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Abstract. The goal of this work is to present a full-reference (FR) audio-visual quality metric. We performed
three psychophysical experiments in order to obtain a better understanding of how audio and video components
interact with each other and how these interactions affect the overall audio-visual quality. In experiment I, sub-
jects evaluated the quality of videos (without any audio) compressed at different video bitrates. In experiment II,
subjects evaluated the quality of audio (without any video) compressed at different audio bitrates. In experiment
III, subjects evaluated the quality of videos (audio-visual signals), which had their audio and video components
compressed at different bitrates. Based on the data gathered from these experiments, we obtain a set of sub-
jective models for audio-visual quality. Inspired by these subjective models, we propose a set of FR audio-visual
quality metrics composed of a combination of a video quality metric and an audio quality metric.
The proposed metrics have good performance and present better results when compared to simple FR
video quality metrics. © 2014 SPIE and IS&T [DOI: 10.1117/1.JEI.23.6.061108]
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1 Introduction
Digital video communication has evolved into an important
field in the past few years. There have been significant
advances in compression and transmission techniques, which
have made it possible to deliver high quality video to the end
user. In particular, the advent of new technologies has
allowed the creation of many new telecommunication ser-
vices (e.g., direct broadcast satellite, digital television, high
definition TV, Internet video). In these services, the level of
acceptability and popularity of a given multimedia applica-
tion is clearly related to the reliability of the service and the
quality of the content provided. As a consequence, efficient
real-time quality monitoring schemes that can faithfully
describe the video experience—as perceived by the end
user—is key for the success of these and future services.

The most accurate way to determine the quality of a video
is by measuring it using psychophysical experiments with
human subjects (subjective metrics).1,2 Unfortunately, these
experiments are expensive, time-consuming, and hard to
incorporate into a design process or an automatic quality of
service control. Therefore, the ability to measure audio and
video qualities accurately and efficiently, without using
human observers, is highly desirable for practical applica-
tions. With this in mind, fast algorithms that give a physical
measure (objective metrics) of the quality are needed to
obtain an estimate of the quality of a video when being trans-
mitted, received, or displayed.

Objective metrics represent a good alternative for meas-
uring the video quality. This approach uses computational
methods to process and evaluate the digital video and
audio signals and to calculate a numerical value for the per-
ceived quality. Quality metrics can be classified according
to the amount of reference (original) information used:

full-reference (FR), reduced-reference (RR), and no-refer-
ence (NR) metrics. On the FR approach, the entire reference
is available at the measurement point. On the RR approach,
only part of the reference is available through an auxiliary
channel. In this case, the information available at the meas-
urement point generally consists of a set of features extracted
from the reference. Finally, on the NR approach, the quality
estimation is obtained only from the test video.

There is an ongoing effort to develop video quality met-
rics that are able to detect impairments and estimate their
annoyance as perceived by human viewers.3 To date, most
of the achievements have been in the development of FR
video quality metrics.4–6 In particular, much remains to be
done in the area of NR and RR quality metrics, which
would certainly benefit from the incorporation of better per-
ception models. With respect to applications, there is a great
need for metrics that estimate perceptual quality for multi-
media applications. So far, few objective metrics have
addressed the issue of simultaneously measuring the quality
of all media involved (e.g., video, audio, and text). Even for
the simpler case of audio-visual content, achievements are
limited and, currently, few objective metrics have been
proposed.2,7

To design good audio-visual metrics, it is first necessary
to understand how audio and video contents are perceived.
Most importantly, it is necessary to understand how the deg-
radations in audio and video affect the overall quality and
how audio and video components interact with each other.
Research in this area has been focused on determining the
detection ability under different cross-modal presentation
conditions.8–11 For example, it has been shown that human
sensitivity to audio–video asynchronies is not symmetrical.8

Other works show that video quality influences subjective
opinions of audio quality and vice versa.10,11 Also, the
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presence of detectable audio–video temporal asynchronies
results in a reduction of perceived quality.9

As detailed by Pinson et al.2 and You et al.,7 several
experiments in the literature have proposed audio-visual
quality models that explore the relationship between audio
and video qualities, measured separately, and the overall
quality.9,12–19 Results show that both video quality and
audio quality are important to overall perceived quality, but
their importance may differ for different multimedia applica-
tions.7 For the majority of the audio-visual quality models,
an inclusion of a cross term (audio quality × video quality)
provides good results.2 Most studies report that, in most
applications, video quality is the dominant component of the
overall quality.9,13,15,16 Others report that video and audio are
equally important in the overall audio-visual quality.2,14 Audio
quality seems to be more dominant than video in applications
for which the audio signal conveys most of the information,
like, e.g., video conferences and music clips.7

Although there are several perceptual audio-visual quality
models available in the literature, the number of objective
audio-visual quality metrics is much lower. One example
is the work of Garcia et al.,20 which presents both a subjec-
tive model and a parametric objective quality metric. The
quality metric uses network packet-losses parameters to esti-
mate quality and can only be used for transmission scenarios.

