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In this work, we investigate the benefits of incorporatinesaey maps

obtained with visual attentiomomputationalmodels into three image
quality metrics. In particular, we compare the performan€esimple

quality metrics with quality metrics that incorporate ealty maps
obtained using three popular visual attention computatianodels.

Results show that performance of simple quality metrics ¢@n
improved by adding visual attention information. Nevelgiss, gains in
performance depend on the precision of the visual attemtiodel, the

type of distortion, and the characteristics of the qualigtmia.

Introduction: A big effort in the scientific community has been devoted to

the development of better image and video quality metriasiticorporate
human visual system (HVS) features and, therefore, coerdetter with
the human perception of quality [2]. A recent developmenthe area
consists of trying to incorporate aspects of visual attentn the design
of quality metrics, using the assumption that distortioppearing in less
salient areas might be less visible and, therefore, lessyammn

Initial studies have reported that the incorporatiosufjectivesaliency
maps increases the performance of quality metrics [5]. &g saliency
maps are obtained through psycho-physical experimentsy ueEn eye-
tracker equipment which records where subjects are fixasrtbey look at
pictures. Although subjective saliency maps are consitlasethe ground-
truth in visual attention, they cannot be used in real-tirppligations.
Thus, in order to incorporate visual attention aspects theodesign of
image quality metrics, we have to use visual attenttmmputational
models to generatebjectivesaliency maps.

Very few works tested the incorporation of specific compatsl
attention models into image quality metrics [9]. Up to déitere has been
no work that compared the incorporation of visual attentomputation
models versus subjective saliency maps. In this work, westigate the
benefit of incorporating objective saliency maps into threage quality
metrics. We compare the performance of the original quatiggrics with
the performance of quality metrics that incorporatgjective saliency
maps. Also, we study the effects that different types of aegtions have
on the computational model and, consequently, on the pedioce of the
final metric.

Incorporation of Visual Attention ModelsVisual attention is a feature
of the HVS that is responsible for defining which areas of tbens
are relevant and should be attended. There are two visuattwsed

(a) Original image ‘Caps’

(b) Itti’s saliency map [3] (c) Achanta’s saliency map [1]

(d) GAFFE saliency map [6] (e) subjective saliency map [4]

Fig. 1. Saliency maps corresponding to the image ‘Caps’.

following equations:
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where I,(z,y) is the original image pixell:(z,y) is the test image
pixel, M AX; is the highest intensity level of the pixels, ardand y
are the horizontal and vertical coordinates. For SSIM, wedube local
SSIM(z,y) map, as described in [7]. The combination or integration
process consists of using the gray-scale pixel values ofaliency maps
asweightsfor the error maps generated by the three quality metrics. Th
modified saliency-based quality metrics for the correspun@&R metrics
are given as
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whereSAL(z, y) is the saliency map pixel and MEZ, y) is the error map
pixel calculated using one of the FR quality metric (SSIMNRSor MSE).

mechanismsbottom-upand top-down The bottom-up mechanism is ang; ation ResultsThe performance of an image quality metric is

automated selection that is controlled mostly by the sigias fast and
short lasting, being performed as a response to low-lewalufes that

are perceived asisually salient The top-down mechanism is controlled

by higher cognitive factors and external influences, suclseamantic
information, viewing task, and personal preferences, exdntt is slower
and requires a voluntary effort.

In this work, we consider three popular bottom-up visuaérgibn
computational models: Itti's model [3], Achan& al’s model [1], and
GAFFE model (Gaze-Attentive Fixation Finding Engine) [Bar a given
image, these models generate a gray-scale saliency maatingi image
regions that are most likely to attract attention. In théesaly maps, higher
luminance values correspond to higher saliency pixelsledbiver values
correspond to lower saliency ones. Fig. 1(a) depicts thegari€aps’,
while the corresponding saliency maps generated usirig, Wichanta’s,
and GAFFE models are depicted in Figs. 1.(b), (c), and (dpeetively.
We used the subjective saliency maps from the TUD LIVE EyeHiray

database as our visual attentgmund-truth[4]. These saliency maps were

collected in a subjective experiment that used twenty-sm&ce images
from the LIVE database [7]. Fig. 1(e) depicts the subjecsigkency map
corresponding to the image ‘Caps’.

