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Abstract—Underwater image processing area has been consid-
ered an important topic within the last decades with important
achievements. This kind of images are essentially characterized
by their poor visibility because light is exponentially attenuated as
it travels in the water and the scenes result poorly contrasted and
hazy. On the other hand, image restoration takes into account the
influence of the environment on the image in order to achieve
an image with an improved quality. This technique consist of
inverting the physical model of image formation. That model
contains parameters which represent variables such as coefficients
of absorption, scattering, among others. In this case, the quality
of the restored image depends on the correct estimation of these
parameters. In this work, an approach based on evolutionary
optimization algorithms is proposed, for restoring underwater
images by estimating the model parameters, and using two
metrics for quality assessment. The degradation in the images has
been simulated by using an image formation model. Results show
that image restoration based on a Multi-Objective Differential
Evolution (MODE) algorithm achieves images with good contrast
and sharpness, being even better than the original image.

I. INTRODUCTION

After image acquisition, storage and transmission processes
the received image often appears as a degraded version of the
original image due to imperfections in the imaging system,
weather conditions, intensity of light among others non-ideal
conditions [1], [2], [3]. These distortions make the image
analysis, which is necessary for several applications, very dif-
ficult. The challenge of image restoration consist of removing
blur from a noisy image [4]. Image restoration has been a
longstanding problem in the image processing area and several
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methods for image restoration have been developed. One of the
most classic methods is the inverse filtering by Wiener filter

(11, [3].

The medium on which the scene is contained plays an
important role in the image features. Often, in imaging process
is assumed that the medium is not relevant. However, this
assumption cannot be applied to environments with mist, pollu-
tion, and above all to underwater environments. In these condi-
tions, the medium has a strong influence on light propagation,
and consequently on the quality of the acquired image [5]. In
particular, the physical properties of underwater environments
cause additional degradation effects. Underwater images are
characterized by the poor visibility, due to light attenuation as
long as light propagates in the water, and also by the blur and
low contrast.

Attenuation of light limits the visible distance to about
20 meters on clean water and less than 5 meters in turbid
water [6]. The attenuation effect is generated, mainly, by two
processes: (1) absorption and (2) scattering. In the absorption
process, the luminous energy is transformed in other kind of
energy along the path traveled by light, due to interactions
with matter. This process generates a significant loss in the
brightness of the object. On the other hand, scattering refers
to any deflection with respect to the straight-line propagation
path, which is caused by the collision of photons with the
particles in suspension in the medium. In this case, there are
two types of scattering: (1) Back-scattering, where light from
a light source is reflecting back from particles in the lenss
field of view causing specks of light to appear in the image



and low contrast, and (2) Forward-scattering where the light
is randomly deviated on its way from an object to the camera,
causing blurring [6].

Underwater image restoration is based on the inversion of
physical models, which represents the interactions between the
light and the environment. These models are represented by the
quantities mentioned above (i.e. attenuation coefficient, scat-
tering coefficient, etc.). The restoration process can be divided
into two types: (1) non-blind restoration, where the values of
the physical parameters are known; and (2) blind restoration,
where there is not information about the medium’s properties
and, therefore, these parameters have to be estimated. In
most practical situations, a blind restoration process is the
only option, given that the medium’s features are unknown.
Therefore, the quality of the restored image strongly depends
on the estimation of the parameters of the physical model that
represents the interaction between the light and the medium. In
general, the estimation of these parameters can be performed
by an optimization process [7].

In the last two decades research on optimization algorithms
has been very active [8], [9]. In the literature, there are
several algorithms that are able to restore degraded images
with reasonable quality. These algorithms can be divided into
two classes: deterministic and stochastic approaches. Among
the stochastic approaches, population-based, evolutionary al-
gorithms and swarm intelligence methods [10], [11] offer
a number of advantages that make them very attractive.
Some of the advantages are the easy implementation, implicit
parallelism, robust and reliable performance, global search
capability, no need for specific information about the problem,
robustness to noise, and no requirement for a differentiable
or continuous objective function [12]. In recent years, the
development of new artificial intelligence algorithms, such as
genetic algorithms and particle swarm optimization, has also
yielded good results in restoration area [7].