One of the goals of this paper is to obtain a better under-
standing of how audio and video components interact with
each other and how these interactions affect the overall
audio-visual quality. With this goal, we perform three psy-
chophysical experiments and analyze their results. To gener-
ate the test sequences for these experiments, we start with
original high definition video sequences with both audio
and video components. For the first experiment, we consider
only the video component of the sequences and compress
them using a H.264 codec at different (video) bitrate values.
For the second experiment, we consider only the audio com-
ponent of the sequences and compress them using an MPEG-
1 layer-3 codec, at different (audio) bitrate values. Finally,
for the third experiment, we consider both the sequence
video and audio components and compress them independ-
ently. Both test sequences and subjective scores will be pub-
licly available at the website of the Group of Digital Signal
Processing of the University of Brasília.21

The second goal of this work is to obtain an FR audio-
visual quality metric. Based on the data gathered from
these experiments, we obtain a set of subjective models for
audio-visual quality. With the help of these subjective mod-
els, we propose an FR audio-visual quality metric composed
of the combination of a video quality metric and an audio
quality metric. To obtain the audio quality estimates, we
use the audio quality metric single ended speech quality
assessment (SESQA) model.22 To obtain the video quality
estimates, we use the FR video quality metric proposed
by National Telecommunications and Information
Administration (NTIA)—The VQM.23 Then, we obtain
three FR audio-visual quality metrics by combining these
two metrics using the same combination models used by
the subjective models.

This paper is divided as follows. In Sec. 2, the psycho-
physical experiments are described. In Sec. 3, the experimen-
tal results are presented and discussed. In Sec. 4, a set
of subjective models based on the experimental data is

presented. In Sec. 5, the proposed FR audio-visual quality
metrics are presented and their performance is discussed.
Finally, in Sec. 6, the conclusions are presented.

2 Subjective Experiments
In this section, we describe the apparatus and physical
conditions, the content selection, the generation of test
sequences, the experimental methodology, and the statistical
methods used for the three experiments performed in this
work.

2.1 Apparatus and Physical Conditions
The experiments were run with two subjects at a time, using
two separate personal computer desktop computers, two
LCD monitors, and two sets of earphones. The specifications
of the monitors and earphones are shown in Table 1. The
dynamic contrast of the monitors was turned off, the contrast
was set at 100 and the brightness at 50. The room was sound
proof and had the lights completely dimmed to avoid any
light reflected on the monitors.

The subjects were seated straight ahead of the monitor,
centered at or slightly below eye height for most subjects.
The distance between the subject’s eyes and the video mon-
itor was set at three screen heights, which is a conservative
estimate of the viewing distance according to the ITU-T
Recommendation BT.500.1 The software Presentation from
Neurobehavioral Systems Inc. (Berkeley, California) was
used to run the experiment and record the subject’s data.

Our subjects were volunteers from the University of
Brasília, Brazil. Most subjects were graduate students of the
Departments of Computer Science and Electrical Engineer-
ing. They were considered naïve of most kinds of digital
video defects and the associated terminology. No vision test
was performed on the subjects, but they were asked to wear
glasses or contact lenses if they needed them to watch TV.
Regarding the hearing acuity of participants, no test was
conducted. However, participants did not report any hearing
difficulties during the experimental session.

2.2 Content Selection
The original video sequences used in this work were
obtained from the Consumer Digital Video Library.24

The videos were 8-s long, had a resolution of 1280 × 720,
a color space of 4∶2∶0, and a frame rate of 30 frames per
second (fps). All videos had accompanying audio. Nine
video sequences were included in the experiments: three of
them were used only in the trial and training sessions, while

Table 1 Technical specifications of monitors and earphones used in
the subjective experiments.

Monitor 1 Samsung SyncMaster P2370 Resolution: 1920 × 1080;
pixel-response rate: 2 ms; contrast ratio: 1000∶1;
brightness: 250 cd∕m2

Monitor 2 Samsung SyncMaster P2270 Resolution: 1920 × 1080;
pixel-response rate: 2 ms; contrast ratio: 1000∶1;
brightness: 250 cd∕m2

Earphones Philips SHL580028 headband headphones Sensitivity:
106 dB; maximum power input: 50 mW; frequency
response: 1028 Hz; speaker diameter: 40 mm
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the other six videos were used in the main experimental
sessions.

