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Abstract— This paper reports the results of a psychometric 
experiment aimed at investigating the visibility and annoyance 
of packet-loss artifacts, with a focus on understanding to what 
extent their presence influences viewing behavior. The rationale 
behind   this   study   is   that   packet   loss   artifacts   might   “distract”  
visual attention, creating visual saliency themselves, thereby 
becoming more visible. In turn, higher artifact visibility might 
impact their annoyance. Our study involved seven videos, 
compressed at a very high bitrate (thus free of spatial artifacts) 
and impaired by discarding values of packet loss ratios. We 
tracked the observers’ eye-movements while (1) they assessed 
the annoyance of impaired videos and (2) looked freely at 
pristine videos. Our results show that the viewing behavior 
significantly changes from pristine to impaired videos, where 
this change is related to both properties of the video and to the 
annoyance of the artifacts presented.  

I. INTRODUCTION  
When digitally compressed, videos become more susceptible 
to artifacts originating from the loss of bitstream packets 
during transmission. These artifacts are spatially localized, 
and when combined with other spatial artifacts introduced by 
the compression process (such as blurriness and blockiness), 
can become very annoying [1]. To ensure high Quality of 
Experience, it is thus of primary importance to deploy 
objective quality metrics that can automatically detect the 
appearance of such artifacts, quantify their annoyance in a 
way that is consistent with visual perception, and steer 
corrective or quality improvement actions [2].  
As a first step to design such objective quality metrics, we 
investigate the annoyance provoked   exclusively   by   “packet  
loss”  artifacts.  Our  focus  is  on  understanding  to  what  extent  
packet loss artifacts influence viewing behavior, and whether 
this influence has an impact on the resulting annoyance. 
Multiple studies [3-6] showed indeed that a relationship 
exists between viewing behavior, impairment visibility and 
annoyance, and that unveiling this relationship can be 
beneficial to the design of objective quality metrics [7,8]. 
This relationship has been shown to hold for packet-loss 
artifacts [6], which resulted more annoying when appearing 

in the region of interest of a video than in less salient areas. 
What has been overlooked so far is the potential of packet 
loss   impairments   for   “distracting”   visual   attention   and  
creating visual saliency themselves. This would make them 
more visible and have an effect on their annoyance. To better 
understand this aspect, we designed an eye-tracking study 
during which subjects were asked to (1) freely look at pristine 
videos and (2) judge annoyance of a set of impaired versions 
of those videos. To detect changes in the viewing behavior, 
we conducted an analysis of the saliency maps [9], which are 
visual representations of the probability that a location (pixel) 
in a scene is attended by the average observer. Changes in 
saliency between pristine and impaired videos can point out a  
“distraction”   of   visual   attention from the natural region of 
interest to other areas in the scene (e.g., where packet-loss 
artifacts appear). We show in the reminder of this paper that 
these changes take place and that they are related to the 
annoyance of the impairments appearing in the videos. 
 

II. EXPERIMENTAL SETUP 
A. Video Material 
We selected seven 720p videos from the Consumer Digital 
Video Library [10], representing different types of content 
and covering different motion characteristics. The first frame 
of each video is depicted in Figure 1. Their Spatial (SI) and 
Temporal (TI) perceptual information measures (computed as 
per [11]) are illustrated in Figure 2.a. All videos were 
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Figure 1. Screenshots of the first frame of the sequences included in the 
packet loss visibility study 

