak is used as a measure of correlation betwesmdy [7] :

p(x,y):ngz;@X{Cx,y(i,j)}, ) = = " o

where(i, j) are the horizontal and vertical coordinates. Ong19- 3. The width of the edge is used as a measure of the

problem with this equation is that the periodic nature of the?lurriness signal strengtt; is the first local extreme ang,
Fourier transform introduces sharp transitions at the ésrd 1S the second one.

8]. So, before the maximum is taken, it is necessary to filter . . .
[Ci , using a Hamming window to force the eleme}r/ns to a If the edge is horizontal; will be located above the edge

constant value around the borders pixel, while P, will be below it. If the edge is verticalP;

To estimate the blockiness signal strength, we measure tﬁ%‘” be located to the left of the edge pixel, whilé will be

correlation between the intra- and inter-block sub-imagdes EIO :]he, ”,g?t o;‘\;t.n'Lheﬂ\]N |%tif;fo: t::e et? gﬁidtgga’ J 2\,Nat p)gf"m
other words, we find the highest peaks of the phase correlatio 0 _(2,’]) s given by he dilterence belween the two extremes
1(i,7) and Px (4, j). The blurriness signal strength measure

surfaces computed between the pairs of subimages. Consifj- ; btained b ) idth Il st
ering the following subimages, = s(0,0), s1 = s(0,1), or a frame was obtained by averaging widths over all strong

= s(L0) s = (LD s = 0.0 55 = S1.0) e S T e crangih messure fo t
s¢ = s(0,7), sy = s(7,0), ss = s(0,0), the blockiness mea- ges p ’ 9 9

sure is given by the ratio between a measure of intra-blocI<rame is given by

similarity and a measure of inter-block similarity: | NM
Blur = — width(i, j).
Pintra ! L Z Z dt (’L, J) (5)
Block = ——, 4 i=0 j=0
inter The blurriness signal strength measure for the whole video
whereP, .. — Z?:lpo,z‘ andP,,pe, — Z?:s s is obtained by taking the median of the measures over all

The more blockiness is introduced, the valuesaf;., frames.

become smaller and, consequently, the value of Block in-

creases. The blockiness measure for the set of all frames 3. THE HYBRID QUALITY METRIC
is obtained by taking the median of the measures over all _ _ . _ . _
frames. In order to obtain a hybrid quality metric, we investigate th

performance of each indvidual quality metric across a set
of typical video sequences subject to different bitrated an
packet loss levels. Once their individual performance is as
Most of the existing blurring metrics are based on the idesessed, we propose a final combination model for the hybrid
that blur makes the edges larger or less sharp [9, 10]. In thiguality metric. Figure 4 summarizes the overall idea of the
work, we implemented ao-referencélur (blurriness signal) proposed hybrid metric.

2.2. Blurriness Metric
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Fig. 4. Block diagram of the proposed hybrid quality metric.

For our study, we used publicly-available videos in CIF
format (352x 288 pixels), YUV 4:2:0 color format, with 300 %‘m loss
frames. The videos we used were ‘foreman’, ‘mother’, ‘mo- a4l | T 0-1% loss
bile’, ‘news’, and ‘paris’, all compressed with target hites T o
of 50k, 100k, 150k, 200k, 250k, 300k, 350k, and 400k bps. 1 3% loss
In order to simulate packet losses in a given bitstream, we ol j‘gig/'"lz;
used thdransmitter simulatof11], a software that simulates
the transmission of H.264/AVC bitstreams over error-prone
channels. For simulation of packet losses, ttasmitter
simulatormakes use of error pattern files that are based on

PSNR (dB)

N
®
T

actual experiments carried out on the Internet backbone. Th 2tk

error pattern files correspond to packet loss rates (PLR) of 4

0.1%, 0.4%, 1%, 3%, 5%, and 10%, respectively. For anal- 2 T e T e e s 00
ysis, we considered H.264/AVC bitstreams that were packe- Bit Rate (Kbps)

tized according to the Real-Time Transfer Protocol (RTR). |

simulations, all packets were treated equally regardieg th Fig. 5. PSNR values for ‘foreman’ video under different bit
succeptibility to loss (i.e., we did not focus on specificagp rates and packet loss rates.

