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ABSTRACT

Inverse halftoning techniques are known to introduce visible
distortions (typically, blurring or noise) into the reconstructed
image. To reduce the severity of these distortions, we propose
a novel training approach for inverse halftoning algorithms.
The proposed technique uses a coupled dictionary (CD) to
match distorted and original images via a sparse representa-
tion.This technique enforces similarities of sparse represent-
ations between distorted and non-distorted images. Results
show that the proposed technique can improve the perform-
ance of different inverse halftone approaches. Images recon-
structed with the proposed approach have a higher quality,
showing less blur, noise, and chromatic aberrations.

Index Terms— Inverse Halftone, Dictionary Training,
Image Restoration, Sparse Coding, Sparse Modeling.

1. INTRODUCTION

Most printed materials are produced using halftoning tech-
niques. Halftoning is the technique of converting continuous-
tone images into images with a limited number of color levels.
The technique generates images that, although having a lim-
ited number of levels, convey the illusion of having a higher
number of levels. Inverse halftoning is the process of gener-
ating continuous-tone images from their halftoned versions.
The reconstruction of scanned images is an application of in-
verse halftoning that is very important for the publishing in-
dustry [1]. Other applications include the protection of digital
documents against piracy [2], authentication of video con-
tent [3], compression of images [4], and error concealment
for images and videos [5]. In all these applications, the qual-
ity of the reconstructed image using the inverse halftoning
algorithm is crucial.

Generally, algorithms proposed for inverse halftoning fo-
cus on the restoration of a specific kind of halftoning al-
gorithm. In the case of dithering, there are several tech-
niques to generate the patterns that create the illusion of a
continuous-tone image. The corresponding inverse halfton-
ing algorithms use the appropriate pattern to optimize image
reconstruction. For example, Saika et. al [6] and Freitas et

al. [7] use stochastic models to restore continuous-tone im-
age from Ordered Dithering (OD) halftones. But, when the
halftoning technique is an error diffusion dithering technique,
these approaches do not produce good results. This is a prob-
lem since error diffusion techniques [8] have a better perform-
ance than ordered dithering techniques [9, 10]

In this paper, we present a method to enhance the visual
quality of images reconstructed using inverse halftoning tech-
niques. We treat the inverse halftoned image as a distorted
version of the original image and focus on recovering a non-
distorted version. Although the technique presented here can
be used to obtain the inverse halftone directly, the goal of the
proposed technique is to detect and reduce distortions in re-
constructed images generated by an inverse halftoning tech-
nique.

This paper is organized as follows. In Section 2, we de-
scribe the distortions associated with inverse halftoning al-
gorithms. In Section 3, we discuss how to train a pair of dic-
tionaries to match information between the original image and
the reconstructed image. Section 4 details our strategy to im-
prove inverse halftoning methods and Section 5 presents its
results. Finally, in Section 6, we present our conclusions and
discuss future works.

2. INVERSE HALFTONING

In this work, halftoning is the process of generating a binary
(2 levels) image Ib from a continuous-tone (255-levels) gray-
scale image Ig (or a channel of a colored image). Particularly,

Ib = H · Ig, (1)

where H is an operator representing the halftoning process
that transforms Ig into the binary image (pixels values equal
to ‘1’ or ‘0’). Although H can be viewed as a simple op-
eration, there are several ways to model it. As presented
by Ulichney [11], different models correspond to different
dithering patterns, leading to different ways to correlate the
information between Ib and Ig .

Inverse halftoning is the process of reconstructing Ig from
Ib. Since to generate Ib a considerable amount of information
is discarded, the inverse halftoning algorithm can only gener-
ate an approximation of Ig . In other words, the reconstructed



(a) original image (b) Halftoned (Jarvis) (c) Halftoned (OD) (d) CD from Jarvis

(e) WInHD [10] (f) WInHD+CD (g) FIHT [7] (h) FIHT+CD

Fig. 1. Comparison of original, halftoned, and reconstructed images using different inverse halftoning methods (Lena).

(a) original image (b) Halftoned (Jarvis) (c) Halftoned (OD) (d) CD from Jarvis

(e) WInHD [10] (f) WInHD+CD (g) FIHT [7] (h) FIHT+CD

Fig. 2. Comparison of original, halftoned, and reconstructed images using different inverse halftoning methods (Airplane).

image Îg contains an error, as modeled by following equation:

Ig = Îg + ε, (2)

where ε is an approximation error and Îg is the result of in-
verse halftoning process.

