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Abstract. A recent development in the area of image and video quality consists of trying to incorporate aspects
of visual attention in the design of visual quality metrics, mostly using the assumption that visual distortions
appearing in less salient areas might be less visible and, therefore, less annoying. This research area is
still in its infancy and results obtained by different groups are not yet conclusive. Among the works that
have reported some improvements, most use subjective saliency maps, i.e., saliency maps generated from
eye-tracking data obtained experimentally. Other works address the image quality problem, not focusing on
how to incorporate visual attention into video signals. We investigate the benefits of incorporating bottom-up
video saliency maps (obtained using Itti’s computational model) into video quality metrics. In particular, we com-
pare the performance of four full-reference video quality metrics with their modified versions, which had saliency
maps incorporated into the algorithm. Results show that the addition of video saliency maps improve the per-
formance of most quality metrics tested, but the highest gains were obtained for the metrics that only took into
consideration spatial degradations. © 2014 SPIE and IS&T [DOI: 10.1117/1.JEI.23.6.061107]
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1 Introduction
In modern digital imaging systems, the quality of the visual
content can undergo a decrease due to impairments intro-
duced during capture, transmission, storage, and/or display,
as well as by any signal processing algorithm that may be
applied to the content along the way (e.g., compression).
The most accurate way to determine the quality of a video
is by using psychophysical experiments with human sub-
jects. Unfortunately, these experiments are very expensive,
time-consuming, and hard to incorporate into a design proc-
ess or an automatic quality of service control. Therefore,
there is a great need for objective quality metrics, i.e., algo-
rithms that can predict visual quality as perceived by human
observers.

Objective visual quality metrics can be classified as data
metrics, which measure the fidelity of the signal without con-
sidering its content, or picture metrics, which estimate qual-
ity considering the visual information contained in the data.
In the past, quality measurements in the area of image
processing were largely limited to a few data metrics, such
as mean absolute error, mean square error (MSE), and peak
signal-to-noise ratio (PSNR), supplemented by limited sub-
jective evaluation. Over the years, data metrics have been
widely criticized for not correlating well with perceived qual-
ity measurements.1

One of the major reasons why data metrics do not gen-
erally perform as desired is because they simply perform
a pixel to pixel comparison of the data, not considering
the visual content characteristics. In the last decades, several
image and video quality metrics that incorporate human vis-
ual system (HVS) features into their design have been

proposed, achieving a better correlation with the human per-
ception of quality.1,2 Among the HVS features used in qual-
ity assessment, we can cite contrast sensitivity function,
visual masking (luminance and pattern masking), multichan-
nel modelling, and visual attention.3,4

Visual quality metrics that try to incorporate aspects of
visual attention into their design use the assumption that
visual distortions appearing in less salient areas might be
less visible and, therefore, less annoying.5–9 Altough
there are many works in this area, this research area is
still in its infancy and results obtained by different groups
are not yet conclusive, as pointed out by Engelke et al.10

Some researchers have reported that the incorporation of
saliency maps increases the performance of visual quality
metrics,11–21 while others have reported no or very little
improvement.22–25

In a previous work,26 we investigated the benefits of
incorporating objective saliency maps into three image qual-
ity metrics [structural similarity index (SSIM), PSNR, and
MSE]. We compared the performance of the original quality
metrics with the performance of quality metrics that incor-
porate subjective saliency maps and saliency maps generated
by three different visual attention models [Itti27, a gaze-atten-
tive fixation finding engine (GAFFE)28, and Achanta29].
Also, we studied the effects that different types of degrada-
tions (jpeg or jpeg2k compression, Gaussian noise, white
noise, and fast fading) have on saliency maps and, conse-
quently, on the performance of the final metric. Our results
show that visual attention was able to improve the perfor-
mance of the tested image quality metrics. The computa-
tional model that presented the best performance was
GAFFE,28 with performance gains slightly lower than those
obtained with subjective saliency maps. The improvement in
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performance was higher for the simpler metrics (PSNR and
MSE) than for the more complex metric (SSIM).