 



encoded using the H.264/AVC codec at very low 
compression rate (approximately 120 Mbps), with 8 packets 
per frame. This allowed us to avoid introducing spatial 
artifacts in the compressed videos. The coding process 
generated three sequences per video, with a Group of Pictures 
(GOP) size set to 4, 8 and 12, respectively. Packet loss 
artifacts were then generated by dropping data packets from 
the bitstream. In real transmission there are several 
techniques that can be used to avoid  undecodable bitstreams, 
like for example re-transmission of  the parameter packets. 
To avoid generating artifacts more visible than artifacts found 
in typical video digital transmission, a  simple error 
concealment technique was used consisting of replacing the 
lost packet by the co-located packet from the previous frame 
during decoding. The packet loss ratios, p_loss, for all videos 
were 0.7%, 2.6%, 4.3% and 8.1%. These parameters were 
considered to replicate settings commonly found in real-
world video streaming applications. In total, we generated 7 
videos x 3 GOP x 4 p_loss ratios = 84 sequences. The 7 
original pristine videos were added to the set, making a total 
of 13 different settings per original video, eventually resulting 
into 91 test sequences.  
 
B. Methodology 
Fifteen observers were asked to view the sequences and 
indicate whether they perceived any impairment in the 
videos; if so, they had to express how annoying the artifacts 
were on a continuous annoyance scale ranging between 0 to 
100. A single stimulus setup with implicit reference [12] was 
adopted for the task. All observers went through a thorough 
training stage in order to help them understanding their task 
and the characteristics of the artifacts included in the test 
sequences. After concluding the training, the actual 
experiment started, divided in two sessions to avoid fatigue 
effects.  
The stimuli were displayed on a 23" Samsung LCD monitor 
(Sync Master XL2370HD). The distance between the 
subject’s  eyes  and  the  video  monitor  was  kept  at 3 times the 
screen height using a chinrest. Illumination settings were 
compliant to ITU-T BT.500-11 specification [12]. 
A SensoMotoric Instruments GmbH Eye Tracker was used 
throughout the experiment to record the eye-movements of 

the participants during their scoring task. A free viewing 
session was also performed at the beginning of every 
experiment, where participants were asked to freely look at 
the seven pristine videos. The eye tracker had a sampling rate 
of 50/60 Hz, a pupil tracking resolution of 0.1° and a gaze 
position accuracy of 0.5 - 1°. 
 

III. PRELIMINARY ANALYSIS: MEAN ANNOYANCE VALUES 
AND FIXATION DURATION 

Mean Annoyance Values (MAV) were computed for each of 
the 91 sequences following the procedure advised in [12]. As 
we were primarily interested in viewing behavior in presence 
of packet-loss artifacts, a thorough analysis of MAV in 
relation to the video characteristics is considered outside the 
scope of this paper. We report though the Mean MAV 
(MMAV) computed across all 13 versions of a specific video, 
as shown in Figure 2.b. It is interesting to notice how the 
MMAV change with video content: the videos into_trees and 
barbecue obtain on average a high annoyance score (MMAV 
of 65.07 and 57.61 on a 100 point scale, respectively), 
whereas impaired versions of the video park run seem to 
present overall just slightly annoying artifacts (MMAV of 
17.15). These data suggest that some specific video content 
might mask packet-loss impairments. This observation is in 
line with previous results [5] and should be taken into 
account in the following analysis.  
To analyze viewing behavior we rely throughout the rest of 
the paper on fixation data only, since these data are most 
informative with respect to the location of relevant areas in 
the image [9]. As a preliminary analysis of the viewing 
behavior we looked into the duration of the fixations recorded 
during both the free looking and the scoring task. Figure 3 
shows the average fixation duration per video content for 
both tasks. The videos are ordered according to increasing 
MMAV. Differently from previous results in the field [4, 5], 
we did find a significant difference (F = 24.72, df = 1, p = 
1.38 e-006, computed over the average fixation duration per 
video and observer, i.e. 7x15 = 105 cases) between the 
fixation duration when freely watching videos (390  22 ms) 
and when scoring (476  25 ms). Furthermore, it seems that 
the duration of fixation rather than depending on MMAV (as 
found in [5]), depends on the spatial and temporal properties 
of the video content. To further look into this aspect, we 
define Diff_fdi,k as the difference in fixation duration between 
the two tasks for video content i distorted with setting k: 
 