To choose the test sequences, we followed the recommen-
dations of the Final Report of Video Quality Experts Group
(VQEG) on the validation of objective models multimedia
quality assessment (phase I), which states that the set of
video sequences should have a good distribution of spatial
and temporal activities.25 We also took into account the
audio content, selecting sequences that had speech, music,
and ambient sound. Representative frames of all six test
sequences used in the main experimental sessions are pre-
sented in Fig. 1.

Figure 2(a) shows the spatial and temporal perceptual
information measures (computed as defined by Ostaszewska
and Kloda26) for all original videos. As can be noticed in this
figure, the video “Reporter” has the highest temporal activity
and the lowest spatial activity. The video “Music” has both a
high temporal activity and a high spatial activity, while the
video “Park Run” has relatively low spatial and temporal
activities.

We used the algorithm proposed by Giannakopoulos
et al.27 to obtain a description of the audio content. This algo-
rithm divides the audio streams into several nonoverlapping

segments and classifies each segment into one of the follow-
ing classes: music, speech, others1 (low environmental
sounds: wind, rain, etc.), others2 (sounds with abrupt
changes, like a door closing), others3 (louder sounds, mainly
machines, and cars), gunshots, fights, and screams.27 In
Fig. 2(b), the audio classification of the originals is pre-
sented. As can be observed from the graph, the videos con-
tain a good distribution of different audio types. The video
“Reporter” was classified mostly as speech and partly as
others1. The video “Park Run” was completely classified
as music, while the “Music” video was classified as others2,
music, and screams. The videos “Basketball” and “Crowd
Run” were both classified as others1.

2.3 Generation of Test Sequences
For experiment I, each of the original video test sequences
(no audio) was compressed using the H.264 codec. Four
different bitrate values were used: 30, 2, 1, and 0.8 Mbps.
This test design resulted in 6ðoriginal sequencesÞ ×
4ðbit rate valuesÞ þ 6 originals ¼ 30 test conditions.

For experiment II, only the audio component of the videos
was considered. The audio component was compressed

Fig. 1 Sample frames of original videos used in the subjective experiments: (a) “Boxer,” (b) “Park Run,”
(c) “Crowd Run,” (d) “Basketball,” (e) “Music,” and (f) “Reporter.”

Fig. 2 (a) Spatial and temporal perceptual information measures26 and (b) audio classification of the test
sequences used in the subjective experiments.
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using the MPEG-1 layer-3 coding standard. Three bitrate val-
ues were used: 128, 96, and 48 kbps. This test design resulted
in 6ðoriginal sequencesÞ× 3ðbit rate valuesÞ þ 6originals ¼
24 test conditions.

For experiment III, both audio and video components of
the test sequences were compressed. The video components
were compressed with H.264, using the same bitrate values
used in experiment I (30, 2, 1, and 0.8 Mbps). The audio
components were compressed with MPEG-1 layer-3 coding
standard, using the same bitrate values used in experiment
II (128, 96, and 48 kbps). Considering the three bitrate
values of the audio components and the four bitrate values
of the video components (3 audio bitrates × 4 video bitrates)
for all six originals, this resulted in a total of 3 × 4×
6þ 6 originals ¼ 78 test conditions.

2.4 Experimental Methodology
A double-stimulus continuous quality-scale methodology
was used in all experiments.1,28 Two sequences (with the
same source material) were presented in each trial. Of the
two sequences, one was the reference and the other was
the “test” sequence. Subjects did not know which one
was the reference and which one was the “test” because
the presentation order was randomized across trials. After
watching both sequences, subjects were asked to give a
quality score for each of the sequences in every trial.

The test was divided into three main sessions: training,
practice, and main sessions. In the training session, subjects
were shown a set of original sequences and the correspond-
ing degraded sequences. The objective of this session was to
familiarize the participant with the quality interval of the test
sequences in the experiment. In the practice session, subjects
performed the same tasks performed in the main session. The
goal of the practice session is to expose subjects to sequences
with impairments and give them a chance to try out the data
entry procedure. We included five practice trials.

In the main session, the actual task was performed. In the
three experiments, after observers were presented with a set
of pairs of test conditions (audio, video, or audio-video), they
were asked to rate them using a quality scale between 0 and
100. The subject’s participation time was limited to 30 min
for experiment I, 25 min for experiment II, and 50 min for
experiment III. A break was introduced in the middle of the
main session to allow the subjects to rest.

2.5 Statistical Analysis Methods
The judgments given by the subjects to any test sequence are
called subjective scores. These data are first processed by
calculating the mean opinion score (MOS) by averaging
the scores over all observers for each test sequence

MOS ¼ S̄ ¼ 1

L
·
XL

i¼0

SðiÞ; (1)

where SðiÞ is the score reported by the i’th subject and L is
the total number of subjects. For each test trial presented in
the main experiment session, two quality scores were com-
puted: one score for the test sequence and the other score
for the original sequence. We also calculated the sample stan-
dard deviation of the scores and the internal standard error of

S̄. When necessary, a t-test was performed to evaluate if
differences in MOS were statistically significant.

