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ABSTRACT

A recent development in the area of image and video quality
consists of trying to incorporate aspects of visual attention
in the design of visual quality metrics, mostly using the as-
sumption that visual distortions appearing in less salient ar-
eas might be less visible and, therefore, less annoying. This
research area is still in its infancy and results obtained by
different groups are not yet conclusive. Besides, most works
address the image quality problem, not focusing on how
to incorporate visual attention into video signals. In this
work, we investigate the benefits of incorporating subjective
saliency maps in the design of full-reference video qual-
ity metrics. In particular, we compare the performance of
four full-reference video quality metrics (SSIM, MS-SSIM,
VQM, and MOVIE) with their modified versions, which had
saliency maps incorporated to their algorithms. The addi-
tion of saliency maps improved the performance of all met-
rics tested. But, highest gains in performance were obtained
for the spatial metrics (SSIM, MS-SSIM, and MOVIE-S
metrics), i.e. for the metrics that only took into consider-
ation spatial degradations.

1. INTRODUCTION

Objective visual quality metrics can be classified as data
metrics, which measure the fidelity of the signal without
considering its content, or picture metrics, which estimate
quality considering the visual information contained in the
data. Customarily, quality measurements in the area of im-
age processing have been largely limited to a few data met-
rics, such as mean absolute error (MAE), mean square er-
ror (MSE), and peak signal-to-noise ratio (PSNR), supple-
mented by limited subjective evaluation. Although over the
years data metrics have been widely criticized for not corre-
lating well with perceived quality measurements, it has been
shown that such metrics can predict subjective ratings with
reasonable accuracy as long as the comparisons are made
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with the same content, the same technique, or the same type
of distortions [1].

One of the major reasons why these simple metrics do
not generally perform as desired is because they do not in-
corporate any human visual system (HVS) features in their
computation. It has been discovered that, in the primary vi-
sual cortex of mammals, an image is not represented in the
pixel domain, but in a rather different manner [2]. Unfor-
tunately, the measurements produced by metrics like MSE
or PSNR are simply based on a pixel to pixel comparison
of the data, without considering what is the content and the
relationships among pixels in an image (or frames).

In the past few years, a big effort in the scientific com-
munity has been devoted to the development of better image
and video quality metrics that incorporate HVS features (i.e.
picture metrics) and, therefore, correlate better with the hu-
man perception of quality [1][3]. Recent developments in
the area of visual quality include trying to incorporate as-
pects of visual attention into the design of visual quality
metrics [4], mostly using the assumption that visual distor-
tions appearing in less salient areas might be less visible
and, therefore, less annoying [5, 6].

In a previous work [7], we investigated the benefits of
incorporating objective saliency maps into three image qual-
ity metrics (SSIM, PSNR, and MSE). We compared the per-
formance of the original quality metrics with the perfor-
mance of quality metrics that incorporate subjective saliency
maps and saliency maps generated by three different visual
attention models (Itti [8], GAFFE [9], and Acchanta [10]).
Also, we studied the effects that different types of degra-
dations (jpeg or jpeg2k compression, Gaussian our white
noise, and fast fading) have on saliency maps and, conse-
quently, on the performance of the final metric. Our re-
sults show that visual attention was able to improve the per-
formance of the image quality metrics tested. The com-
putational model that presented the best performance was
GAFFE with gains slightly lower than the subjective saliency
maps. The improvement in performance was higher for the
simpler metrics (PSNR and MSE) than for the more com-
plex metric (SSIM).

In this work, we investigate the benefit of incorporat-
ing subjective saliency maps into full-reference (FR) video



quality metrics. With this purpose, we compare the perfor-
mance of the original video quality metrics with the perfor-
mance of the corresponding quality metrics with incorpora-
tion of subjective saliency maps into their design.