This approximation error ε is characterized by a degrad-
ation of the reconstructed image that we call distortion. The
visual effect of this distortion varies according to the inverse
halftoning technique, as shown in Fig. 1. The simplest in-
verse halftoning algorithm consists of low-pass filtering a
halftoned image. This approach removes the noise introduced
by halftoning patterns, but it also removes high-frequency in-
formation. Comparing the original Lena image (Fig. 1 (a))
and the reconstructed version generated using Wavelet-based
inverse halftoning via deconvolution (WInHD) [10] (Fig. 1
(e)), we notice that the reconstructed image is blurred. Com-
paring the original (Fig. 1 (a)) and the image reconstructed us-
ing Fast Inverse Halftoning Algorithm for Ordered Dithered
Images (FIHT) [7] (Fig. 1 (g)), we notice that the reconstruc-
ted image is noisier.

To tackle this problem, we observe the sparse represent-
ation of signals [12] and notice that there are linear relation-

ships among non-distorted and distorted signals. Therefore,
it is possible to reconstruct an original image from its distor-
ted version [13, 14]. To enhance the quality of reconstruc-
ted images, in this work we use a sparse representation of
the original and halftoned images and an error concealment
technique based on error correcting codes. The mathematical
model used for the sparse representation is based on diction-
ary learning [15, 16], which is a matrix factorization problem
that finds a dictionary (usually overcomplete) that sparsely
encodes the fitted data. This work is inspired by the approach
proposed by Yang et al. [17] that reduces blurring in inter-
polated images. Our work proposes a general model that
reduces distortions in continuous-tone images reconstructed
from halftoned images.

3. DICTIONARY LEARNING

Sparse representations make it possible to approximate a
given signal, x ∈ Rd, by a linear combination of element-
ary sets. These elementary sets are called basic atoms and
can be stored in an over-complete dictionary D ∈ Rd×k,
where d � k. Sparse coding techniques consist of discover-



ing a good set of basic atoms to represent D, what is usually
done by learning from a set of training samples composed by
patches of the signal x, i.e. x = {x1, x2, · · · , xn}.

In the literature, there are many approaches to find dic-
tionaries that guarantee the recovery of signals using sparse
representations [16, 15, 18, 19]. In this paper, we use a
learning-dictionary strategy that minimizes the differences
between the signal and its sparse representation. In other
words, we use the following optimization problem:

arg min
D,α

‖xi −Dαi‖22 + λ‖αi‖1

subject to ‖Di‖22 ≤ 1 i = 1, 2, . . . ,m,
(3)

where Di is the i-th column of D, λ is a constant that mul-
tiplies the `1 term (regularization parameter), and αi is the
sparse representation of xi. This problem is convex when
D or {αi} are fixed. When D is fixed, {αi} can be solved
efficiently by linear programming, like in the Lasso prob-
lem [20, 21]. Otherwise, by fixing {αi}, D can be solved as
a constrained quadratic problem [22]. This joint optimization
problem converges to a local minimum [23].

3.1. Coupled Dictionary Learning

Although the strategy described in the previous section is ef-
ficient to represent a signal x, we need a strategy to find the
relationship between distorted and non-distorted signals. Our
approach consists of learning two dictionaries, Dx and Dy ,
and find the relationship between these two spaces. For this,
the distorted signal x in terms of Dx is the same as the non-
distorted signal y in terms of Dy . A formulation to this prob-
lem is made by generalizing the single dictionary sparse cod-
ing as follows [17]:

arg min
Dx,Dy,α

‖xi −Dxαi‖22 + ‖yi −Dyαi‖22 + λ‖αi‖1

subject to ‖Dx‖22 ≤ 1

‖Dy‖22 ≤ 1

(4)

where

Dk = arg min
Dk,α

‖ki −Dkα
k
i ‖22 + λ‖αki ‖1, (5)

for k ∈ {x, y}. We chose αxi = αyi to guarantee that the
distorted and non-distorted signals share the same sparse rep-
resentation αi.

Combining Equations 4 and 5, we can rewrite the optim-
ization problem as:

min
Dc,α

‖zi −Dcαi‖22 + λ‖αi‖1

subject to ‖Dc‖22 ≤ 1,
(6)

where

zi =

[
xi
yi

]
(7)

and Dc is the coupled dictionary, given by:

Dc =

[
Dx

Dy

]
. (8)

4. PROPOSED METHOD

In this section, we discuss how to reduce distortions of im-
ages reconstructed with inverse-halftoning algorithms using
the Coupled Dictionaries approach described in the previ-
ous section. For this approach, the distorted (y) and ori-
ginal (x) images are decomposed into sets of patches, i.e.
x = {x1, x2, · · · , xn} and y = {y1, y2, · · · , yn}, respect-
ively. The main goal is to map the two spaces using coupled
sparse dictionaries and, then, use these dictionaries to recover
a patch of xi from a patch of yi (i = 1, 2, . . . , n).