3 Experimental Results
As mentioned earlier, the videos in experiment I had no
audio and were compressed at different bitrates using an
H.264 codec. In experiment I, a total of 16 subjects scored
the videos (without audio), generating one single MOSv
value for each test sequence. Figure 3(a) shows the obtained
MOSv versus the vb values (vb1¼ 800 Kbps, vb2¼1Mbps,
vb3 ¼ 2 Mbps, vb4 ¼ 30 Mbps) for all test sequences.

As can be observed in Fig. 3(a),MOSv increases as the vb
increases. This shows that participants in this experiment
were able to perceive variations in vb, which in turn resulted
in variations in perceived video quality (MOSv). Considering
the four levels of vb and the six different types of video con-
tents (originals), we performed a univariate analysis of vari-
ance (ANOVA) on the video MOSv. The analysis shows a
main effect of the vb level (F ¼ 141.82, p < 0.01) and of the
video content (F ¼ 14.29, p < 0.01). No interaction effect
was detected between the factors “vb level” and “video
sequence content.” The videos “Basketball” and “Park Run,”
which have both low temporal and spatial activities, showed,
on average, slightly lowerMOSv values (not statistically sig-
nificant). The videos “Music” and “Crowd Run,” which have
both high temporal and spatial activities, got the highest
MOSv values on average. In these two scenes, some impair-
ments might not have been perceived by the users due to
the scene’s characteristics and masking properties. In other
words, errors of the same type and the same energy level
(mean-squared error) when present in complex scenes
have a higher visibility threshold than when present in lower
activity scenes.29

In experiment II, the test sequences were formed of only
audio components (no video). As described before, three
audio bitrates (abs) were used. A total of 16 subjects scored
the audio quality of the audio sequences in experiment II,
generating one MOSa for each audio test sequence.
Figure 3(b) shows the obtained MOSa versus the ab values
(ab1 ¼ 48 kbps, ab2 ¼ 96 kbps, ab3 ¼ 128 kbps) for all
test sequences. It can be seen that the MOSa values increase
as the ab values increase. Similar to what was done for
experiment I, the same univariate ANOVA was computed
for MOSa. This analysis revealed a main effect of the ab
level (F ¼ 63.93, p < 0.01) and of the sequence type of
content (F ¼ 13.56, p < 0.01). No interaction effect was
detected between the factors “ab level” and “audio sequence
content.” The audio sequence “Basketball,” which was pre-
viously classified as others1 (environmental sounds), pre-
sented the lowest MOS value (not statistically significant).
Meanwhile, the audio sequences “Music” and “Park Run”
(classified as music, screams, and others2) showed the high-
est MOSa values. This seems to indicate that degradations in
more complex sounds are harder to perceive.

In experiment III, both audio and video components were
included. Three abs and four vbs were used. A total of 17
subjects performed experiment III, generating one MOSav
for each audio-visual test sequence.

Figure 4(a) shows how the MOSav values change among
all four vb values for different groups of “originals” and abs.
It can be observed that the MOSav values increase as the vb
values increase, as in the two previous experiments.
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Nevertheless, the slope caused by the increase in vb is not the
same for the different “originals” or the different groups of
abs. This can be observed for the sequences “Boxer,”
“Basketball,” and “Music,” which have different slopes
among different abs. Meanwhile, the sequences “Park Run,”
“Crowd Run,” and “Reporter” maintain similar slopes.

Figure 4(b) shows that the MOSav values change among
all three ab values for different groups of “originals” and vbs.
Again, it can be observed that the MOSav values increase
with the ab values. There are also differences in the behavior
of the slope caused by the increase in ab. But, overall, the
slopes of the increase are much smaller when compared to
the slopes in Fig. 4(a). In other words, compressing video
had a higher impact on the overall quality than compressing
audio.

Our last analysis consisted of trying to understand the
contribution of the audio component to the overall quality.
With this goal, we plotted the data from experiment I and

experiment III in Fig. 5. In these graphs, the data from
experiment I (no audio) are shown as “ab0” (first four col-
umns in the left side of each graph). Note that subjects rated
video sequences without any audio with a slightly higher
MOS value, especially for low audio quality sequences. In
case of sequences with medium and high audio qualities,
this difference is not statistically significant.

4 Subjective Quality Models
We used the subjective data gathered from experiments I, II,
and III to obtain a set of three perceptual (subjective) models
(PrMOSi, i ¼ 1;2; 3) for the audio-visual quality (MOSav),
as a combination function of the audio quality (MOSa) and
the video quality (MOSv).