 

where fd_FL(vi) is the average fixation duration (across all 
fixations of all observers) when freely looking at video vi and 
fd_SC(vi,k) is the average fixation duration when scoring the 
k-th impaired version of video vi. Table I shows a significant 
correlation of Diff_fd with the perceptual characteristics of 
the pristine videos (SI and TI) and a weaker correlation with 
parameters that regulate the impairments (p_loss and 
GOP_size). These results suggest that together with a strong 

13,...17,...,1)(_)(__ ,,  kivFLfdvSCfdfdDiff ikiki

  
(a)                                               (b) 

Figure 2.  (a) Temporal and spatial characteristics of the videos included 
in the experiment; (b) Mean Annoyance Values averaged across all the 

distorted versions of each video. 

 



influence of the video content, packet loss artifacts might also 
affect viewing behavior.  

IV. ANALYSIS OF ATTENTION DEPLOYMENT 
To look deeper into the changes in viewing behavior on the 
appearance of packet loss impairments, we conducted an 
analysis according to the methodology suggested in [9]. In 
videos, saliency maps are estimated over time windows in 
order to take into account the possibility that the content of 
the scene (and therefore its region of interest) changes over 
time. Typically, the length of a time window is set to the 
length of a video frame (in our case, 20 ms, as our videos 
were rendered at 50 fps). We argue that such a short time 
frame gives a too fine granularity, yielding too much 
variability among saliency maps. We therefore define a time 
window of 400 ms, being this value close to the average 
duration of a fixation as found in our experiment (see Section 
III).  
To compute the saliency map for timeslot t of video v we first 
gathered all related fixations deployed by all observers into a 
fixation map. Then, we converted the fixation map into a 
saliency map by applying a Gaussian patch with a width 
approximating the size of the fovea (about 2° visual angle) to 
each fixation (as per [9]). 
The above procedure was applied to the following sets of 
videos, creating for each of them 10000/400(ms) = 25 
saliency maps: 
 FL_G1: the 7 pristine videos watched under a free 

looking task; 
 SC_HQ: the 7 pristine videos watched under the 

annoyance scoring task; 
 SC_LQ: the 84 impaired videos watched under the 

annoyance scoring task. 

As an indicator of changes in viewing behavior due to packet-
loss artifacts, we looked into (dis)similarities among saliency 
distributions for the three groups of maps mentioned above. 
Several measures exist to quantify similarities among 
saliency maps [9]; in this work we used: 
(1) the Linear Correlation Coefficient (LCC)  [-1, 1], 

which quantifies the strength of the linear relationship 
between two saliency maps. A value of LCC = 1 
indicates perfect similarity among maps, while LCC = 0 
indicates uncorrelated maps. 

(2) The Structural Similarity Index (SSIM, [13])  [-1, 1], 
which indicates the extent to which the structural 
information of a map is preserved in another one. Also 
here, SSIM = 1 indicates perfect similarity among maps. 

As it is well known that similarity among maps strongly 
depends on the scene content and is highly affected by inter-
observer variability [9], we also adopted here the notion of 
upper empirical similarity limit (UESL). UESL is defined as 
the maximum achievable similarity between the saliency 
maps derived from two different (groups of) humans under 
the same experimental conditions. We chose the free looking 
task as a reference condition, and to compute the UESL we 
compared the saliency maps obtained for the FL_G1 videos 
with a set of maps derived from the eye-tracking data of a 
second group of 15 observers (distinct from the 15 that took 
part in the present experiment), who freely looked at the 7 
pristine videos in the exactly same experimental conditions. 
We refer to this set of video as FL_G2. The UESL for video 
content i, i =   1,…,   7   and   similarity   measure   S,   S{LCC, 
SSIM} is therefore computed as: 
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We then computed the similarity among the saliency maps 
obtained for freely looking at pristine videos (FL_G1) and 
scoring impaired videos (SC_LQ), across all C=12 
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The resulting values are shown in figure 4 for both LCC (a) 
and SSIM (b). It is straightforward to notice that the SC_FLG1 
values are significantly lower than the UESL. This implies 
that when scoring impaired videos, the visual attention 
diverges from the one it would follow when freely looking at 
pristine videos. This result is in contrast with that obtained by 
Le Meur et al. [4]. A possible reason for this is that videos in 
[4] presented visible coding artifacts, evenly spread across the 
whole video content, whereas our videos were impaired only 
by packet loss artifacts, which are strongly locally and 
temporally localized, and as such could create saliency on 
their own.  
Before validating this hypothesis, it should be noticed that the 
change in saliency might also result from the change in 