2. VISUAL ATTENTION

When observing a scene, the human eye typically filters the
large amount of visual information available on the scene
and attend to selected areas [8]. Oculo-motor mechanisms
allow the gaze of attention to either hold on a particular lo-
cation (fixation) or to shift to another location when suf-
ficient information has already been collected (saccades).
The selection of fixations is based on the visual properties
of the scene. Priority is given to areas with a high concen-
tration of information, minimizing the amount of data to be
processed by the brain while maximizing the quality of the
collected information.

Visual attention is, therefore, a feature of the human vi-
sual system that has the goal of reducing the complexity of
scene analysis. It can be divided in two mechanisms that,
combined, define which areas of the scene are to be con-
sidered relevant and, therefore, should be attended. These
two mechanisms are known as bottom-up and top-down at-
tention selection [11]. The bottom-up mechanism is an au-
tomated selection that is controlled mostly by the signal,
independent of the task being performed. It is fast and short
lasting, being performed as a response to low-level features
that are perceived as visually salient, standing out from the
background of the scene. The top-down mechanism is con-
trolled by higher cognitive factors and external influences,
such as semantic information, viewing task, personal pref-
erences, and context. It is slower than bottom-up attention,
requiring a voluntary effort.

The analysis of how humans perceive scenes can be per-
formed by tracking eye movements in a subjective experi-
ment using an eye-tracker equipment. From this type of ex-
periment, gaze patterns are collected and later post-proce-
ssed to generate saliency maps. The saliency maps obtained
from these experiments are considered ground truths of hu-
man visual attention. In a very recent work, Engelke et al.
[12] compared saliency maps gathered from three indepen-
dently conducted eye tracking experiments. The compar-
ison showed that the maps are very similar and the small
differences found have minor impact on the applications.

In this work, we use a public database created by the In-
stitut de Recherche en Communications at Cybernétique de
Nantes/ Images et Video Communications (IRCCyN/IVC).
The chosen database is the IRCCyN/IVC Eyetracker SD
2009 12 Database [13], which contains eyetracker data and
the associated videos with various contents. The eye track-
ing information was gathered from a subjective experiment
in which observers performed a quality scoring task. So, as

well as the eyetracking data, the database also contains sub-
jective ratings (quality scores) from 30 observers. Twenty
standard definition original videos (720×576, interlaced, 50
Hz) were used in the experiment. Sample frames of 8 of the
20 originals of the database are depicted in Figure 1. The
videos were coded with H.264 (JM coder version 16.1) and,
then transmission errors were inserted. The bit-rates are se-
lected to have a good quality if no transmission errors are
present. The transmission errors were varied in spatial posi-
tion and duration. There are 5 test coditions in the database,
the reference plus 4 simulations of transmission errors, what
resulted in 20× 5 = 100 test sequences.

Fig. 1. Sample frames of 8 of the original videos in the
IRCCyN/IVC Eyetracker SD 2009 12 Database [13].

Our goal in this paper is to incorporate the subjective
saliency maps from this database into the process of esti-
mation the quality of videos, which may contain common
transmission and compression artifacts. The use of subjec-
tive saliency maps helps to understand if attention informa-
tion can improve the performance of objective video qual-
ity metrics. In the next two sections, we describe the four
full-reference quality metrics and how they are modified in
order to take into account the information provided by the
subjective saliency maps.



3. FR VIDEO QUALITY METRICS

Among the available quality metrics, we have selected four
quality metrics for our tests: the Video Quality Metric (VQM)
[14] , the MOtion-based Video Integrity Evaluation (MOVIE)
[15], the Structural Similarity Index (SSIM) [16], and the
Multi-Scale Structural Similarity Index (MS-SSIM) [17]. In
this section, we briefly describe these metrics.

3.1. VQM

The video quality metric (VQM) is a metric proposed by
Wolf and Pinson from the National Telecommunications and
Information Administration (NTIA) [14]. This metric has
recently been adopted by ANSI as a standard for objective
video quality. In VQEG Phase II (VQEG, 2003), VQM pre-
sented a very good correlation with subjective scores, show-
ing one of the best performances among the competitors.