4.1. Learning Stage

The first stage of the proposed method consists of extract-
ing distorted and non-distorted patch-pairs from the distorted
and non-distorted images, respectively. We use a database of
training images, which is composed of a set of original (gray-
scale) images and a set of corresponding images reconstruc-
ted using inverse halftoning algorithms. To generate the data-
base, we first pick N training non-distorted images {Ing }Nn=1.
Then, we generate their N halftone versions {Inb }Nn=1. Fi-
nally, for each halftoned image, we use an inverse halftoning
algorithm to obtain each distorted image {Îng }Nn=1.

With these pairs of original and reconstructed images, Ing
and Îng , we compute a random permutation of correspond-
ent 8 × 8 patches blocks, generating a set of original and
reconstructed pairs of blocks. The pixels in the i-th pair of
blocks,

(
bni , b̂

n
i

)
, are composed by the original information

and its corresponding reconstructed information, respectively.
These blocks are resized to vectors and referred as patch
pairs. Patch pairs are appended to a list p, in which the i-
th element pi is the previously defined pair (xi, yi), where
x = {x1, x2, · · · , xn} is the set of patches from original im-
ages (non-distorted) and y = {y1, y2, · · · , yn} is the corres-
ponding set from reconstructed images (distorted).

Fig. 3 depicts the steps used for the extraction of the patch
pairs. In step (1), a single image is converted to a halftoned
image. In step (2), this halftoned image is reconstructed using
an inverse halftoning technique. Then, in steps (3) and (4),
the distorted and original images are divided into blocks. In
step (5), the original image block and its corresponding block
in the reconstructed image are extracted, generating the pair
(bi, b̂i). Finally, in step (6), the non-distorted and distorted
blocks are reshaped into vectors to create the patch pair pi =
(xi, yi).

To learn dictionaries from distorted and non-distorted
patches, we have to keep the sparse representation of non-
distorted patches similar to the sparse representation of distor-



Fig. 3. First stage of proposed technique: extraction of patch
pairs to create dictionaries.

ted patches. As mentioned earlier, non-distorted and distorted
patches share the same {αi}, i.e. αki = αxi = αyi in Equation
5. In other words, for representing distorted and original in-
formation, the dictionaries are coupled by sharing the same
sparse representation.

4.2. Minimizing Distortions Stage

Once the training is done, we have two dictionaries, Dx and
Dy , corresponding to non-distorted and distorted patches, re-
spectively. To reduce the distortion of reconstructed images,
we first extract the distorted patches {yi} from Îg . Then, for
each i-th distorted patch, we find the sparse representation
corresponding to Dy , using the following equations:

arg min
αi

‖αi‖1

subject to ‖Dyαi − yi‖22 ≤ ε.
(9)

This problem can be solved using one the several linear re-
gression statistical techniques for `1-norm [21, 23]. For a
given optimal solution αi, the corresponding non-distorted
patch is given by:

xi = Dxαi. (10)

After non-distorted patches {xi} are obtained from the
distorted ones {yi}, we generate the reconstructed image Ĩg
by substituting each non-distorted patch {xi} into the corres-
ponding position in the binary image. In other words,

Ig = Ĩg + σ, (11)

where σ < ε (see Equation 2) and, therefore, Ĩg is closer to
Ig than Îg .

5. EXPERIMENTAL RESULTS

We used a set of 64 images to train the dictionaries. These
images were extracted from the “Texture” set of USC-SIPI

Image Database [24]. Fig. 4 shows a sample of these training
images. The texture images varied from coarse to fine and
from smooth to busy. Notice that the training images have
a simple content, consistent with what is frequently found in
blocks of larger and complex images.

To generate the distorted images, we used two different
types of inverse halftoning techniques: FIHT [7] and WInHD
[10]. These techniques were chosen because these algorithms
use different approaches to reconstruct continuous-tone im-
ages. While WInHD reconstructs images from error diffu-
sion halftones, FIHT restores images from ordered dithered
halftones. As a consequence, the visual distortions produced
by each algorithm look very different, as can be seen in Figs.
1 (e) and (g). Therefore, this choice of techniques makes it
possible to test the proposed method for two very different
halftoning algorithms. Both methods were implemented in
Matlabr and the simulations were performed in a laptop with
an Intel i7-4700MQ processor and 32GB of RAM.

Fig. 4. Example of images used in the training stage [24].

Fig. 5. Images used in experimental tests. In order: Airplane,
Baboon, Girl, House, Lena, Peppers, Sailboat, and Splash.