of packets, such as those carrying intra-coded slicesxfor e

ample). . . . .
this graph, each point corresponds to a different bitratewé

To illustrate the quality range of the videos used in th'_scan clearly observe, a zero PLR (or very low PLR value such

work, Figures 5 and 6 show the Peak Signal to Noise Rati ; ;
. ) s 0.1%, 0.4%, and 1.0%) does not necessarily mean a high-
(PSNR) values for different bitrates and PLR values for the 0 ° ) y 9

i ‘ d paris. Ob that. for PLR val | S%uality video, since it also depends on the coding scheme,
videos foreman and paris. IbServe that, for  ValUes 1855 expressed by the wide range of PSNR values observed
than or equal to 1%, the PSNR values increase with the targ

bitrate. But, for PLR values greater than 1%, _the PSNR value"%[J /Ot ,hgfz ;izels(.)%(,)?eg;)ee C?:C;;;ig? ’Oiil tt?é E;ﬁén\f;?: eS: S
do not necessarily increase with the target bitrate. decrease across all bitstreams, but their variability diso
Figures 7 and 8 depict the blockiness metric output valzreases, indicating that PLR becomes a more consistent qual
ues for the videos ‘foreman’ and ‘paris’, respectively, @nd jty measure within this range, in spite of the coding scheme
different target bitrates, PSNR, and PLR values. Once agaifisimilar behavior is also observed with the other video se-
notice that for PLR values equal or less than 1%, blockinesgyences). Therefore, it is exactly where the blockiness and
strength values decrease with the target bitrate (and PLRYjyrriness metrics present their lower performance that th
But, for PLR values greater than 1%, blockiness strength valp| R hecomes a more consistent measure of overall video

ues are disturbed by the packet losses and do not have a ‘rejjyality. Based on such observations, we propose the hybrid
able’ behaviour. Figures 9 and 10 depict the blurrinessimetr gy ajity metricQ, which is given by

output values for the videos ‘foreman’ and ‘paris’, respec-
tively, under different target bit rate, PSNR, and PLR value Q = (1 — B) f1(Blur,Block) + 3 f2(PLR), (6)
We can notice from these graphs that the behaviour of the

blurriness metric is more robust against the influence of PL ; . .
g 2(PLR) are quality estimators based on the blockiness,

than the blockiness metrics. . . i )
) ) . ) blurriness, and PLR metrics, respectively, given by
Figure 11 depicts the relationship between packet loss rate

(PLR) and PSNR values for the ‘foreman’ video sequence. In f;(Blur, Block) = —14.7 - Block — 1.1 - Blur + 42.2  (7)

here 8 is a weighting factor, andf;(Blur, Block) and
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f2(PLR) = —2.1-In(PLR) +29.1, (8) 78.94%, presenting, therefore, a good performance for a no-

reference quality metric.
where the functional forms of; and f> were found by fitting quatty

the artifact metrics and PLR values to the PSNR values.
This hybrid quality metrial takes into account the fact 4. CONCLUSIONS
that, at low PLR values, the quality is well predicted by the
picture metrics. But, as the PLR increases, the results fdn this paper, we presented a hybrid no-reference videc qual
the no-reference artifact metrics start degrading becthese ity metric targeted at the transmission of videos over the In
packet losses introduce “new content” to the video in a lyighl ternet. The proposed metric blindly estimates the quality o
nonlinear way. Because of that, we introduce the weightingideos degraded by compression and digital transmission ar
factor 3 = PLR/a, wherea works as a scaling factor that tifacts. The metric is composed by two no-reference attifac
expresses the value above which the PLR becomes unbearahietrics that estimate the strength of blockiness and bless
for the streaming video. In our tests, we foumd- 11. artifacts. A combination model is used to add the packet loss
Figure 12 depicts the results of applying the hybrid qual+ate information to the metric, eliminating the disturbare
ity metric @ to the videos ‘foreman’ and ‘paris’, each com- the artifact metrics values caused by higher packet loss.rat
pressed with target bitrates of 50k, 100k, 150k, 200k, 250k;-urther studies are needed in order to better understand and
300k, 350k, and 400k bps, and PLR values of 0.1%, 0.4%gcharacterize the interactions among the different types-of
1%, 3%, 5%, and 10%. The combination model has- tifacts and their relation to video quality.
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