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ABSTRACT

A recent development in the area of image and video quality consists of trying to incorporate aspects of visual
attention in the design of visual quality metrics, mostly using the assumption that visual distortions appearing
in less salient areas might be less visible and, therefore, less annoying. This research area is still in its infancy
and results obtained by different groups are not yet conclusive. Among the works that have reported some
improvement, most use subjective saliency maps, i.e. saliency maps generated from eye-tracking data obtained
experimentally. Besides, most works address the image quality problem, not focusing on how to incorporate
visual attention into video signals. In this work, we investigate the benefits of incorporating saliency maps
obtained with visual attention. In particular, we compare the performance of four full-reference video quality
metrics with their modified versions, which had saliency maps incorporated to the algorithm. For comparison
proposes, we have used a database of subjective salience maps.
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1. INTRODUCTION

In modern digital imaging systems, the quality of the visual content can undergo a drastic decrease due to
impairments introduced during capture, transmission, storage, and/or display, as well as by any signal processing
algorithm that may be applied to the content along the way (e.g., compression.). Impairments are defined as
visible defects (flaws) and can be decomposed into a set of perceptual features called artifacts. Being able to
detect artifacts and improve the quality of the visual content prior to its delivery to the user is therefore crucial
to ensure a good quality of experience. The most accurate way to determine the quality of a video is by using
psychophysical experiments with human subjects. Unfortunately, these are very expensive, time-consuming
and hard to incorporate into a design process or an automatic quality of service control. Therefore, there is a
great need for objective quality metrics, i.e., algorithms that can predict visual quality as perceived by human
observers.

Objective visual quality metrics can be classified as data metrics, which measure the fidelity of the signal
without considering its content, or picture metrics, which estimate quality considering the visual information
contained in the data. Customarily, quality measurements in the area of image processing have been largely
limited to a few data metrics, such as mean absolute error (MAE), mean square error (MSE), and peak signal-
to-noise ratio (PSNR), supplemented by limited subjective evaluation. Although over the years data metrics
have been widely criticized for not correlating well with perceived quality measurements, it has been shown that
such metrics can predict subjective ratings with reasonable accuracy as long as the comparisons are made with
the same content, the same technique, or the same type of distortions.!

One of the major reasons why these simple metrics do not generally perform as desired is because they do
not incorporate any human visual system (HVS) features in their computation. It has been discovered that, in
the primary visual cortex of mammals, an image is not represented in the pixel domain, but in a rather different
manner.? Unfortunately, the measurements produced by metrics like MSE or PSNR are simply based on a pixel
to pixel comparison of the data, without considering what is the content and the relationships among pixels in
an image (or frames). In the past few years, a big effort in the scientific community has been devoted to the
development of better image and video quality metrics that incorporate HVS features (i.e. picture metrics) and,
therefore, correlate better with the human perception of quality.!>3



Recent developments in the area of visual quality include trying to incorporate aspects of visual attention
into the design of visual quality metrics,? mostly using the assumption that visual distortions appearing in less
salient areas might be less visible and, therefore, less annoying.*® This research area is still in its infancy and
results obtained by different groups are not yet conclusive, as pointed out by Engelke et al.? Some researchers
have reported that the incorporation of saliency maps increases the performance of quality metrics, while others
have reported no or very little improvement. Among the works that have reported some improvement, most use
subjective saliency maps, i.e. saliency maps generated from eye-tracking data obtained experimentally.®

In a previous work,” we investigated the benefit of incorporating objective saliency maps into three image
quality metrics (SSIM, PSNR, and MSE). We compared the performance of the original quality metrics with
the performance of quality metrics that incorporate subjective saliency maps and saliency maps generated by
three different visual attention models (Itti, GAFFE, and Achanta). Also, we studied the effects that different
types of degradations (jpeg or jpeg2k compression, Gaussian our white noise, and fast fading) have on saliency
maps and, consequently, on the performance of the final metric. Our results show that visual attention was able
to improve the performance of the image quality metrics tested. The computational model that presented the
best performance was GAFFE with gains slightly lower than the subjective saliency maps. The improvement in
performance was higher for the simpler metrics (PSNR and MSE) than for the more complex metric (SSIM).

In this work, we investigate the benefit of incorporating saliency maps generated by visual attention models
into full-reference (FR) video quality metrics. With this purpose, we compare the performance of original video
quality metrics with the performance of their corresponding video quality metrics with subjective saliency maps
incorporated into their design. We then tested the metrics using the LIVE Video Quality Database®® which
contains videos with common distortions.

This paper is divided as follows. In Section 2, we briefly describe the visual attention models. In Section
3, we decribe the video quality metrics tested in this work. In Section 4, the saliency incorporation process is
described and the results are presented and compared to the original results. Finally, in Section 5 the conclusions
are presented.