Figure 3.  Average fixation duration (in ms) for scoring and free 
looking task. Videos are sorted according to increasing MMAV 

TABLE I.  CORRELATION BETWEEN THE DIFFERENCE IN FIXATION 
DURATION AMONG TASKS (SCORING VS. FREE-LOOKING) AND 

CHARACTERISTICS OF THE VIDEOS 

 
Impairment  

characteristics 
Video  

characteristics 
GOP_size P_loss SI TI 

Diff_fd 
Correlation .215* .229* -.334** -.600** 
significance .041 .029 .001 .000 

**. Correlation is significant at the 0.01 level (2-tailed). 
*. Correlation is significant at the 0.05 level (2-tailed). 

 

 

park run romeo and juliet cactus park joy basketball barbecue into trees
300

350

400

450

500

550

600

650
fix

at
io

n 
du

ra
tio

n 
(m

s)

 

 
Scoring task
Free Looking task



viewing task (scoring instead of free looking). To evaluate 
the impact of task on our results, we computed the similarity  
among the saliency maps obtained for scoring pristine videos 
and scoring impaired videos To do so, we computed the the 
quantity SCHQ_SCLQ by substituting SC_HQ to FL_G1 in 
equation (2). The resulting values are represented by black 
diamonds in fig. 4. If the dissimilarities in saliency between 
SC_LQ and FL_G1 were only due to task, we would expect 
SCHQ_SCLQ (similarity among maps obtained under the same 
scoring task) to have values comparable to the UESL. Figure 
4 shows instead that this is not the case, and that saliency for 
impaired videos is distributed in a different way than for 
pristine videos, even under the same scoring task. Therefore, 
the appearance of packet-loss artifacts seems to distract 
attention from its natural deployment. 
To conclude this analysis we investigated how this change of 
attention depended on objective parameters regulating the 
artifact appearance and on how annoying the artifacts were 
perceived. Figure 5.a shows how SCHQ_SCLQ(LCC) varies 
depending on the MAV of the video. For visualization 
purposes we summarized videos into 3 categories: those 
having a MAV < 30, i.e. presenting just slightly annoying 
artifacts, those having  30<MAV<60 and those with highly 
annoying artifacts, i.e. MAV > 60. Interestingly, MAV and  
SCHQ_SCLQ seem to be positively correlated (R2 = 0.249, 
significant at the 0.05 level), that is, the similarity among 
saliency maps derived from scoring pristine and impaired 
videos increases with the annoyance of the artifacts. Also 
quite interestingly SCHQ_SCLQ seems not to be correlated to 
the percentage of packets lost in the transmission. A possible 
explanation for this is that, depending on the spatial and 

temporal properties of the specific video contents, packet loss 
artifacts can be masked, and thus their potential for creating 
saliency might depend on the specific video content. Further 
investigation is needed in this sense and we demand it to 
future work. 
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(a)                                              (b) 

Figure 5.  Factors influencing the similarity among saliency maps obtained 
for scoring of pristine and impaired videos, computed through LCC: MAV 

(a) and percentage of lost packets (b) 

   
         (a)     

 
(b) 

Figure 4.  Similarity among saliency maps obtained for free looking of 
pristine videos and scoring of impaired videos, computed through LCC 
(a) and SSIM (b). videos are ordered according to increasing MMAV. 
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