The first subjective model tested was a simple linear
model given by the following equation:

PrMOS1 ¼ α1 · MOSv þ β1 · MOSa þ γ1: (2)

Fig. 3 (a) Experiment I: mean opinion values for video (MOSv) versus bitrate, compressed video.
(b) Experiment II: mean opinion values (MOSa) versus bitrate, compressed audio.

Fig. 4 Experiment III: (a) mean opinion values (MOSav) versus audio bitrate (ab) and (b) mean opinion
values (MOSav) versus ab.
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The fitting returned scaling coefficients α1 ¼ 0.76, β1 ¼
0.41, and γ1 ¼ −21.92. The Pearson correlation coefficient
(PCC) was 0.9110 and the Spearman correlation coefficient
(SCC) was 0.9173.

The second model was a weighted Minkowski function
given by the following equation:

PrMOS2 ¼ ðα2 · MOS
p1
v þ β2 · MOS

p1
a Þ 1

p1 : (3)

The fit returned p1 ¼ 0.0001, α2 ¼ 0.7024, and β2 ¼
0.2976. The PCC was 0.9197 and the SCC was 0.9267.

The last subjective model tested was a power model

PrMOS3 ¼ ðγ2 þ α3 · MOS
p2
v · MOS

p3
a Þ: (4)

The fit returned p2 ¼ 1.3213, p3 ¼ 0.6533, α3 ¼ −0.0109,
and γ2 ¼ −12.9734. The PCC was 0.9285 and the SCC
was 0.9270.

We compared the subjective models obtained in this sec-
tion with three subjective models available in the literature:
two models (SQavH1 and SQavH2) proposed by Hands,

12 two
models (SQavW1 and SQavW1) proposed by Winkler and
Faller,13 and one model (SQavG) proposed by Garcia et al.20

Our goal here was to check which type of model has a good
fit in our dataset. Our purpose was not to compare the models
against each other. Given that these models were trained in
different contents and different temporal and spatial resolu-
tions, such a comparison would not be fair.

Hands’ subjective model12 was trained on sequences
that include “head and shoulder” and “high-motion.” The
two subjective models proposed by Hands are given by the
following equations:

SQavH1¼0.25 ·MOSvþ0.15 · ðMOSa×MOSvÞþ0.95 (5)

and

SQavH2 ¼ 0.17 · ðMOSa ×MOSvÞ þ 1.15; (6)

where SQavH1 and SQavH2 are the predicted audio-visual
quality scores.

Winkler’s models13 were trained on sequences destined
for mobile applications which had very low audio and vbs.
The two models are given by the following equations:

SQavW1 ¼ 0.103 · ðMOSa ×MOSvÞ þ 1.98 (7)

and

SQavW2 ¼ 0.77 · MOSv þ 0.456 · MOSa − 1.51; (8)

where SQavW1 and SQavW2 are the predicted audio-visual
quality scores given by the models.

The model by Garcia et al.20 was trained on high defini-
tion audio-visual sequences. This model is given by the
following equation:

SQavG ¼ 0.13 ·MOSv þ 0.0006 · ðMOSa ×MOSvÞ þ 28.49;

(9)

where SQavG is the predicted audio-visual quality score
given by Garcia’s model.

Table 2 depicts the PCCs and SCCs obtained by testing all
subjective models in the data of experiment III. As can be
observed, the proposed power model (PrMOS3) presents
the best results among all subjective models. The subjective

Fig. 5 Experiments I and III: MOSv and MOSav versus audio (and video) bitrates: (a) “Boxer,” (b) “Park
Run,” (c) “Crowd Run,” (d) “Basketball,” (e) “Music,” and (f) “Reporter.”
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models taken from literature presented an acceptable corre-
lation, given that they were not trained on this dataset.

To analyze how the three proposed subjective models
(PrMOS1, PrMOS2, and PrMOS3) perform for low and
high quality contents, we classified the dataset according to
their bitrates (audio and video). Video sequences were clas-
sified as low quality (vb1 and vb2 bitrates) and high quality
(vb3 and vb4 bitrates). Audio sequences were classified as
low quality (ab1 and ab2 bitrates) and high quality (ab3
bitrate). In Table 3, the PCCs for the different subsets of test
sequences are presented, considering the same coefficients
(parameters) used for the full set (results in Table 2). It
can be observed that PrMOS2 and PrMOS3 perform better
for low quality test material (lowest values of vb and ab).
The worst PCC values were obtained for the highest values
of ab and lowest values of vb.