2. VISUAL ATTENTION

When observing a scene, the human eye typically filters the large amount of visual information available on
the scene and attend to selected areas.'® Oculo-motor mechanisms allow the gaze of attention to either hold
on a particular location (fixation) or to shift to another location when sufficient information has already been
collected (saccades). The selection of fizations is based on the visual properties of the scene. Priority is given
to areas with a high concentration of information, minimizing the amount of data to be processed by the brain
while maximizing the quality of the collected information.

Visual attention is, therefore, a feature of the human visual system that has the goal of reducing the complexity
of scene analysis. It can be divided in two mechanisms that, combined, define which areas of the scene are to
be considered relevant and, therefore, should be attended. These two mechanisms are known as bottom-up and
top-down attention selection. The bottom-up mechanism is an automated selection that is controlled mostly by
the signal, independent of the task being performed. It is fast and short lasting, being performed as a response to
low-level features that are perceived as visually salient, standing out from the background of the scene. The top-
down mechanism is controlled by higher cognitive factors and external influences, such as semantic information,
viewing task, personal preferences, and context. It is slower than bottom-up attention, requiring a voluntary
effort.

The analysis of how humans perceive scenes can be performed by tracking eye movements in subjective
experiments using eye-tracker equipments. From this type of experiment, gaze patterns are collected and later
post-processed to generate saliency maps. The saliency maps obtained from these experiments are considered
ground truths of human visual attention. In a very recent work, Engelke et al.!'! compared saliency maps
gathered from three independently conducted eye tracking experiments. The comparison showed that the maps
are very similar and the small differences found have minor impact on the applications.

Although subjective saliency maps are considered as the ground-truth in visual attention, they cannot be used
in real-time applications. To incorporate visual attention aspects into the design of video quality metrics, we have



to use visual attention computational models to generate objective saliency maps. In the case of video signals,
the number of available computational model is limited. In this work, we use a bottom-up model developed by
Itti.!2

Itt’s model analyzes five features from the video, as depicted in Figure 1. Three of the features are considered
spatial features (intensity, contrast and orientation), because only spatial information is used to compute these
features. The intensity feature of a frame is represented by its luminance value. The contrast feature is given by
the difference between the colors of the frame, in this case blue/yellow and green/red. The orientation feature
is given by the direction of the edges of the frame. This model uses four direction angles: 0°, 45°, 90°and 135°.

The other two features of Itti’s model are considered temporal features (flicker and motion), because temporal
information from the video frames is used to compute these frames. In other words, more than one frame is
necessary to compute these feature. The flicker feature gives the difference between one frame and the next
frame. The motion feature is the direction of the objects in the scene. In Figure 2, sample frames of two videos
and their corresponding saliency map estimated using Itti’s saliency model are depicted. In the saliency map,
the lighter areas correspond to the more salient areas, while the darker areas correspond to less salient areas.

Saliency Saliency-modulated
map frame

Orientation
(0,45,90, 135deq)

Motion
(up, right, down, left)

Figure 1. Block diagram of Itti’s visual attention model for video signals (original from Ttti'?).

3. VIDEO QUALITY METRICS

There is an ongoing effort to develop video quality metrics that are able to detect impairments and estimate
their annoyance, as perceived by human viewers.® Quality metrics can be classified according to the amount of
reference (original) information used: Full Reference (FR), Reduced Reference (RR), and No-Reference (NR)
metrics. On the FR approach the entire reference is available at the measurement point. On the RR approach,
only part of the reference is available through an auxiliary channel. In this case, the information available at
the measurement point generally consists of a set of features extracted from the reference. Finally, on the NR
approach the quality estimation is obtained only from the test video.

To date, most of the achievements have been in the development of FR video quality metrics. FR Quality
metrics that analyze visible differences between a test and a reference signal, taking into account aspects of the
human visual system, usually have the best performance, but are often computationally expensive and hardly
applicable in real-time contexts.!®1* We have selected four FR quality metrics for our tests: the Video Quality
Metric (VQM)'® | the MOtion-based Video Integrity Evaluation (MOVIE),! the Structural Similarity Index
(SSIM),* and the Multi-Scale Structural Similarity Index (MS-SSIM).!” In this section, we briefly describe each
of these metrics.
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Figure 2. Sample frames of two videos (left) and their corresponding saliency map (right) estimated using Itti’s saliency
model.

3.1 Structural Similarity Index (SSIM)

The Structural Similarity Index (SSIM) is a very popular metric proposed by Wang and Bovig of the Laboratory
for Image and Video Engineering (LIVE) at The University of Texas at Austin.! The algorithm used by SSIM
estimates the quality of an image using three features: luminance, contrast, and structure. For an original image
x and a test image y, these features are calculated using the following equations:
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where C1, C2, C3 are fixed constants, ji, and p, are the average values of the original and test images, o, and o,
are the standard deviation values of the original and test images, and o0, is the covariance between the original
and test images.

