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In this work, we investigate the benefits of incorporating saliency maps
obtained with visual attentioncomputationalmodels into three image
quality metrics. In particular, we compare the performanceof simple
quality metrics with quality metrics that incorporate saliency maps
obtained using three popular visual attention computational models.
Results show that performance of simple quality metrics canbe
improved by adding visual attention information. Nevertheless, gains in
performance depend on the precision of the visual attentionmodel, the
type of distortion, and the characteristics of the quality metric.

Introduction: A big effort in the scientific community has been devoted to
the development of better image and video quality metrics that incorporate
human visual system (HVS) features and, therefore, correlate better with
the human perception of quality [2]. A recent development inthe area
consists of trying to incorporate aspects of visual attention in the design
of quality metrics, using the assumption that distortions appearing in less
salient areas might be less visible and, therefore, less annoying.

Initial studies have reported that the incorporation ofsubjectivesaliency
maps increases the performance of quality metrics [5]. Subjective saliency
maps are obtained through psycho-physical experiments using an eye-
tracker equipment which records where subjects are fixatingas they look at
pictures. Although subjective saliency maps are considered as the ground-
truth in visual attention, they cannot be used in real-time applications.
Thus, in order to incorporate visual attention aspects intothe design of
image quality metrics, we have to use visual attentioncomputational
models to generateobjectivesaliency maps.

Very few works tested the incorporation of specific computational
attention models into image quality metrics [9]. Up to date,there has been
no work that compared the incorporation of visual attentioncomputation
models versus subjective saliency maps. In this work, we investigate the
benefit of incorporating objective saliency maps into threeimage quality
metrics. We compare the performance of the original qualitymetrics with
the performance of quality metrics that incorporateobjective saliency
maps. Also, we study the effects that different types of degradations have
on the computational model and, consequently, on the performance of the
final metric.

Incorporation of Visual Attention Models:Visual attention is a feature
of the HVS that is responsible for defining which areas of the scene
are relevant and should be attended. There are two visual selection
mechanisms:bottom-upand top-down. The bottom-up mechanism is an
automated selection that is controlled mostly by the signal. It is fast and
short lasting, being performed as a response to low-level features that
are perceived asvisually salient. The top-down mechanism is controlled
by higher cognitive factors and external influences, such assemantic
information, viewing task, and personal preferences, context. It is slower
and requires a voluntary effort.

In this work, we consider three popular bottom-up visual attention
computational models: Itti’s model [3], Achantaet al.’s model [1], and
GAFFE model (Gaze-Attentive Fixation Finding Engine) [6].For a given
image, these models generate a gray-scale saliency map indicating image
regions that are most likely to attract attention. In the saliency maps, higher
luminance values correspond to higher saliency pixels, while lower values
correspond to lower saliency ones. Fig. 1(a) depicts the image ‘Caps’,
while the corresponding saliency maps generated using Itti’s, Achanta’s,
and GAFFE models are depicted in Figs. 1.(b), (c), and (d), respectively.
We used the subjective saliency maps from the TUD LIVE Eye Tracking
database as our visual attentionground-truth[4]. These saliency maps were
collected in a subjective experiment that used twenty-ninesource images
from the LIVE database [7]. Fig. 1(e) depicts the subjectivesaliency map
corresponding to the image ‘Caps’.

We combine the information from the saliency maps into threedifferent
full-reference (FR) image quality metrics: Mean Square Error (MSE),
Peak Signal-to-Noise Ratio (PSNR), and Structural Similarity (SSIM)
index [8]. The MSE and PSNR error maps are calculated using the

(a) Original image ‘Caps’

(b) Itti’s saliency map [3] (c) Achanta’s saliency map [1]

(d) GAFFE saliency map [6] (e) subjective saliency map [4]

Fig. 1. Saliency maps corresponding to the image ‘Caps’.

following equations:

MSE(x, y) = (Io(x, y)− It(x, y))
2 , (1)

and
PSNR(x, y) = 20 log10

(
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)

(2)

where Io(x, y) is the original image pixel,It(x, y) is the test image
pixel, MAXi is the highest intensity level of the pixels, andx and y
are the horizontal and vertical coordinates. For SSIM, we used the local
SSIM(x, y) map, as described in [7]. The combination or integration
process consists of using the gray-scale pixel values of thesaliency maps
asweightsfor the error maps generated by the three quality metrics. The
modified saliency-based quality metrics for the corresponding FR metrics
are given as
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whereSAL(x, y) is the saliency map pixel and MET(x, y) is the error map
pixel calculated using one of the FR quality metric (SSIM, PSNR or MSE).

Simulation Results:The performance of an image quality metric is
measured by how well its output scores (quality estimates) correlate to
the Mean Observer Scores (MOS) given by observers in a subjective
experiment. To compare the performance of the three original quality
metrics with the saliency-based quality metrics (Eq. 3), weused the LIVE
database [7] that contains images with the following degradations: JPEG,
JPEG2k, Gaussian Blur (GB), Fast Fading (FF), and White Noise (WN).