A second analysis is presented in Table 4. In this case, we
classified the dataset according to the video quality (MOSa)
and audio quality (MOSv) values. Three quality classes were
defined: low quality (0 to 33), medium quality (33 to 66),
and high quality (66 to 100). It is observed that most of
the sequences were rated above the medium quality class

(over 33). Similarly, the highest values for the PCCs corre-
spond to the sequences in the high quality class.

5 Audio-Visual Quality Metrics
To obtain the audio-visual quality metric, we combined an
audio quality metric and a video quality metric. The audio
quality metric was the speech quality metric SESQA,22

while the video quality metric was the FR metric VQM.23

In this section, we briefly describe the audio quality metric
and video quality metric and the proposed objective audio-
visual FR metric.

5.1 Single Ended Speech Quality Assessment Model
The SESQA metric was originally proposed for speech sig-
nals in telephone applications. The first step of the SESQA
algorithm consists of preprocessing the test signal using
a voice activity detector that identifies speech signals and
estimates its speech level. Then, the signal is analyzed and
a set of 51 characteristic signal parameters is obtained. Next,
based on a restricted set of key parameters, assignment to
the main distortion classes is made. The main distortion
classes include unnatural speech, noise, and interruptions,
mutes, clippings. The key parameters and the assigned
main distortion class are used by the model to estimate
the speech quality.

In order to apply this metric for audio signals (speech,
music, generic sounds, etc.), we modified it slightly. Instead
of using the 51 parameters considered in the original algo-
rithm, we selected 17 parameters that showed better results in
a test a set of degraded audio sequences. This set of audio
sequences was different from the set used in the experiments
and included sounds of music, explosion, speech, and nature.
The set of 17 selected parameters is presented in Table 5.
The rest of the SESQA algorithm was kept without
modifications.

After training it, we tested SESQA using the audio signals
of experiment II. Figure 6(a) shows the graph of MOSa ver-
sus SESQA. The PCC is 0.9298 and the SCC is 0.9477.
For comparison purposes, we also tested the performance of
another audio metric: PEAQ.30 Figure 6(b) shows the graph
of MOSa versus PEAQ. The PCC and SCC are both 0.4811.
Therefore, SESQA perfoms better for the type of impair-
ments considered in this work.

Table 2 Subjective audio-visual models: Pearson correlation coeffi-
cients (PCCs) and Spearman correlation coefficients (SCCs)
obtained for data of experiment III.

Model PCC SCC

PrMOS1 0.9110 0.9173

PrMOS2 0.9197 0.9267

PrMOS3 0.9285 0.9270

PrMOSH1 0.8447 0.8340

PrMOSH2 0.8441 0.8349

PrMOSG 0.7739 0.8050

PrMOSW1 0.8441 0.8349

PrMOSW2 0.8244 0.8374

Note: Values in bold correspond to the models with best performance.

Table 3 PCCs of subjective models tested on low and high quality material subsets.

Video bitrate Audio bitrate Number of sequences PCC PrMOS1 PCC PrMOS2 PCC PrMOS3

Low (vb1, vb2) All (ab1, ab2, ab3) 36 0.8050 0.8178 0.8214

Low (ab1, ab2) 24 0.8227 0.8539 0.8540

High (ab3) 12 0.6971 0.7268 0.7307

High (vb3, vb4) All (ab1, ab2, ab3) 36 0.8602 0.8769 0.8944

Low (ab1, ab2) 24 0.7891 0.8161 0.8441

High (ab3) 12 0.9034 0.9119 0.8933
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5.2 Video Quality Metric
The video quality metric (VQM) is a metric proposed by
Wolf and Pinson from the NTIA.23 This metric has been
adopted by American National Standards Institute as a stan-
dard for objective video quality. In VQEG phase II (VQEG,
2003), VQM presented a very good correlation with subjec-
tive scores, showing one of the best performances among
the competitors.

The algorithm used by VQM includes measurements for
the perceptual effects caused by several video impairments,
such as blurring, jerky/unnatural motion, global noise, block
distortion, and color distortion. These measurements are
combined into a single metric that gives a prediction of the
overall quality.

5.3 Proposed Audio-Visual FR Quality Metric
We propose three FR audio-visual quality metrics, which are
based on the subjective models described in Sec. 4. In other
words, we use the same combination of models used as the
subjective models to combine the audio and video metrics
and predict the audio-visual quality. To obtain the coeffi-
cients, we use the subjective data of experiment III and the
outputs of the audio quality metric and VQM.