The quality estimate of a test image y, in relation to its original x, is given by:

SSIM(z, y) = [i(z, )] [e(z,y))"[s(z. y)]", (4)

where «, 8 e 7y are paramenters that define the importance of each feature. Generally, to simplify, a = =7 =1
is used. The overall SSIM equation is given by
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SSIM(z, y) = (5)

For video signals, we down-sample the video signal by a factor of 8 and calculate the average value of SSIM(x, y)
for the resulting set of frames.



3.2 Multi-Scale Structural Similarity Index(MS-SSIM)

Multi-Scale Structural Similarity Index (MS-SSIM) is a variation of the SSIM metric proposed by Wang et al.!”
The method provides more flexibility than single-scale SSIM in incorporating the variations of image resolution
and viewing conditions. MS-SSIM algorithm iteratively applies a low-pass filter to the image and downsamples
the filtered image by a factor of two. The original image corresponds to Scale 1 and the (M-1)-th (last) iteration
to Scale M.

At all scales, the contrast feature (c in Eq. 2) and the structure feature (s in Eq. 3) of SSIM are calculated.
The luminance feature (lin Eq. 1) is only calculated for Scale M. The MS-SSIM quality estimate of an image v,
in relation to its original x, is given by the following equation:

M
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For video signals, we down-sample the video signal by a factor of 8 and calculate the average value of the estimate
given by MS-SSIM(z, y) for the resulting set of frames.

3.3 VQM

The video quality metric (VQM) is a metric proposed by Wolf and Pinson from the National Telecommunications
and Information Administration (NTIA).!® This metric has recently been adopted by ANSI as a standard for
objective video quality. In VQEG Phase IT (VQEG, 2003), VQM presented a very good correlation with subjective
scores, showing one of the best performances among the competitors.

The algorithm used by VQM includes measurements for the perceptual effects of several video impairments,
such as blurring, jerky/unnatural motion, global noise, block distortion, and color distortion. These measure-
ments are combined into a single metric that gives a prediction of the overall quality.

The VQM algorithm can be divided into the following stages:

e (Calibration — Estimates and corrects the spatial and temporal shifts, as well as the contrast and brightness
offsets of the processed video sequence with respect to the original video sequence.

e Extraction of quality features — The set of quality features that characterizes perceptual changes in the
spatial, temporal, and chrominance domains are extracted from spatial-temporal sub-regions of the video
sequence. For this, a perceptual filter is applied to the video to enhance a particular type of property, such
as edge information. Features are extracted from spatio-temporal (ST) subregions using a mathematical
function and, then, a visibility threshold is applied to these features.

e Estimation of quality parameters — A set of quality parameters that describes the perceptual changes is
calculated by comparing features extracted from the processed video with those extracted from the reference
video.

e Quality estimation — The final step consists of calculating an overall quality metric using a linear combi-
nation of parameters calculated in previous stages.

3.4 MOVIE

The MOVIE metric was proposed by the Laboratory for Image and Video Engineering (LIVE) at The University
of Texas at Austin.!® It also has a good performance, but has a very high computational complexity. The
MOVIE algorithm generates three quality estimates: a global quality estimate (MOVIE), a spatial quality
estimate (MOVIE-S), and a temporal quality estimate (MOVIE-T).

To generate MOVIE-S, the algorithm uses Gabor filters and measures the degradations in each video frame
separately. To generate MOVIE-T, on the other hand, the algorithm takes into consideration temporal degrada-
tions and features affecting the video quality. To generate the overall estimate MOVIE, the algorithm combines
MOVIE-S and MOVIE-T, as shown in the block diagram depicted in Figure 3.
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Figure 3. Block Diagram of the MOVIE algorithm taken (original taken from Seshadrinathan and Bovik'®).

4. INCORPORATION OF SALIENCY INTO QUALITY METRICS

The visual attention integration process consists of using the gray-scale pixel values of the subjective saliency
maps as weights for the error maps generated by the quality metrics. The modified saliency-based quality metrics
for the corresponding FR metrics are given by the following expression:

S S MET(x,y) - SAL(z,y)
L c
Da—1 2ay—1 SAL(z,y)
where SAL(z,y) is the saliency map pixel and MET(x, y) is the error map pixel calculated using the FR quality

metric. This particular integration process is used because it is the simplest solution that allows the same model
to be used for all metrics.'®

MET-AV = : (7)

This integration approach also makes it easier to compare the performance of different metrics. For the
quality metrics SSIM and MS-SSIM, the integration consists simply of using the error map pixel generated by
these metrics in the place of MET(z,y) in eq.7. On the other hand, for MOVIE and VQM some adaptation is
required.