According to previous studies,10 if motion information is
appropriately integrated, visual attention can provide a better
measure of video quality metrics than what was obtained
with image quality metrics. Therefore, in this work, we
investigate the benefits of incorporating video saliency
maps generated by Itti’s spatiotemporal (ST) attention com-
putational model27 into full-reference (FR) video quality
metrics. With this purpose, we compare the performance of
original video quality metrics with the performance of their
corresponding metrics with video saliency maps incorpo-
rated into their design. We evaluate the performance of
the metrics using two video databases: the Laboratory
for Image and Video Engineering (LIVE) video quality data-
base,30,31 which contains videos with common distortions,
and the the Institut de Recherche en Communications at
Cybernétique de Nantes/Images et Video Communications
(IRCCyN/IVC) Eyetracker SD 2009_12 database,32 which
also contains eyetracker data.

This paper is divided as follows. In Sec. 2, we briefly
describe the visual attention mechanisms and Itti’s visual
attention computational model for video signals. In
Sec. 3, we describe the video quality metrics tested in this
work. In Secs. 4 and 5, the saliency incorporation process
is described and the results are presented. Finally, in
Sec. 6, the conclusions are presented.

2 Visual Attention
When observing a scene, the human eye typically filters the
large amount of visual information available on the scene
and only attends (focuses on) to selected areas.33,34 Oculo-
motor mechanisms allow the gaze of attention to either
hold on a particular location (fixation) or to shift to another
location when sufficient information has already been col-
lected (saccades). The selection of fixations is based on
the visual properties of the scene. Priority is given to
areas with a high concentration of information, minimizing
the amount of data to be processed by the brain while maxi-
mizing the quality of the collected information.

Visual attention is, therefore, a feature of the HVS that has
the goal of reducing the complexity of scene analysis. It can
be divided into two mechanisms that, when combined, define
which areas of the scene are to be considered relevant and,
therefore, should be attended. These two mechanisms are
known as bottom-up and top-down attention selections.
The bottom-up mechanism is an automated selection that
is mostly controlled by the signal, independent of the task
being performed. It is fast and short lasting, being performed
as a response to low-level features that are perceived as vis-
ually salient and standing out from the background of the
scene. The top-down mechanism is controlled by higher cog-
nitive factors and external influences, such as semantic infor-
mation, the viewing task, personal preferences, and context.
It is slower than bottom-up attention, requiring a voluntary
effort.

The analysis of how humans perceive scenes can be per-
formed by tracking eye movements in subjective experi-
ments using eye-tracker equipment. From this type of
experiment, gaze patterns are collected and later postpro-
cessed to generate subjective saliency maps. The subjective
saliency maps obtained from these experiments are

considered ground truths of human visual attention. In a
recent work, Engelke et al.35 compared subjective saliency
maps gathered from three independently conducted eye-
tracking experiments. The comparison showed that the
maps are very similar, and the small differences that were
found have a minor impact on the applications.

Some works use subjective saliency maps to study which
aspects of visual attention are considered relevant to the qual-
ity assessment of images and videos.6,16,22,36–38 The work of
Castelhano et al.39 studied differences in eye movements for
two different tasks: visual search and memorization. Their
results show that, for images, the task influences eye move-
ment measures, including the number of fixations and gaze
duration. Liu and Heynderickx16 compared subjective
saliency maps for images collected during free-viewing
and quality scoring tasks. Their results show that saliency
maps are affected by the task. For video signals, Le Meur
et al. performed a study to compare eye movements in
free-viewing and quality scoring tasks.22 Their results did
not show significant differences between these maps. Due
to motion suppression and attentional capture effects,
differences in attention due to tasks may be more relevant
in images than videos.10 Studies also show that global dis-
tortions do not seem to affect subjective saliency maps
very much,40,41 while localized distortions (e.g., packet
loss) change the maps considerably.42

There are several works in the literature that incorporate
aspects of visual attention into the design of video and image
quality metrics.6,11–16,16–25,36,43,44 Some metrics use subjective
saliency maps.6,16,36 Liu and Heynderickx investigated the
incorporation of subjective saliency maps into a set of
image quality metrics.16 Their results show improvements
in performance for all metrics. But, the gains in performance
varied according to the metric and image content. Le Meur et
al. integrated subjective saliency maps into an original video
quality metric.22 Their results show no improvement in com-
parison to the original metric.