The first model fitted was the simple linear model, given
by the following equation:

Qav1 ¼ α1 · Qvþ β1 · Qaþ γ1; (10)

where Qav1 corresponds to the predicted audio-visual qual-
ity score, Qv to the quality score obtained with VQM, and
Qa to the quality score obtained with SESQA. The fit
returned scaling coefficients α1 ¼ 0.45, β1 ¼ 0.48, and
γ1 ¼ −8.9275. For this fit, the PCC was 0.8472 and the

SCC was 0.8337 (see Table 6). Figure 7(a) shows the graph
of the predicted quality Qav1 versus the subjective scores
(MOSav) for experiment III.

The second model fitted to the data was the weighted
Minkowski model given by the following equation:

Qav2 ¼ ðα2 · Qvp þ β2 · QapÞ
1
p; (11)

where Qav2 corresponds to the predicted audio-visual qual-
ity score. Notice that if p ¼ 1, this becomes the linear model
with γ1 ¼ 0. The fit for the Minkowski model returned an
exponent p ¼ 0.9165 and scaling coefficients α2 ¼ 0.4184
and β2 ¼ 0.3999. For this fit, the PCC was 0.8448 and
the SCC was 0.8392 (see Table 6). Figure 7(b) shows the
graph of the predicted quality Qav2 versus subjective score
(MOSav) for experiment III.

Finally, the third model fitted was a power model pro-
posed by Wang et al.31 given the following equation:

Qav3 ¼ ðγ2 þ α3 · Qvp1 · Qap2Þ; (12)

where Qav3 corresponds to the predicted audio-visual
quality score. The fit for this model returned exponents
p1 ¼ 1.5837 and p2 ¼ 0.9524 and scaling coefficients α3 ¼
0.0006 and γ2 ¼ 26.9240. For this fit, the PCC was 0.8545
and the SCC was 0.8384 (see Table 6). Figure 7(c) shows the
graph of the predicted quality Qav3 versus subjective quality
(MOSav) for experiment III. We can observe from the graphs
that all models have a reasonably good fit to the data.

Due to the difficulty of finding audio-visual quality met-
rics, we compared the proposed metrics with a group of FR
video metrics. Although not completely fair, this comparison
gives an idea of what performance gain can be obtained

Table 4 PCCs of subjective models tested on different quality level subsets.

Video quality Audio quality Number of sequences PCC PrMOS1 PCC PrMOS2 PCC PrMOS3

Low (0 to 33) All (0 to 100) 6 0.8261 0.8232 0.8288

Low (0 to 33) 0 — — —

Middle (33 to 66) 2 — — —

High (66 to 100) 4 0.7900 0.8418 0.8309

Middle (33 to 66) All (0 to 100) 33 0.7218 0.7313 0.7317

Low (0 to 33) 3 — — —

Middle (33 to 66) 17 0.6726 0.6517 0.6633

High (66 to 100) 13 0.8471 0.8282 0.8447

High (66 to 100) All (0 to 100) 33 0.8602 0.8769 0.8944

Low (0 to 33) 1 — — —

Middle (33 to 66) 17 0.6552 0.7032 0.7359

High (66 to 100) 15 0.7580 0.7692 0.7533

Note: Values in bold correspond to the models with best performance.
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by also considering the audio quality, while estimating
the audio-visual quality. The FR video quality metrics con-
sidered here are: structural similarity index (SSIM),6 peak
signal-to-noise ratio (PSNR), and video quality metric
(VQM).23 Although SSIM is a still-image quality metric,
it has frequently been used for video. In fact, an

implementation of SSIM is currently available in the
H.264 codec. PSNR, on the other hand, is the most popular
data metric and it is still in use by the signal processing
community.

In Table 6, the PCCs and the SCCs of all models are
listed. For comparison purposes, the PCC values for the best
subjective models are also presented. As can be observed,
similarly to the subjective models, the proposed audio-visual
quality metrics (SQav1, SQav2, and SQav3) have the best
correlation coefficients, with SQav3 (power model) showing
a slightly better result. Among the visual quality metrics
(VQM, SSIM, and VQM), VQM presents the best correlation
coefficients.

To analyze how the three proposed objective models
(SQav1, SQav2, and SQav3) perform for low and high qual-
ity contents, we classified the dataset according to their

Table 5 Selected 17 single ended speech quality assessment
parameters (out of 51) used to calculate the audio quality.22

Parameter Name Classification

1 PitchAverage Basic voice descriptors

2 SpeechLevel Basic voice descriptors

3 MuteLength Interruptions/mutes

4 LocalBGNoiseLog Noise analysis

5 RelNoiseFloor Noise analysis

6 SNR Noise analysis

7 SpecLevelDev Noise analysis

8 SpecLevelRange Noise analysis

9 SpectralClarity Noise analysis

10 BasicVoiceQuality Unnatural speech

11 ArtAverage Unnatural speech

12 CepCurt Unnatural speech

13 FinalVtpAverage Unnatural speech

14 LPCCurt Unnatural speech

15 LPCSkew Unnatural speech

16 PitchCrossCorrelOffset Unnatural speech

17 PitchCrossPower Unnatural speech

Fig. 6 Test of audio quality metrics: (a) MOSa versus SESQA and (b) MOSav versus PEAQ.