The proposed approach is tested using a set of 8 color nat-
ural images extracted from the “Miscellaneous” set of USC-
SIPI Image Database [24]. These images are depicted in
Fig. 5. For each image, to test the performance of the pro-
posed technique for WInHD and FIHT, we generate an error
diffusion halftoned image and an ordered dithered halftoned
image, respectively. Since the images are colored, we gener-
ate two halftoned images for each RGB channel.

The results obtained for a detail of the image ‘Lena’ are
shown in Fig. 1. Fig. 1 (a) corresponds to the original im-
age, while Figs. 1 (b) and (c) correspond to its halftoned ver-
sions obtained using the Jarvis’s error diffusion method and



Table 1. SSIM values for images reconstructed with inverse
halftoning algorithms.

Image WInHD WInHD+CD FIHT FIHT+CD CD
Airplane 0.91833 0.92137 0.88987 0.91487 0.51259
Baboon 0.76191 0.76934 0.83559 0.85362 0.57378
Girl 0.82917 0.83345 0.88337 0.90417 0.59847
House 0.88919 0.89611 0.89713 0.92071 0.50451
Lena 0.88623 0.89091 0.86406 0.88107 0.41437
Peppers 0.85510 0.85742 0.84406 0.86044 0.47974
Sailboat 0.84204 0.84621 0.83499 0.85400 0.55574
Splash 0.89055 0.89378 0.85100 0.86376 0.48803

the ordered dithering method, respectively. Figs. 1 (e) and (g)
show the restoration of the image in Fig. 1 (a) using Fig. 1(b)
as input for the WInHD and FIHT algorithms, respectively.

As mentioned earlier, comparing Figs. 1 (a) and (e), we
observe that the restoration using WInHD produces a blurred
distortion. This distortion is concealed when we use the pro-
posed technique (WInHD+CD), as shown in Fig. 1 (f). On
the other hand, FIHT produces a sharper and noisier image,
as shown in Fig. 1 (g). The noise is minimized using the pro-
posed technique (FIHT+CD), as depicted in Fig. 1 (h).

Fig. 1 (d) shows the results of using the proposed tech-
nique directly on the image shown in Fig. 1 (b). This example
shows that the training stage can be performed without us-
ing the inverse halftoning algorithm. Therefore, the proposed
method can be used to restore graylevels directly from bin-
ary images, i.e. the proposed method can act as an inverse
halftoning algorithm too.

Fig. 2 show the results for a detail of the ‘Airplane’ im-
age. For better visualization of the distortions, a digital zoom
was applied to the details of the image. When we compare
the images in Figs. 2 (a), (e), and (f), we can notice that dis-
tortions in high-frequency content are minimized . Moreover,
the noisy distortion inserted by FIHT method is also minim-
ized by CD, as can be noticed when comparing Fig. 2 (a), (g),
and (h).

Table 1 shows estimates of the quality of reconstructed
images obtained using a popular full-reference image qual-
ity metric: the structural similarity index (SSIM) [25]. The
second column of the table shows the SSIM values cor-
responding to the images obtained using the WInHD in-
verse halftone process, while the third column shows the
SSIM values obtained using the proposed method for WInHD
halftoned images. Similarly, the fourth and fifth column show
the same results for the FIHT method. The last column shows
the SSIM values corresponding to the images reconstructed
using the CD directly on Jarvis’ halftoned images. We can
notice that the use of CD increases the SSIM values of images
reconstructed for WinHD and FIHT halftoning techniques.

The scalability of algorithm is analysed by varying the
number of patches used in the training stage. As shown in
Fig. 6, we can observe that the training time increases lin-
early with the number of samples. Moreover, the sampling

time is approximately constant (130 seconds average) and
much smaller than the training time. This indicates that the
main computational cost is, as expected, the optimization pro-
cess. Therefore, an optimized implementation of the Lasso
algorithm is required for implementation of the proposed al-
gorithm on embedded hardware (e.g. scanning devices) or for
real-time applications.

Fig. 6. Computation time of dictionaries as function of num-
ber of samples.

6. CONCLUSIONS

We have presented a novel approach to improve the quality
of images reconstructed using inverse halftoning algorithms.
The proposed approach uses coupled dictionaries, which are
trained using original images and images reconstructed us-
ing inverse halftoning algorithms. Experimental results show
that the proposed method is able to conceal distortions caused
by inverse halftoning techniques, improving the quality of
images generated by these techniques. Moreover, we have
shown that coupled dictionaries can also be used as an inverse
halftoning method. Future works include the investigation of
the proposed method performance gain in inverse halftone ap-
plications, such as error concealment, image inpainting, di-
gital content protection, and digital scanning software. Also,
a study of the model’s optimal parameter values is needed. Fi-
nally, further investigation of the effect of the training image
database on the quality of the restored images is necessary.
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