Although subjective saliency maps are considered as the
ground truth in visual attention, they cannot be used in
real-time applications. To incorporate visual attention aspects
into the design of video quality metrics, we have to use some
type of visual attention computational model. Several authors
have proposed visual qualitymetrics that use different types of
visual attention computational models.11–25,43,44 Barland and
Saadane integrated a saliencymodel into a blind image quality
metric.12 Cavallaro andWinkler obtained good results using a
segmentation algorithm to separate faces and background in
videos and a quality metric based on motion and color fea-
tures.18 You et al. also used semantic information (faces
and text) and a bottom-up model to generate saliency maps
for videos, which were later integrated in SSIM and
PSNR.25 Their results show improvements only for PSNR.
A later work by You et al. takes into account motion and
global quality, obtaining improvements in performance.43

Although results are not always consistent, as detailed by
Engelke et al.,35 the integration of visual attention aspects
can improve the results of video quality metrics if ST visual
attention aspects are correctly modeled and integrated. Since
for videos the task effect seem to be smaller than for
images,35 one possible approach is to use a bottom-up com-
putational visual attention model that takes into account the
ST characteristics of the video signal. In this work, we
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incorporate attention into a set of video quality metrics using
a bottom-up ST model developed by Itti.27

Itti’s model analyzes five features from the video, as
depicted in Fig. 1.27 Three of the features are considered spa-
tial features (intensity, contrast, and orientation), since only
spatial information is used to compute these features. The
intensity feature of a frame is represented by its luminance
value. The contrast feature is given by the difference between
the color components of the frame, in this case, blue/yellow
and green/ red. The orientation feature is given by the direc-
tion of the edges of the frame. Itti’s model uses four direction
angles: 0, 45, 90, and 135 deg.

The other two features of Itti’s model (flicker and motion)
are considered temporal features, since temporal information
from the video is used to compute them. The flicker feature
calculates the difference between one frame and the next
frame. The motion feature gives the direction of the objects
in the scene. As depicted in Fig. 1, Itti’s model combines the
spatial and temporal features to obtain the saliency maps for
each frame of the video. Figure 2 depicts sample frames of
two videos and their corresponding saliency maps estimated
using Itti’s visual attention computational model. In the
saliency maps, lighter areas correspond to more salient
areas, while darker areas correspond to less salient areas.

3 Video Quality Metrics
For our tests, we selected four FR quality metrics of known
good performance: the video quality metric (VQM),45 the
motion-based video integrity evaluation (MOVIE),46 the

SSIM,1 and the multiscale structural similarity index (MS-
SSIM).47 In this section, we briefly describe each of these
metrics.

3.1 Structural Similarity Index
SSIM is a very popular metric proposed by Wang and Bovik
of LIVE at the University of Texas at Austin.1 The algorithm
used by SSIM estimates the quality of an image using three
features: luminance (l), contrast (c), and structure (s). The
quality estimate of a test image y, in relation to its original
x, is given by

SSIMðx; yÞ ¼ ½lðx; yÞ�:½cðx; yÞ�:½sðx; yÞ�;

¼ ð2μxμy þ C1Þð2σxy þ C2Þðσxy þ C3Þ
ðμ2x þ μ2y þ C1Þðσ2x þ σ2y þ C2Þðσxσy þ C3Þ

;

(1)

where C1, C2, and C3 are fixed constants, μx and μy are the
average values of the pixels in the original and test images, σx
and σy are the standard deviation values of the pixels in the
original and test images, and σxy is the covariance of the pixel
values in the original and test images.For video signals, we
take the average value of the estimate given by
MS-SSIMðx; yÞ for the video frames.

Fig. 1 Block diagram of Itti’s visual attention computational model for video signals.27

Journal of Electronic Imaging 061107-3 Nov∕Dec 2014 • Vol. 23(6)

Akamine and Farias: Video quality assessment using visual attention computational models



3.2 Multiscale Structural Similarity Index
MS-SSIM is a variation of the SSIM metric proposed by
Wang et al.47 The method provides more flexibility than sin-
gle-scale SSIM in incorporating the variations of image res-
olution and viewing conditions. The MS-SSIM algorithm
iteratively applies a low-pass filter to the image and down-
samples the filtered image by a factor of two. The original
image corresponds to scale 1 and the (M − 1)’th iteration to
scale M.