The algorithm used by VQM includes measurements for
the perceptual effects of several video impairments, such as
blurring, jerky/unnatural motion, global noise, block distor-
tion, and color distortion. These measurements are com-
bined into a single metric that gives a prediction of the over-
all quality.

The VQM algorithm can be divided into the following
stages:

• Calibration – Estimates and corrects the spatial and
temporal shifts, as well as the contrast and brightness
offsets of the processed video sequence with respect
to the original video sequence.

• Extraction of quality features – The set of quality fea-
tures that characterizes perceptual changes in the spa-
tial, temporal, and chrominance domains are extracted
from spatial-temporal sub-regions of the video sequen-
ce. For this, a perceptual filter is applied to the video
to enhance a particular type of property, such as edge
information. Features are extracted from spatio-temporal
(ST) subregions using a mathematical function and,
then, a visibility threshold is applied to these features.

• Estimation of quality parameters – A set of quality
parameters that describes the perceptual changes is
calculated by comparing features extracted from the
processed video with those extracted from the refer-
ence video.

• Quality estimation – The final step consists of calcu-
lating an overall quality metric using a linear combi-
nation of parameters calculated in previous stages.

3.2. MOVIE

The MOVIE metric was proposed by the Laboratory for
Image and Video Engineering (LIVE) at The University of

Texas at Austin [15]. It also has a good performance, but is
a high complexity algorithm. The MOVIE metric generates
three quality estimates: a global quality estimate (MOVIE),
a spatial quality estimate (MOVIE-S), and a temporal qual-
ity estimate (MOVIE-T). To generate MOVIE-S, the algo-
rithm uses Gabor filters and measures the degradations in
each video frame separately. To generate MOVIE-T, on the
other hand, the algorithm takes into consideration temporal
degradations/features affecting the video quality. MOVIE-S
and MOVIE-T are combined in order to obtain the overall
estimate MOVIE, as shown in the block diagram depicted
in Figure 2.

Fig. 2. Block Diagram of the MOVIE algorithm taken from
[15].

3.3. SSIM

The SSIM is a very popular metric. It calculates the quality
of an image using three features: luminance, contrast, and
structure. These features are calculated using the following
equations:

l(x, y) =
2µxµy + C1

µ2
x + µ2

y + C1
, (1)

c(x, y) =
2σxσy + C2

σ2
x + σ2

y + C2
, (2)

s(x, y) =
σxy + C3

σxσy + C3
, (3)

where C1, C2, C3 are fixed constants, µx and µy are the
average of the original and test image, σx and σy are the
standard deviation of the original and test image, and σxy is
the covariance between x and y.

The quality estimate of a test image y, in relation to its
original x, is given by:

SSIM(x, y) = [l(x, y)]α.[c(x, y)]β .[s(x, y)]γ , (4)



where α, β e γ are paramenters that define the importance
of each feature. Generally, to simplify, α = β = γ = 1 is
used. For video signals, the quality estimate is given by the
average value of SSIM(x, y) over all frames.

3.4. M-SSIM

MS-SSIM is a variation of the SSIM metric. The algorithm
iteratively applies a low-pass filter to the image and down-
samples the filtered image by a factor of two. The original
image corresponds to Scale 1 and the (M-1)-th (last) itera-
tion to Scale M. At all scales, the contrast feature (c, eq. 2)
and the structure feature (s, eq. 3) of SSIM are calculated.
The luminance feature (l, eq. 1) is only calculated for Scale
M.

The MS-SSIM estimate for the quality of an image y, in
relation to its original x, is given by the following equation:

MS-SSIM(x, y) = [l(x, y)]αM

M∏
j=1

.[c(x, y)]βj .[s(x, y)]
γ
j .

(5)
For video signals, the quality estimate is given by the aver-
age value of SSIM(x, y) over all frames.