We combine the information from the saliency maps into thierent
full-reference (FR) image quality metrics: Mean SquareoE(MSE),
Peak Signal-to-Noise Ratio (PSNR), and Structural Sintyla(SSIM)

index [8]. The MSE and PSNR error maps are calculated usieg tnwdividual distortion (

measured by how well its output scores (quality estimatesjetate to
the Mean Observer Scores (MOS) given by observers in a givgec
experiment. To compare the performance of the three ofigjnality
metrics with the saliency-based quality metrics (Eq. 3)used the LIVE
database [7] that contains images with the following deatiads: JPEG,
JPEG2k, Gaussian Blur (GB), Fast Fading (FF), and White N@GéN).

Although the saliency map is generally estimated using thginal
images, for all computational models we obtain saliency sngging both
the original and test images since we want to analyze howetfermance
of the saliency-based metrics is affected by the use of degranaps. To
make sure that the differences in performance are not bycehave also
test the performance with ‘switched’ (sw) saliency mapg tansisted
of picking a random saliency map corresponding to anothagarin the
database. We also test the incorporation of subjectives@igncy maps.
To identify the different models, we substitute the ingi@M in Eq. 3
by the first letter of the saliency map used (I’ for Itti, ‘Aof Achanta,
and ‘G’ for GAFFE) followed by ‘o’ (original) or ‘t' (test), mdicating
whether the computational model obtained the saliency nsapguthe
original or test imageSAL. In Tables 1-3, we present the Spearman
correlation coefficients for MSE, PSNR and SSIM and theiesaly-based
versions. Correlation values of saliency-based metriasrépresent a gain
in comparison to the original metrics are depictethahd.

For saliency-based MSE and PSNR metrics, when we consiadér ea
columns 2-6 of Tables 1 and 2), theretation
coefficients improve for almost all distortions, with perfance gains
varying from 1.2% to 2.1%. The only exception is the degriadatVhite

ELECTRONICS LETTERS 24th February 2012 Vol. 00 No. 00



Table 1. Spearman correlation coefficients for MSE metric.

WN
0.98564
0.98526
0.98530
0.98550
0.98548
0.98560
0.98530
0.98520
0.98497

All
0.87270
0.89080
0.88650
0.88620
0.88650
0.88480
0.88790
0.88830
0.86860

JPEG2k
0.88872
0.91338
0.90620
0.90500
0.90757
0.90470
0.91020
0.91150
0.89250

GB
0.78249
0.81171
0.80246
0.80360
0.80522
0.79640
0.79140
0.79030
0.74067

FF
0.88549
0.90894
0.90200
0.90250
0.90432
0.90180
0.90510
0.90430
0.87540

Model
MSE
Su-MSE
lo-MSE
It-MSE
Ao-MSE
At-MSE
Go-MSE
Gt-MSE
Sw-MSE

JPEG
0.90117
0.91891
0.91702
0.91895
0.91187
0.91170
0.91670
0.91780
0.90091

Table 2: Spearman correlation coefficients for PSNR metric.

WN
0.98564
0.98523
0.98530
0.98550
0.98548
0.98560
0.98530
0.98520
0.98500

All
0.87270
0.89080
0.88240
0.88620
0.88650
0.88480
0.88790
0.88830
0.86860

JPEG2k
0.88872
0.91338
0.90620
0.90500
0.90757
0.90470
0.91020
0.91150
0.89250

GB
0.78249
0.81159
0.80246
0.80370
0.80522
0.79640
0.79140
0.79030
0.74070

FF
0.88549
0.90894
0.90200
0.90250
0.90432
0.90180
0.90510
0.90430
0.87550

M odel
PSNR
Su-PSNR
lo-PSNR
It-PSNR
Ao-PSNR
At-PSNR
Go-PSNR
Gt-PSNR
Sw-PSNR

JPEG
0.90120
0.91891
0.91696
0.91696
0.91187
0.91170
0.91670
0.91780
0.90091

Noise for which the performance decreases with the incatmr of any
type of saliency map. Because of the similarity between PENRRMSE,
the correlation values of their corresponding saliencgeldametrics are
very similar. The best gains are obtained for the subjectia@s (1.7%
to 2.5%) and GAFFE objective maps (1.6% to 2.2%). Achantaisleh
presents the best performance for the degradation Gawkian