At all scales, the contrast feature (c) and the structure fea-
ture (s) of SSIM are calculated. The luminance feature (l) is
only calculated for scale M. The MS-SSIM quality estimate
of an image y, in relation to its original x, is given by the
following equation:

MS-SSIMðx; yÞ ¼ ½lðx; yÞ�αM
YM

j¼1

:½cðx; yÞ�βj :½sðx; yÞ�γj: (2)

For video signals, we take the average value of the esti-
mate given by MS-SSIMðx; yÞ for the video frames.

3.3 VQM
VQM is a metric proposed by Wolf and Pinson from the
National Telecommunications and Information Admin-
istration.45 In video quality experts group (VQEG) Phase
II (VQEG, 2003), VQM presented a very good correlation
with subjective scores, showing one of the best performances
among the competitors. This metric has recently been
adopted by ANSI as a standard for objective video quality.

The algorithm used by VQM includes measurements of
the perceptual effects caused by several types of video
impairments, such as blurring, jerky/unnatural motion,
global noise, block distortion, and color distortion. These

measurements are combined into a single metric that
gives a prediction of the overall quality. The VQM algorithm
can be divided into the following stages:

• Calibration: It estimates and corrects the spatial and
temporal shifts, as well as the contrast and brightness
offsets of the processed video sequence with respect to
the original video sequence.

• Extraction of quality features: The set of quality fea-
tures that characterizes perceptual changes in the spa-
tial, temporal, and chrominance domains are extracted
from spatial-temporal subregions of the video
sequence. For this, a perceptual filter is applied to
the video to enhance a particular type of property,
such as edge information. Features are extracted
from ST subregions using a mathematical function,
then a visibility threshold is applied to these features.

• Estimation of quality parameters: A set of quality
parameters that describes the perceptual changes is
calculated by comparing features extracted from the
processed video with those extracted from the refer-
ence video.

• Quality estimation: The final step consists of calculat-
ing an overall quality metric using a linear combination
of the parameters calculated in previous stages.

3.4 MOVIE
The MOVIE metric was proposed by LIVE at the University
of Texas at Austin.46 It also has a good performance, but has
a very high computational complexity. The MOVIE algo-
rithm generates three quality estimates: a global quality esti-
mate (MOVIE), a spatial quality estimate (MOVIE-S), and a
temporal quality estimate (MOVIE-T).

Fig. 2 Sample frames of two videos (left) and their corresponding saliency maps (right) estimated using
Itti’s visual attention computational model for video signals.27

Journal of Electronic Imaging 061107-4 Nov∕Dec 2014 • Vol. 23(6)

Akamine and Farias: Video quality assessment using visual attention computational models



To generate MOVIE-S, the algorithm uses Gabor filters
and measures the degradations in each video frame sepa-
rately. To generate MOVIE-T, on the other hand, the algo-
rithm takes into consideration temporal degradations and
features affecting the video quality. To generate the overall
estimatTo generate the overall MOVIE index, the algorithm
combines MOVIE-S and MOVIE-T, as shown in the block
diagram depicted in Fig. 3.

4 Incorporation of Saliency into Quality Metrics
The visual attention integration process consists of using the
gray-scale pixel values of the saliency maps as weights for
the error maps generated by the video quality metrics. The
error maps give a perceptual measure of the physical errors
(i.e., errors calculated by the quality metric) for the pixels of
the video frame. In other words, the error maps depict the

Fig. 4 Simplified block diagram of video quality metric (VQM), showing the incorporation of the saliency
map with VQM comparison map to generate the modified metric VQM-C-VA.

Fig. 5 Simplified block diagram of VQM, showing the incorporation of the saliency map by substitution of
absolute value of temporal information by the saliency map: VQM-A-VA.

Fig. 6 Sample frames of 4 of the 10 original videos in the Laboratory for Image and Video Engineering
video quality database.30,31

Fig. 3 Block diagram of the motion-based video integrity evaluation algorithm (adapted from Ref. 46).
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spatial distribution of the perceptual errors in each video
frame. For SSIM and MS-SSIM, the error maps are obtained
using Eqs. (1) and (2), respectively, for all pixels in the video
frames.