4. INCORPORATION OF SALIENCY INTO
QUALITY METRICS

The visual attention integration process consists of using the
gray-scale pixel values of the subjective saliency maps as
weights for the error maps generated by the quality metrics.
The modified saliency-based quality metrics for the corre-
sponding FR metrics are given by the folowing expression:

MET-AV =

∑L
x=1

∑C
y=1 MET(x, y) · SAL(x, y)∑L
x=1

∑C
y=1 SAL(x, y)

, (6)

where SAL(x, y) is the saliency map pixel and MET(x, y)
is the error map pixel calculated using the FR quality metric.
This particular integration process is used because it is the
simplest solution that allows the same model to be used for
all metrics [18].

This integration approach also makes it easier to com-
pare the performance of different metrics. For the quality
metrics SSIM and MS-SSIM, the integration consists sim-
ply of using the error difference map generated by these
metrics in the place of MET(x, y) in eq.6. On the other
hand, for MOVIE and VQM some adaptation is necessary.

For the metric MOVIE, besides of incorporating the sali-
ency maps using the final error difference map (MOVIE-
AV), we also independently incorporate it to the spatial dif-
ference map (MOVIE-S-AV) and to the temporal difference
map (MOVIE-T-AV). In other words, we consider the inter-
mediates estimates MOVIE-S and MOVIE-T as two other

metrics and perform the incorporation of saliency maps for
these two metrics.

Two different approaches are used to incorporate visual
attention into the VQM metric. The first approach (VQM-
C-AV) consists of multiplying the saliency map by the com-
parison map generated by the VQM algorithm. For that, the
saliency map has to be divided by the exactly same number
of regions than the comparison map. The values of each re-
gion in the saliency map is the average value of the saliency
inside the region. Then, we use eq. 6, where we make MET
the comparison map and SAL the saliency map divided in
regions.

The second approach (VQM-A-AV) used for VQM con-
sists of multiplying the saliency map by the “absolute value
of temporal information” (ATI) given by the VQM algo-
rithm. We chose this parameter because in the VQM metric
ATI is used to give more importance to certain areas of the
frame. In other words, ATI is used in the same way as the
saliency map is used.

In Table 1, we present the Pearson and Spearman cor-
relation coefficients for all the metrics tested in this work.
As can be observed, with the addition of the saliency maps
the performance of all metrics improved. It is interesting
to notice that the highest improvements in performance cor-
responded to the SSIM, MS-SSIM, and MOVIE-S metrics.
These particular metrics are the ones which only take into
consideration the spatial information of the video.

Table 1. Pearson and Spearman correlations coefficients for
the video quality metrics tested (SSIM, MS-SSIM, VQM,
and MOVIE). The abreviation AV corresponds to the mod-
els with saliency maps integrated.

Quality Metric PCC SCC
SSIM 0.5345 0.6761
SSIM-AV 0.7219 0.8199
MS-SSIM 0.7182 0.7913
MS-SSIM-AV 0.7403 0.9169
VQM 0.5598 0.6838
VQM-C-AV 0.5745 0.7009
VQM-A-AV 0.5604 0.6852
MOVIE 0.5254 0.7307
MOVIE-AV 0.5488 0.7450
MOVIE-S 0.6528 0.7128
MOVIE-S-AV 0.6715 0.7335
MOVIE-T 0.6671 0.7172
MOVIE-T-AV 0.6788 0.7263



5. CONCLUSIONS

In this work, we investigated the benefits of incorporating
subjective saliency maps in the design of full-reference video
quality metrics. In particular, we compared the performance
of four full-reference video quality metrics (SSIM, MS-SSIM,
VQM, and MOVIE) with their modified versions, which
had saliency maps incorporated to their algorithm. Results
showed that the addition of saliency maps improved the per-
formance of all quality metrics tested. But, highest gains in
performance were obtained for the spatial metrics (SSIM,
MS-SSIM, and MOVIE-S metrics), i.e. for the metrics that
only took into consideration spatial degradations.
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