Although the saliency map is generally estimated using the original
images, for all computational models we obtain saliency maps using both
the original and test images since we want to analyze how the performance
of the saliency-based metrics is affected by the use of degraded maps. To
make sure that the differences in performance are not by chance, we also
test the performance with ‘switched’ (sw) saliency maps that consisted
of picking a random saliency map corresponding to another image in the
database. We also test the incorporation of subjective (su)saliency maps.
To identify the different models, we substitute the initials SM in Eq. 3
by the first letter of the saliency map used (‘I’ for Itti, ‘A’ for Achanta,
and ‘G’ for GAFFE) followed by ‘o’ (original) or ‘t’ (test), indicating
whether the computational model obtained the saliency map using the
original or test image,SAL. In Tables 1-3, we present the Spearman
correlation coefficients for MSE, PSNR and SSIM and their saliency-based
versions. Correlation values of saliency-based metrics that represent a gain
in comparison to the original metrics are depicted inbold.

For saliency-based MSE and PSNR metrics, when we consider each
individual distortion (columns 2-6 of Tables 1 and 2), the correlation
coefficients improve for almost all distortions, with performance gains
varying from 1.2% to 2.1%. The only exception is the degradation White
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Table 1: Spearman correlation coefficients for MSE metric.

Model JPEG JPEG2k GB FF WN All
MSE 0.90117 0.88872 0.78249 0.88549 0.98564 0.87270

Su-MSE 0.91891 0.91338 0.81171 0.90894 0.98526 0.89080
Io-MSE 0.91702 0.90620 0.80246 0.90200 0.98530 0.88650
It-MSE 0.91895 0.90500 0.80360 0.90250 0.98550 0.88620

Ao-MSE 0.91187 0.90757 0.80522 0.90432 0.98548 0.88650
At-MSE 0.91170 0.90470 0.79640 0.90180 0.98560 0.88480
Go-MSE 0.91670 0.91020 0.79140 0.90510 0.98530 0.88790
Gt-MSE 0.91780 0.91150 0.79030 0.90430 0.98520 0.88830
Sw-MSE 0.90091 0.89250 0.74067 0.87540 0.98497 0.86860

Table 2: Spearman correlation coefficients for PSNR metric.

Model JPEG JPEG2k GB FF WN All
PSNR 0.90120 0.88872 0.78249 0.88549 0.98564 0.87270

Su-PSNR 0.91891 0.91338 0.81159 0.90894 0.98523 0.89080
Io-PSNR 0.91696 0.90620 0.80246 0.90200 0.98530 0.88240
It-PSNR 0.91696 0.90500 0.80370 0.90250 0.98550 0.88620

Ao-PSNR 0.91187 0.90757 0.80522 0.90432 0.98548 0.88650
At-PSNR 0.91170 0.90470 0.79640 0.90180 0.98560 0.88480
Go-PSNR 0.91670 0.91020 0.79140 0.90510 0.98530 0.88790
Gt-PSNR 0.91780 0.91150 0.79030 0.90430 0.98520 0.88830
Sw-PSNR 0.90091 0.89250 0.74070 0.87550 0.98500 0.86860

Noise for which the performance decreases with the incorporation of any
type of saliency map. Because of the similarity between PSNRand MSE,
the correlation values of their corresponding saliency-based metrics are
very similar. The best gains are obtained for the subjectivemaps (1.7%
to 2.5%) and GAFFE objective maps (1.6% to 2.2%). Achanta’s model
presents the best performance for the degradation GaussianBlur.

For saliency-based SSIM, considering again only the individual
distortions (columns 2-6 of Table 3), the performance improves when
subjective and GAFFE saliency maps are used. Although GAFFEis the
computational model with the best performance, the gains inperformance
vary with the distortions. The gain for JPEG is only 0.03%, while for
other distortions they range from 0.2% to 1%. When Achanta and Itti
models are used there is no improvement for JPEG and JPEG2k. For the
other degradations, using Itti and Achanta models providesimprovement
gains from 0.06% to 1.2%. The degradation corresponding to the worst
performance is White Noise, with gains from 0.06% to 0.4%. For Gaussian
Blur, Achanta’s model incurs in a higher performance gain (1.2%) than
Itti’s model (0.16%) or GAFFE (0.28%).

For the set containing all types of distortions (‘All’ – column 7 of
Tables 1-3), the correlation coefficients of saliency-based metrics show
gains raging from 1.1% to 1.9%. The subjective saliency mapsshow
the highest gain in performance, followed by the GAFFE saliency maps
generated from original images. The saliency maps obtainedfrom test
images presented an inferior performance for both GAFFE andItti models,
but a better performance for Achanta. For the switched saliency maps, the
performance was worse than with any other saliency map. These results
seem to point out that the precision of the saliency map has animpact on
the performance of the metrics. The correlation values are comparable to
the values found by other researchers [5].

Overall, the performance gains for MSE and PSNR were higher than
for SSIM. This is expected since SSIM already includes some of the
same parameters (e.g. contrast and texture) that are taken into account
by attention models. The computational model that presentsthe best
performance is GAFFE. Although the results of GAFFE for SSIMare not
as significant as for PSNR and MSE, the gains in performance are close
(sometimes higher) than what is obtained with subjective saliency maps.
For Gaussian Blur, the best performance model is Achanta’s –the simplest
of the three models tested. Blur removes image details making it easier
for simpler models to find salient areas. Most models shows noor very
small gain in performance for White Noise. Noise adds more details to the
saliency map, making more difficult to find salient areas.

Conclusions:Our results show that the computational models were able
to improve the performance of the image quality metrics tested. The
computational model that presented the best performance was GAFFE with
gains slightly lower than the subjective saliency maps. Nevertheless, the
improvement in performance was higher for the simpler metrics (PSNR
and MSE) than for the more complex metric (SSIM). The resultsalso
showed that the performance depended on distortion type, with White
Noise presenting the lowest gains.
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