Table 6 PCCs and SCCs of FR audio-visual metrics tested on data of
experiment III.

Model PCC SCC

Qav1 0.8472 0.8337

Qav2 0.8448 0.8392

Qav3 0.8545 0.8384

SSIM 0.5896 0.6435

VQM 0.7092 0.7364

PSNR 0.5437 0.6350

SQavH1 0.7707 0.7377

SQavH2 0.7680 0.7371

SQavG 0.7286 0.7809

SQavW1 0.7682 0.7374

SQavW2 0.7928 0.7973

Note: Values in bold correspond to the models with best performance.
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bitrates (audio and video). Video sequences were classified
as low quality (vb1 and vb2 bitrates) and high quality (vb3
and vb4 bitrates). Audio sequences were classified as low
quality (ab1 and ab2 bitrates) and high quality (ab3 bitrate).
In Table 7, the PCCs for the different subsets of test

sequences are presented, considering the same coefficients
(parameters) used for the full set (results in Table 6). It
can be observed that SQav1 performs better with low quality
test material (lowest vb and ab), while SQav3 performs better
for high quality material (highest vb and ab). The best PCC

Fig. 7 Predicted quality using: linear model Qav1, (b) Minkowski model Qav2, and (c) power model Qav3
for data of experiment III.

Table 7 PCCs of FR audio-visual metrics tested on low and high quality material subsets.

Video bitrate Audio bitrate Number of sequences PCC (SQav1) PCC (SQav2) PCC (SQav3)

Low (vb1, vb2) All (ab1, ab2, ab3) 36 0.7509 0.7445 0.7258

Low (ab1, ab2) 24 0.7853 0.7761 0.7586

High (ab3) 12 0.5881 0.5929 0.6404

High (vb3, vb4) All (ab1, ab2, ab3) 36 0.8276 0.8176 0.8110

Low (ab1, ab2) 24 0.8064 0.7927 0.8187

High (ab3) 12 0.6181 0.6198 0.6486

Note: Values in bold correspond to the models with best performance.
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values were obtained for high values of vbs. On the other
hand, the worst PCC values were obtained for the highest
values of ab (both for high and low vbs). The model has a
poor performance when the audio is high quality, with PCC
values lower than those obtained for VQM. So, when the
audio quality is high, a simple video quality metric performs
better. When the audio quality is low, it has a bigger effect on
the audio-visual quality.

As for the subjective quality models, an analysis consid-
ering the quality level results for the audio and video com-
ponents is presented in Table 8. It is observed that the same
pattern is repeated for the three quality metrics. The majority
of sequences were scored with middle and high quality val-
ues as in the subjective quality models.

6 Conclusions and Future Work
Three psychophysical experiments were conducted to under-
stand the contribution of the audio and video components to
the overall audio-visual perceptual quality. It was observed
that the video content characteristics were important while
determining the MOS, proving that there is a correlation
between spatial and temporal activities and the MOS values
gathered from experiments. By making an analysis of the
audio content, we concluded that audio sequences classified
as others1 (low environmental sounds) were more sensitive
to compression degradations than other types of audio
sequences. By separately observing the audio and video
MOS results, it was possible to observe that the compression
of the video component had a higher impact on the overall
audio-visual quality than the compression of the audio com-
ponent. Using a video metric and an audio metric, we were
able to obtain three objective audio-visual quality models: a
linear model, a weighted Minkowski model, and a power

model. All models presented good fits with the subjective
data, with PCCs above 0.84. These objective models are very
simple and can be used to predict the quality of audio-visual
signals, given that we have an audio quality metric and a
video quality metric.

Further studies are needed in order to better understand
how the content of the video and audio interact with each
other and affect the audio-visual quality. Several aspects
of audio-visual perception need special attention. For in-
stance, research on the audio-visual quality perception
from a neuro-physiological point of view will help to under-
stand how both the visual and the auditory sensory channels
are perceptually combined. Another aspect is the study of the
cross-modal interactions between the audio and the video
components and its dependency on the experimental context
and, especially, on the audio-visual content. The study of
the impact of audio-visual synchronization errors (e.g., lip
synchronization) on audio-visual quality also needs further
work.

Current projects focused on the development of audio-
visual quality metrics, such as the audio-visual high defini-
tion quality project conducted by the VQEG, will certainly
contribute to this research by providing new audio-visual
models, new audio-visual materials, and reliable subjective
data from experiments.
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