A very important aspect on optimization algorithms is the
objective function or cost function. In image restoration task
this function corresponds to an objective related to a measure
of the image quality. In this context, an image quality metric
aims to estimate the quality of an image, taking into account
not only its difference with regard to an ideal (or original
image) but also how these differences are perceived by the
human visual system. In this case, there are three types of
objective approaches: (1) Full Reference Metrics (FR), (2)
Reduced-reference (RR), and (3) No-Reference Metrics (NR).
In Full-Reference (FR), a degraded image is compared with
an ideal version (or reference) in order to estimate its quality
[13]. The most popular full-reference image quality metrics are
the peak Signal-to-Noise Ratio (PSNR) and the Mean Squared
Error (MSE) [14]. In Reduced-reference (RR) image quality
measures try to predict the visual quality of distorted images
by using only partial information about the reference images.

Otherwise, there are applications in which the reference
image does not exist (i.e. underwater environments). In these
cases, a NR image quality metric is needed for achieving
a blind restoration. In order to use this quality metric the
restoration process need to achieve three goals [13]: (1) to
estimate faithfully the quality of an image without a priory
knowledge of the parameters of the different environments (i.e.
different water optical properties); (2) to be independent of the
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content; (3) to be immune or less sensitive to noise, specially
those caused by multiple scattering in turbid underwater envi-
ronments. Such metric is a critical component in the automated
image restoration process, where the optimization algorithm
needs to know the stop ping criteria and determine if it has
found the best result [13].

Since an underwater image is submitted to different kinds
of distortions (i.e. blurring, low contrast, etc.), more than one
metric for image quality assessment must be used. This makes
the Multi-Objective optimization processes ideal for this kind
of applications.

In this paper we present an algorithm for restoration
of simulated underwater environments. The approach consist
of using a Multi-Objective Differential Evolution (MODE)
algorithm for the optimization process, and two NR metrics.
In order to achieve the multi-objective approach two metrics
has been used as objective functions which detect jointly the
classical problems involved in restoration tasks as well the
contrast problem, which is also related in degradation process
related to underwater case. The optimization problem consists
specifically on obtain the parameter of the Trucco model (see
section II) and testing the results of the image quality. The
first metric is the Naturalness Image Quality Evaluator (NIQE)
[15], while the second one is based on the distribution of
contrast [16].

The main contribution of this work consist of the novel
use of the MODE algorithm in image restoration problem
applied for underwater case, and the use of adequate metrics as
objective function. Results show that, using these metrics, the
optimization process is able to estimate the model parameters
correctly. In our case, the estimated parameters are used to
invert the image degradation model and producing a restored
image.

This work is organized as follows. In section II, the
theoretical background on underwater degradation models and
MODE optimization algorithm is presented. In Section III,
some related works on underwater image restoration are pre-
sented. Section IV presents the implementations and results
achieved by the restoration system. And finally, Section V
presents the conclusions.

II. THEORETICAL BACKGROUND
A. Underwater Image Acquisition

To understand underwater image processing, we have to
analyze the basic physics of light propagation in the water
medium. Light interacts with water through two processes,
namely: (1) absorption and (2) scattering. Absorption is the
loss of power that occurs when light travels in the medium,
which depends on the index medium refraction. Scattering
refers to any deflection from a straight-line propagation path
[6], [17]. The scattering process can be divided into two
classes: (1) back-scattering and (2) forward-scattering.

Back-scattering refers to a process in which a fraction of
light is reflected by particles in water. This reflected light is
captured by the camera before it reaches the object in the
scene, limiting the contrast of the images. Forward-scattering
corresponds to the light that is randomly deviated on its way
from the object to the camera. Generally this leads to blurring



of the image [6]. The most complete and popular model was
proposed by Jaffe-McGlamery [18], [19]. According to this
model, the underwater image can be represented as the linear
superposition of three components, as shown in Fig. 1: (1)
direct component, (2) forward-scattered component, and (3)
backscatter component. These three components are linearly
summed, representing the total irradiance captured by the
camera sensor, being expressed by equation 1.
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Fig. 1. Components of Jaffe-McGlamery Model [17].

Ly =FE;+ Ey + Ep, (D

where E} is the total irradiance, E; the direct component, Ey
the forward-scattered component, and Ej, the backscatter.

Another assumption used by the Jaffe-McGlamery model
is that the intensity of the light traveling in the water decreases
exponentially. This loss can be described by the following
equation [20]:

Ei (d) = E07i E)Xp(—cid)7 (2)

where ¢ is the light wavelength , d is the distance traveled,
E;(d) is the light intensity of wavelength i, Ey; is the
light intensity of wavelength ¢ at the light source, and c;
is the attenuation coefficient at wavelength ¢. Note that the
attenuation coefficient depends on the light wavelength or, in
others words, of the color of light [21].