For a given original metric (MET), the modified saliency-
based quality metric (MET-VA) is given by the following
expression:

MET-VA ¼
P

L
x¼1

P
C
y¼1 METðx; yÞ · ½1þ SALðx; yÞ�

P
L
x¼1

P
C
y¼1½1þ SALðx; yÞ� ;

(3)

where SALðx; yÞ is the saliency map pixel and METðx; yÞ is
the error map pixel calculated using the original FR quality
metric (unmodified). This integration process is used
because it is the simplest solution that allows the same
model to be used for all metrics,6 making it easier to compare
different metrics. Also, according to Redi et al.,6 the weight-
ing function in Eq. (3) provides the best performance gain
since it weighs salient regions higher, but does not nullifiy
the contribution of nonsalient regions.

For the quality metrics SSIM and MS-SSIM, the integra-
tion consists simply of using the error maps generated by
these metrics [Eqs. (1) and (2), respectively] in place of
METðx; yÞ in Eq. (3). For the metric MOVIE, besides incor-
porating the saliency map to the final error map (MOVIE-
VA), we also independently incorporate it into the spatial
error map (MOVIE-S-VA) and to the temporal error map
(MOVIE-T-VA). In other words, we consider the intermedi-
ates estimates MOVIE-S and MOVIE-T as two other metrics
and perform the incorporation of saliency maps for the error
maps of these two metrics.

Since VQM does not generate error maps as do the pre-
vious metrics, some adaptation of the incorporation process
is required. In this work, we propose two different
approaches to incorporate visual attention into VQM. The
first approach (VQM-C-VA) consists of multiplying the
saliency map by the comparison map generated by the VQM
algorithm, as shown in a simplified block diagram in Fig. 4.
Given that the comparison stage divides the frame into sev-
eral subregions, the saliency map is also divided into exactly
the same number of subregions in order to make integration
possible. After dividing the saliency maps into subregions,
the values of each region in the new region-based saliency
map are set as the average saliency value of the region.
Then, we substitute MET for the comparison map and
SAL for the region-based saliency map in Eq. (3).

The second approach (VQM-A-VA) used for VQM con-
sists of replacing the absolute value of temporal information
(ATI) of the VQM algorithm by the saliency map. ATI is
generated in the first stage of the simplified block diagram
shown in Fig. 4. In Fig. 5, the simplified block diagram of the
second approach is shown, in which ATI is substituted for the
saliency map. The feature ATI is chosen in this approach
because, in the VQM algorithm, it is used to give more
importance to certain areas of the frame. In other words,
ATI is used in the same way as the saliency map is used.

5 Results
As mentioned earlier, we tested the saliency-based metrics
using two databases: the LIVE video quality database30,31

and the IRCCyN/IVC Eyetracker SD 2009_12 database.32

The LIVE public database was created by LIVE and the
Center for Perceptual Systems at the University of Texas
at Austin. It contains a set of 150 distorted videos and cor-
responding subjective quality scores. There are four different
types of distortions in this database: MPEG-2 compression,
H.264 compression, and simulated transmission of H.264
compressed bitstreams through error-prone IP and wireless
networks. Sample frames of the 10 originals of the database
are depicted in Figs. 2 and 6.

In Table 1, we present the Pearson correlation coefficient
(PCC) and the Spearman correlation coefficient (SCC) for all
quality metrics (with and without integration of saliency
maps) when compared to the subjective data of the LIVE

Table 1 Laboratory for Image and Video Engineering database:
Pearson correlations coefficients (PCC) and Spearman correlation
coefficients (SCC) for the tested video quality metrics [structural sim-
ilarity index (SSIM), multiscale SSIM (MS-SSIM), video quality metric
(VQM), and motion-based video integrity evaluation (MOVIE)] and
their corresponding versions with incorporation of saliency maps.
The abbreviation VA corresponds to the incorporation of Itti’s saliency
maps and RN corresponds to the the incorporation of random saliency
maps.