For the metric MOVIE, besides of incorporating the saliency maps using the final error map pixel (MOVIE-
AV), we also independently incorporate it to the spatial error map pixel (MOVIE-S-AV) and to the temporal
error map pixel (MOVIE-T-AV). In other words, we consider the intermediates estimates MOVIE-S and MOVIE-
T as two other metrics and perform the incorporation of saliency maps for these two error map pixel of these
two metrics.

Incorporating Saliency Map

Std. Dev. or
Mean

Frame |[—>» ST Regions [—» » Comparison »| Spatial Collapse —>»| Temporal Collapse —»| Result

Figure 4. Block diagram of the 1st attention incorporation method for VQM: VQM-C-AV.

Two different approaches are used to incorporate visual attention into the VQM metric. The first approach
(VQM-C-AV) consists of multiplying the saliency map by the comparison map generated by the VQM algorithm,
as shown in Figure 4. For that, the saliency map has to be divided by the exactly same number of regions than
the comparison map generated by the VQM algorithm. The values of each region in the saliency map is set as
the average value of the saliency of the region. Then, we use Eq. 7, where we make MET the comparison map
and SAL the saliency map divided in regions.
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Figure 5. Block diagram of the 2nd attention incorporation method for VQM: VQM-A-AV.

The second approach (VQM-A-AV) used for VQM consists of replacing the “absolute value of temporal
information” (ATT), given by the VQM algorithm, by the saliency map, as shown in Figure 5. The parameter
ATT is used because in the VQM metric it is used to give more importance to certain areas of the frame. In
other words, ATI is used in the same way as the saliency map is used.

We use a public database created by the Laboratory for Image and Video Engineering (LIVE) and Center
for Perceptual Systems (CPS) at the University of Texas at Austin (UT Austin) to test the tested metrics with
incorporated saliency maps. The chosen database is the LIVE Video Quality Database®,” which contains a set of
150 distorted videos and corresponding Difference Mean Opinion Scores (DMOS) values. There are four different
types of distortions in this database: MPEG-2 compression, H.264 compression, simulated transmission of H.264
compressed bitstreams through error-prone IP networks and through error-prone wireless networks.

In Table 1, we present the Pearson correlation coefficient (PCC) and Spearman correlation coefficient (SCC)
for all the metrics tested in this work, when compared to the subjective data of the LIVE database. As can be
observed, with the addition of the saliency maps the performance of most metrics improved. It is interesting to
notice that the highest improvements in performance corresponded to the SSIM and MOVIE-S metrics. These
particular metrics are the ones which only take into consideration the spatial information of the video. The best
improvement was for SSIM. In comparison with the original metric, the gain was 17,36% (Pearson Correlation)
and 25,75% (Spearman Correlation).

For the temporal metrics (MOVIE and VQM), the MOVIE had the least improvement, 0,0036% (Pearson
Correlation) and -0,28% (Spearman Correlation). This is comprehensible, because MOVIE is the most complex
metric of all metrics analized. VQM-C-AV had the best improvement, with a gain of 0,096% (Pearson Correlation)
and 0,43% (Spearman Correlation). The MOVIE-T-AV with visual attention had the best Spearman correlation
of all metrics tested, equal to 0.8011. This corresponded to an improvement of 0,062%.

Quality Metric | PCC SCC

SSIM 0.5437 | 0.5401
SSIM-AV 0.6381 | 0.6792
MS-SSIM 0.7084 | 0.7445
MS-SSIM-AV 0.7031 | 0.7578
VQM 0.7297 | 0.7153
VQM-C-AV 0.7304 | 0.7184
VQM-A-AV 0.7301 | 0.7156
MOVIE 0.7898 | 0.7893
MOVIE-AV 0.7901 | 0.7871
MOVIE-S 0.7185 | 0.7077
MOVIE-S-AV 0.7201 | 0.7173
MOVIE-T 0.8200 | 0.8006
MOVIE-T-AV 0.8199 | 0.8011

Table 1. Pearson and Spearman correlations coefficients for the video quality metrics tested (SSIM, MS-SSIM, VQM, and
MOVIE). The abreviation AV corresponds to the models with saliency maps integrated.



5. CONCLUSIONS

In this work, we investigated the benefits of incorporating subjective saliency maps in the design of full-reference
video quality metrics. In particular, we compared the performance of four full-reference video quality metrics
(SSIM, MS-SSIM, VQM, and MOVIE) with their modified versions, which had saliency maps incorporated to
their algorithm. Results showed that the addition of saliency maps improved the performance of all quality
metrics tested. But, highest gains in performance were obtained for the spatial metrics (SSIM and MOVIE-S
metrics), i.e. for the metrics that only took into consideration spatial degradations.
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