Based on the two assumptions described above (Eqgs.
(summarized in 1) and (2)), the complete JaffeMcGlamery
underwater image model has been derived in[19]. Due to
the complexity of Jaffe-McGlamery’s model, researchers have
made simplifications in order to reduce the amount of cal-
culations needed. One of most common simplifications is
presented in a model proposed by Trucco and Olmos in
[22]. This model reduces generality but still accounts for
a sufficiently wide class of practical situations [22]. In this
case, the authors consider an uniform illumination, which is a
reasonable assumption for shallow waters, where illumination
is provided by direct sunlight. Also, they assume that the
forward-scattering process is the main cause of degradation,
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and that the backscatter effect can be ignored. The final is
given by the equation 3.

Ef:Ed*g(xayadaGan)' (3)

This model is based on the development of the PSF (Point-
Spread-Function), g(z,y,d, G, c, B). With some further sim-
plifications, the presented model is reduced to the construction
of an inverse filter in frequency domain [22], represented by
equation 4.

G(f,d,c, K) = K exp(—cdw). )

B. Multi-Objective Differential Evolution Algorithm

The Differential Evolution (DE) algorithm has been widely
applied to multi-objective problems with relative success. For
a review on the DE algorithm and also its multi-objective
versions see [53]. Among them, a simplified version was
proposed by [54] called DEMO/parent, adopting the Pareto-
based ranking and crowding distance metric as in the Non-
dominated Sorting Genetic Algorithm version II (NSGA-II)
[55]. Another approach was the Pareto Differential Evolution
Algorithm (PDEA), proposed by [56].

The DEMO/parent algorithm adapts the original DE al-
gorithm in order to cope with multi-objective problems as
follows. The greedy selection at the end of each iteration of
the DE algorithm is replaced by a strategy, which considers for
the child solution the dominance regarding its parent, namely:
if the child solution is dominated by its parent, discard it;
else if the child solution dominates the parent, substitute the
parent by its child solution; else, keep both of them in the
population. After this checking is done (for all child solutions)
the population is truncated according to the dominance and
crowding distance criterion such as in NSGA-II. The PDEA
is slightly different than DEMO/parent. It concatenates both
parent and child populations and truncate them according to the
same criteria (dominance and crowding distance). We show the
description of the DEMO/parent and PDEA algorithms below,
marking whenever those algorithms differ.

e  Step 1 (Initialization): Randomly initialize the parent
solutions P; inside the given search space and evaluate
the solutions.

e  Step 2 (Create candidate solution): For each P;, create
a child solution C; according to DE update equations;

e  Step 3 (Evaluate child solutions): Calculate the objec-
tive functions for each child solution Cj;

e Step 4 - DEMO/parent (Keep solutions): Update the
parent solutions for the next generation: if C; is
dominated by P;, discard it, else if C; dominates FP;,
replace P; by C}, else keep both C; and P;;

e Step 4 - PDEA (Keep solutions): Keep both child and
parent populations for the next step;

e Step 5 (Truncate parent solutions): At this point, the
number of parent solutions for the next iteration range
from N to 2N in DEMO/parent and is equal to 2N
in PDEA, where N is the size of the population. Then



we set the parent population for the next iteration as
the truncation of the parent and child solutions as in
the NSGA-II, according to the nondominance criterion
and the crowding distance metric;

e  Step 6 (Iteration counter increase): g = g + 1;

e Step 7 (Termination criterion check): If the total
number of iterations has been reached, terminate,
otherwise, go to Step 2.

III. RELATED WORKS

In image restoration process is considered that the environ-
ment does not change the image features. However, for images
taken in underwater environments, the interactions between
the light and the environment generate a degradation in the
acquired image, which cannot be ignored.

Bio-inspired algorithms are a good alternative to arrive at
optimal solutions in real problems of high complexity. Con-
sidering that underwater image restoration is a very complex
problem, bio-inspired algorithms may present a good solution
for this application. In this section, the more relevant works
on underwater image restoration and their optimization using
bio-inspired algorithms, are discussed.

A. Underwater Image Restoration

Schettini and Corchs [6] present a wide review on under-
water image restoration techniques. One of most cited works
in this area is the technique proposed by Trucco and Olmos-
Antillon [22] in 2006. The main contribution of Trucco and
Olmos is the simplified image formation model. This model
ignores the effect of back-scattering component for scenes
in which the distance between the object and the camera is
short. Based on this model, the authors presents a self-tunable
filter for underwater image restoration that assumes that the
environment illumination is uniform.