Quality metric PCC SCC

SSIM 0.5437 0.5401

SSIM-VA 0.6381 0.6792

SSIM-RN 0.5317 0.5257

MS-SSIM 0.7084 0.7445

MS-SSIM-VA 0.7031 0.7578

MS-SSIM-RN 0.6944 0.7360

VQM 0.7297 0.7153

VQM-C-VA 0.7289 0.7138

VQM-A-VA 0.7297 0.7156

VQM-C-RN 0.7233 0.7100

MOVIE 0.7898 0.7893

MOVIE-VA 0.7901 0.7871

MOVIE-RN 0.5357 0.5808

MOVIE-S 0.7185 0.7077

MOVIE-S-VA 0.7201 0.7173

MOVIE-S-RN 0.5091 0.5282

MOVIE-T 0.8200 0.8006

MOVIE-T-VA 0.8199 0.8011

MOVIE-T-RN 0.5811 0.5943

Note: Bold values correspond to an improvement in performance,
when compared with the original metric.
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database. The abbreviation VA (visual attention) corresponds
to the models with integrated saliency maps. To make sure
that the differences in performance are not attained by
chance, we also test the performance of models integrated
with random saliency maps. These random maps were com-
puted by picking five random (fixation) points in the frame
and processing them with Gaussian filters. The abbreviation
RN corresponds to the models with integrated random
saliency maps.

As can be observed, the performance of most metrics
improves with the addition of the saliency maps. All models
with randommaps perform worse than the original models. It
is interesting to note that the highest improvements in per-
formance correspond to SSIM-VA and MOVIE-S. These
particular metrics are the ones that only take the spatial infor-
mation of the video into consideration. The best improve-
ment is obtained for SSIM-VA: a gain of 17.36% in PCC
and 25.75% in SCC (when compared to the original SSIM).

For the metrics with temporal information (MOVIE and
VQM), MOVIE-VA has the smallest improvement: a gain of
0.0036% in PCC and a loss of −0.28% in SCC (in compari-
son to the original MOVIE). VQM-A-VA has the biggest
improvement: a gain of 0.042% in SCC (in comparison to
the original VQM). MOVIE-T-VA is the metric with the
best SCC: 0.8011 (an increase of 0.062% in comparison
to MOVIE-T). These results are expected because MOVIE
is the most complex metric of the tested metrics and, there-
fore, has less room for improvement.

The IRCCyN/IVC Eyetracker SD 2009_12 database32

was created by IRCCyN/IVC. This database contains 20
standard definition original videos (720 × 576, interlaced,
50 Hz). Sample frames of 9 of the 20 originals of the data-
base are depicted in Fig. 7. To generate the test sequences,
the original videos are encoded with H.264 (JM coder
version 16.1) and transmission errors are inserted. The
chosen bit rates generate test sequences with good quality
if no transmission errors are present. The transmission errors
were varied in spatial position and duration. There are five
test conditions in the database (reference + four values of
transmission errors), which resulted in 20 × 5 ¼ 100 test
sequences. The database contains eyetracker data collected
from a free-viewing experiment and subjective quality scores
from 30 observers.

In Table 2, we present the Pearson correlation coefficients
(SCC) and Spearman correlation coefficients (PCC) for all
the metrics tested in the IRCCyN/IVC Eyetracker SD
2009_12 database. Since in this database subjective saliency
maps of the originals are available, we also tested the incor-
poration of subjective saliency maps. To identify the metrics
with incorporation of subjective saliency maps, we added the
abbreviation VA-SUB (visual attention-subjective) to the ini-
tials of the metrics in Table 2.

As can be observed, with the incorporation of saliency
maps (subjective and objective), the performance of all tested
metrics improves. The only exception is MS-SSIM-VA,
which has a PCC value of 0.7027, which is smaller than

Fig. 7 Sample frames of nine of the original videos in the IRCCyN/IVC Eyetracker SD 2009_12
database.32
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the PCC of 0.7182 for MS-SSIM. Similar to what happened
for the LIVE database, almost all models with random maps
perform similar to or worse than the original models. The
exception is VQM for which the random saliency maps
present the best performance. The highest improvements
in performance correspond to the spatial metrics: SSIM-
VA, SSIM-VA-SUB, MS-SSIM-VA, MS-SSIM-VA-SUB,
MOVIE-S-VA, and MOVIE-S-VA-SUB. Among all metrics,
the best improvements are obtained for SSIM-VA-SUB and
SSIM-VA. The increase in PCC is 35.06% for subjective
maps and 13.43% for Itti’s objective model, while the
increase in SCC is 21.26% for subjective maps and
11.48% for Itti’s objective model.