For saliency-based SSIM, considering again only the iddiai
distortions (columns 2-6 of Table 3), the performance impsowhen
subjective and GAFFE saliency maps are used. Although GAEREe
computational model with the best performance, the gaipeiformance
vary with the distortions. The gain for JPEG is only 0.03%,ilevtior
other distortions they range from 0.2% to 1%. When Achanta it
models are used there is no improvement for JPEG and JPEGRkhé-
other degradations, using Itti and Achanta models proviagsovement
gains from 0.06% to 1.2%. The degradation correspondindne¢ontorst
performance is White Noise, with gains from 0.06% to 0.4%.Gaussian
Blur, Achanta’s model incurs in a higher performance gai2%d) than
Itti's model (0.16%) or GAFFE (0.28%).

For the set containing all types of distortions (All' — cohm 7 of
Tables 1-3), the correlation coefficients of saliency-tdaseetrics show
gains raging from 1.1% to 1.9%. The subjective saliency mstpsy
the highest gain in performance, followed by the GAFFE saljemaps
generated from original images. The saliency maps obtaired test
images presented an inferior performance for both GAFFBtéindodels,
but a better performance for Achanta. For the switchedrsafienaps, the
performance was worse than with any other saliency map.eTteslts
seem to point out that the precision of the saliency map haspact on
the performance of the metrics. The correlation values aneparable to
the values found by other researchers [5].

Overall, the performance gains for MSE and PSNR were higtean t
for SSIM. This is expected since SSIM already includes sorméhe
same parameters (e.g. contrast and texture) that are tat@mécount
by attention models. The computational model that presémsbest
performance is GAFFE. Although the results of GAFFE for SSiid not
as significant as for PSNR and MSE, the gains in performareelase
(sometimes higher) than what is obtained with subjectiViersey maps.
For Gaussian Blur, the best performance model is Achantifie simplest
of the three models tested. Blur removes image details rgakieasier
for simpler models to find salient areas. Most models showsrneery
small gain in performance for White Noise. Noise adds motailigo the
saliency map, making more difficult to find salient areas.

Table 3: Spearman correlation coefficients for SSIM metric.

FF
0.93681
0.94480
0.94287
0.94360
0.94462
0.94370
0.94660
0.94580
0.93302

WN
0.96410
0.96889
0.96760
0.96960
0.96473
0.96700
0.96860
0.96940
0.95786

All
0.92210
0.93250
0.93090
0.93200
0.93320
0.92990
0.93350
0.93300
0.91700

Model
SSIM
Su-SSIM
10-SSIM
1t-SSIM
Ao-SSIM
At-SSIM
Go-SSIM
Gt-SSIM
Sw-SSIM

JPEG
0.96958
0.97029
0.96874
0.95795
0.96821
0.96830
0.96990
0.96880
0.96388

JPEG2k
0.95060
0.95188
0.94850
0.95060
0.95000
0.94840
0.95560
0.95410
0.94593

GB
0.92506
0.92709
0.92657
0.92730
0.93663
0.93580
0.92770
0.92550
0.89801
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Conclusions: Our results show that the computational models were able

to improve the performance of the image quality metricsesiThe

computational model that presented the best performans A& FE with

gains slightly lower than the subjective saliency maps.ddeless, the
improvement in performance was higher for the simpler rogt(PSNR
and MSE) than for the more complex metric (SSIM). The resalt®

showed that the performance depended on distortion typ, White

Noise presenting the lowest gains.
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