A different simplification of the original model was pro-
posed by Schechner and Karpel in 2004 [26] and 2005 [27].
These new models consider the back-scatter effect and ignore
the forward-scattering for wide scenes, considering distances
between 20 and 30 meters between the camera and the scene.
The authors propose a technique to recover the visibility in
underwater scenes using light polarization. In 2009, Treibitz
and Schechner [28] presented a different approach based on
polarization. Although this method provides good results in
real life situations, it requires the use of external optical
elements, such as polarizers and artificial light sources.

Another important contribution was presented by Lui et.
al. in 2001 [29]. In this work, the authors propose a method-
ology for measuring the PSF. The measurements was done
in controlled environments with images taken in a tank, with
distances ranging 3 meters. The authors implement a Wiener
filter for restoring the images with the measured PSF. Hou
et. al. [30], [31] presented a different methodology for PSF
measurement and image restoration. In more recent work, Y.
Chen et. al. [32] presented a review about several empiric PSF
models in underwater environments, testing these models using
blind restoration algorithms to validate their solution.

E. Nascimento et. al. (2009) [33] presented an automatic
methodology for restoration based on the propagation of light
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in underwater environments. This technique uses pairs of im-
ages acquired from different points under the same conditions
(a stereo vision system is used). Considering that scattering an
absorption processes are function of the distance, the intensity
captured by each camera tends to be different for each point.
Assuming that properties of water are the same for both
images and knowing the distance between the scene and the
image plane, the model parameters are estimated and used for
restoration.

Also in 2009, Y. Tian et. al. [34] presented a model based
on the wave equation in order to estimate the shape of water
surface. In this case, the camera is placed out of the water and
the model is used to recover the image of the underwater scene.
The presented approach does not need calibration patterns or
a priori information to achieve the objective.

In 2010, F. Fan et. al. [35] presented a blind restoration
algorithm based on Lucy-Rchardson algorithm. In order of esti-
mate the PSF, it used a small angle approximation proposed by
Wells in 1973 [36] that considers scattering angles from O to 10
degrees. In the same year, W. Ferreira de Barros [5] presented a
simplification for the Jaffe-McGlamery model that performs an
inversion to restore the degraded image. The model parameters
are estimated using a non-linear multi-objective optimization
function available in the Matlab Optimization Toolbox [37].

Boffety and Galland [38] presented a model for simulation
of “marine snow” based on the Jaffe-McGlamery model in
2011. The authors present an interesting study of the impact
of marine snow in the restoration performance. In 2012, D. Lee
et. al. [39] proposed a system for restoration of visibility for
an underwater robot. The restoration method is based on the
inversion of the Jaffe-McGlamery model, considering only the
direct component. Due to the attenuation coefficient depends
on the wavelength of light, this coefficient is different for each
color channel. The coefficients used by the authors correspond
to the values determined experimentally for shallow waters by
Yamashita et. al. [40].

In 2012, M. Yang et. al. [41], [42] presented a strategy for
image restoration based on the atmospheric turbulence model
by Hufnagel e Stanley [43] in 1964. In this case, the PSF
depends on a value called furbulence coefficient and a coarse-
to-fine strategy is used in the search for the optimal value.
Once the parameter has been estimated, the restoration process
performed using a Wiener filter.

B. Image Restoration Using Bio-inspired Optimization

Zhang et. al. [44], in 2008, presented a strategy for image
restoration using neural networks. The PSO algorithm is used
to optimize the neural network, taking an error measure as a
fitness function.

In 2009, Dash et. al. [45] presented an algorithm for image
restoration based on regularization. The optimal regularization
parameter (\) is estimated using the PSO algorithm. In this
case, the objective function is the MSE.

T. Sun et. al. [46] discussed a restoration algorithm based
on a fusion between genetic algorithms (GA) and neural
network in 2010. The approach uses the advantages of genetic
algorithms for parameter estimation and of the neural network
for training the restoration system.



J. Papa et. al. [47] presented a technique for restoration
called Projections onto Convex Sets. This technique consists
of projecting solutions into hyperspaces until they achieve a
convergence criteria. The number of convex sets and their
combination allow to project several algorithms for image
restoration [47]. This technique uses a relaxation parameter
(M) that strongly depends on the features of the image to be
restored. Thus, wrong values of A can lead to poor restoration
results. The PSO algorithm is used to find the optimal re-
laxation parameter. The authors compare the achieved results
with more traditional algorithms, like Wiener filter and Lucy-
Richardson algorithm.