It is worth pointing out that, as expected, the increase in
performance due to incorporation of subjective maps is
higher than that for the objective maps obtained using
Itti’s computational model. This result is different from
what was obtained earlier by Le Meur et al., who did not
find significant performance improvements by incorporating
subjective saliency maps into a video quality metric.22 On the
other hand, the metric used in their work considers both tem-
poral and spatial distortions.48 As shown in this work, per-
formance is higher for simpler metrics. Given these results,
we believe there is still room for performance improvement
by choosing a computational attention model that generates
saliency maps that are more similar to subjective maps.

We can notice by comparing the results in Tables 1 and 2
that the performance of metrics with incorporation of
saliency maps is better for the IRCCyN/IVC Eyetracker
SD 2009_12 database than for the LIVE database. One pos-
sible reason for this is the fact that most videos in the
IRCCyN/IVC database have a clear attention focus, as
opposed to the videos in the LIVE database. As pointed
out by Le Meur et al.,22 the absence of a clear attention
focus causes variability between observers’ saliency maps.
And, as shown by Liu et al., the smaller the variation in
saliency maps, the larger is the performance gain achieved
by integrating saliency maps into objective metrics.37

6 Conclusions
In this work, we investigated the benefits of incorporating
subjective saliency maps in the design of FR video quality
metrics. In particular, we compared the performance of four
FR video quality metrics (SSIM, MS-SSIM, VQM, and
MOVIE) with their modified versions, which had saliency
maps incorporated to their algorithm. Results showed that
the addition of saliency maps improved the performance
of most quality metrics tested. But the highest gains in per-
formance were obtained for the spatial metrics (SSIM and
MOVIE-S metrics), i.e., for the metrics that only took spatial
degradations into consideration. As expected, the increase in
performance due to the incorporation of subjective maps is
higher than that for objective saliency maps obtained using
Itti’s computational model.
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Table 2 IRCCyN/IVC Eyetracker SD 2009_12 database: PCC and
SCC for the tested video quality metrics (SSIM, MS-SSIM, VQM, and
MOVIE) and their corresponding versions with incorporation of
saliency maps. The abbreviation VA corresponds to the incorporation
of Itti’s saliency maps, VA-SUB corresponds to the incorporation of
subjective saliency maps, and RN corresponds to the incorporation
of random saliency maps.

Quality metric PCC SCC

SSIM 0.5345 0.6761

SSIM-VA-SUB 0.7216 0.8302

SSIM-VA 0.6063 0.7537

SSIM-RN 0.5275 0.6781

MS-SSIM 0.7182 0.7913

MS-SSIM-VA-SUB 0.7295 0.9191

MS-SSIM-VA 0.7027 0.8396

MS-SSIM-RN 0.6682 0.7731

VQM 0.5598 0.6838

VQM-C-VA-SUB 0.6063 0.7395

VQM-C-VA 0.5744 0.6949

VQM-A-VA-SUB 0.5599 0.6839

VQM-A-VA 0.5744 0.6839

VQM-C-RN 0.5648 0.6904

MOVIE 0.5254 0.7307

MOVIE-VA-SUB 0.5814 0.7690

MOVIE-VA 0.5285 0.7377

MOVIE-RN 0.5255 0.7307

MOVIE-S 0.6528 0.7128

MOVIE-S-VA-SUB 0.7045 0.7654

MOVIE-S-VA 0.6560 0.7235

MOVIE-S-RN 0.6528 0.7182

MOVIE-T 0.6671 0.7172

MOVIE-T-VA-SUB 0.6973 0.7532

MOVIE-T-VA 0.6694 0.7210

MOVIE-T-RN 0.6673 0.7172

Note: Bold values correspond to an improvement in performance,
when compared with the original metric.
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