In 2011, Li et al. [3] introduced the selection process of
genetic algorithms into a basic PSO to solve the premature
convergence problem. The proposed algorithm uses a Least
Squares Estimation (LSE) model for restoration [3], assuming
that every image is a particle. In other words, every image is
a solution for the optimization problem.

Also in 2011, Qinquing et al. [48] presented an strategy for
image enhancement based on a parameterized transformation
function. To solve the problem of premature convergence
of the PSO, the parameters of this function are estimated
using the PSO algorithm mixed with a Simulated Annealing
(SA) mechanism. In this strategy, the objective function gives
information about the entropy and the edges in the image.

Sun et al. [7] proposed a restoration algorithm based on
regularization methods. The optimal value of the regularization
parameter is estimated using a modified PSO algorithm.

In 2012, Toumi et al. [49] used a PSO algorithm for blind
restoration, estimating the optimal parameters for PSF. The
authors proposed a new Search Efficiency Function as a cost
function.

F. Latifoglu et al. [50], in 2013, presented an approach
based on 2D FIR filters for noise elimination. In this work, the
coefficients for the filter are estimated using an ABC (Artificial
Bee Colony) algorithm. The objective function used is the MSE
(Mean Squared Error).

Related to underwater restoration issues as well as the use
of bio-inspired techniques it can be observed the tendency to
obtain restoration techniques (for underwater case) based on
more acquired models. In this case, the problem is related
to the complexity of the models, which can contain several
parameters, representing an inversion problem in which op-
timization techniques can be applied in order to obtain more
accurate parameters. In this case, the Trucco model is the more
used based on the simplicity a potential to represent the physics
effects involved in underwater images. Most of the related
works involving bio-inspired optimization algorithms are based
on PSO in which were not applied multi-objective techniques.
Otherwise, the use of specific metrics for restoring underwater
image is a challenge due to the close relation involved among
different physics variables and the problem of contrast which
was detected in experimental researches developed by the
authors of this approach. In this case, the proposal of more
than one cost functions has not been discussed in the related
works, such as has been developed in this work.
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IV. IMPLEMENTATIONS AND RESULTS

In this work, the degradation process was simulated using
an image degradation model. Since this is a blind-restoration
problem and no-reference image quality metrics were used in
the optimization process. In this section, the obtained results
for image degradation, optimization and image restoration are
presented.

A. Image Degradation

In this work, we use the image model proposed by Trucco
for simulation of underwater degradation (see Section IIA).
Taking the model described in Eq. (3) in the frequency domain,
we obtain the following equation 5.

E(u,v) = Eq(u,v)Kel =), Q)

In Eq. (5), the term Ke(~¢%) corresponds to the Point
Spread Function (PSF). This function can be presented as a
low-pass filter, where K is the gain of the filter and w is the
frequency. Ey is the direct component and can be presented
by equation 6.

Eq(u,v) = S{Eo(i,j)e "}, (©6)

where Ey (i, j) corresponds to the reference (without degrada-
tions) image in the space domain and S represents the Fourier
Transform. This model is used to simulate images captured in
an underwater environment. The results of the implementation
of this model are shown in Figure 2.

(b)

Fig. 2.
Degraded image. Parameters used for degradation: ¢ = 0.3m™
d = 3m. (Image taken from LIVE database [51])

Degraded image using the Trucco’s model. (a) Original image. (b)
LK =07,

B. Image Restoration

In order to restore the degraded image, the model used
for degradation has to be inverted to find an approximation
of the original image Ej. The inverted model is presented by
equation 7.

N s | %{E(’L’j)} ~d
Eo(i,j) =S {W e, (N
where E(i, j) corresponds to the degraded image in the spatial
domain, c the attenuation coefficient, /' the gain of the PSF
function and d the distance between the camera and the scene.



TABLE 1. RESULTS FOR SPACING METRIC OF PDEA AND

DEMO/PARENT ALGORITHMS (10 RUNS)

PDEA DEMO/Parent
Mean 0.0638 0.0653
S. deviation 0.0220 0.0314
Min. 0.0378 0.0312
Max. 0.0940 0.1152

In underwater imaging, degradations could change the
quality of the image in different ways. For this reason, more
than one metric for image quality assessment has to be used,
leading to a multi-objective approach. In order to estimate the
parameters of the model, a MODE algorithm was used. In this
work, the parameters ¢ and K are considered as the decision
variables for optimization process. It is important to notice that,
physically, parameters ¢ and K not depends on the distance
d. Also, d can be estimated in others ways (i.e. using a stereo
vision system [33], [52]).

The metric NIQE [15] and the distribution of contrast [16]
are used as cost functions. NIQE is based on the construction
of a “quality aware” collection of statistical features based on
a simple and successful space domain natural scene statistic
(NSS) model [15]. Low values of NIQE mean better quality of
the image. On the other hand, in the case of the distribution of
contrast [16], only the range of the distribution is used. Larger
values for the range of distribution means a better quality.

In this work, the parameters used for degradation are the
same described in Figure 2. Better results are achieved with a
population size of 30 and 250 iterations for the MODE. Also,
it is defined values of 0.5 for the scaling factor and 0.9 for
the crossover probability. Two different approaches for MODE
algorithm were implemented, the PDEA and DEMO/Parent.
Each algorithm was performed 10 times. Figure 3 show the
non-dominated solutions after the 10 runs for both algorithms.
These figure also shows the values chosen (the black square)
for restoration. The image is restored using the parameters c
and K estimated by the optimization algorithms (typical values
for ¢ and K are between 0.1 and 0.9).

Results for image restoration processes using the MODE
algorithm are shown in Figure 4, which was chosen only for
validating our approach. Also, two metrics to measure the
quality of the obtained Pareto’s fronts were used, namely the
spacing and hypervolume were measured through 10 runs with
different initial conditions. Table I shows the spacing metric
for both algorithms. There we can see that both approaches
performed equally well according to the diversity of the
solutions. Table II shows, on the other hand, that the PDEA
approach showed itself superior with a higher mean, minimum
and maximum values for this metric. It shows that the PDEA
approach was able to provide Pareto fronts which covered
a larger area in the space of objectives when compared to
DEMO/parent algorithm.

As mentioned above, the parameters used for degradation
process were ¢ = 0.3m~! and K = 0.7, for a fixed distance
of d = 3m. After optimization and restoration processes, the
estimated parameters are ¢ = 0.3899m ! and K = 0.7521.
The cost function values obtained are NIQFE = 3.779 and
Range = 1.912. On the other hand, the cost function values
for original image are NIQFE = 3.3998 and Range = 1.1723,
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12p

1r

10r

NIQE
~I

+ DEMO/Parent
+ PDEA

Fig. 3.

Filtered Pareto’s frontier obtained by DEMO/Parent and PDEA

algorithms after 10 runs.

Fig. 4.

Results of image Restoration. (a) Degraded image (¢ = 0.3m™1,

K = 0.7, d = 3m). (b) Original image. (c) Restored image using MODE
algorithm ¢ = 0.3899m~1, K = 0.7521, d = 3m.

TABLE II.

RESULTS FOR HYPERVOLUME METRIC OF PDEA AND
DEMO/PARENT ALGORITHMS (10 RUNS)

PDEA DEMO/Parent
Mean 0.8820 0.8289
S. deviation 0.0700 0.0683
Min. 0.7749 0.7668
Max. 0.9269 0.9259

and for distorted image are NIQFE = 9.0044 and Range =
0.3842. Results show that estimated values for ¢ and K are
really close to the real values used for degradation process.



On the other hand, values of cost functions for original and
restored images are also similar. However, by doing a subjec-
tive analysis of Figure 2, it is possible to conclude that the
restored image has slightly better quality than original image.
The images used in this work are part of LIVE Image database
[51]. These images were taken in natural environments and it
can present some distortions, that is because it is not strange
to obtain a restored image with better quality than original
image. It means that the restoration process is also restoring
some of these degradations.

Figure 5 shows more results using different images with
different values for c and K. In column (a) are the original (no
degradation) images, in column (b) are the degraded images
and the column (c) belongs to restored images.

(b) (©)

Fig. 5. Results of image Restoration. (a) Original. (b) Degraded image. (c)
Restored image using MODE algorithm

V. CONCLUSIONS AND FUTURE WORKS

In this work, the implementation of a restoration system
based on MODE optimization was presented. The optimization
algorithm estimated values for degradation parameters really
similar to the real parameters used for the degradation process.
By doing a subjective analysis of image results, it can be seen
that restored image has even better sharpness and contrast than
original image. However, in this work, simulated degradation
were used by implementing the Trucco’s degradation model
and it is needed a more real approach. This restoration process
would by implemented for real underwater images in order
to test the system in real conditions. In a real underwater
environment, the distance between the camera and the scene
could be measured using distance measurement technique such
as the stereo vision.
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