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a b s t r a c t

This paper presents a framework for detecting tampered information in digital audio-visual

content. The proposed framework uses a combination of temporal and spatial watermarks

that do not decrease the quality of host videos. A modified version of the Quantization Index

Modulation (QIM) algorithm is used to embed watermarks. The fragility of the QIM water-

marking algorithm makes it possible to detect local, global, and temporal tampering attacks

with pixel granularity. The technique is also able to identify the type of tampering attack. The

framework is fast, robust, and accurate.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

Digital technologies make it possible to create high quality pictures, animations, games, and special effects with an amazing

realism. Digital pictures (images and videos) can be enhanced, compressed, transmitted, converted across different formats, and

displayed in a variety of devices. Also, given the significant advances in compression and transmission techniques, it is possible

to deliver high quality content to the end user. As a consequence, a variety of delivery services have been created in the last few

years, such as direct TV broadcast satellite, digital broadcast television, and IP-based video streaming.

This flexibility of the digital content is both a blessing and a curse. Using one of the several currently available video editing

softwares, it is possible to alter (tamper) digital content without leaving any clear sign. Unauthorized users can modify and

illegally distribute digital content, causing monetary and personal losses [10,12]. Therefore, a requirement for current video

distribution applications is content protection, including tampering detection [22]. As a consequence, there is a great demand

for automatic methods that analyze the authenticity and integrity of digital images and videos.

Several techniques have been proposed with the goal of detecting tampering in digital visual content [22]. These techniques

can be divided in approaches that do not require the original (no-reference) and approaches that do require the original (full-

reference). Since in most transmission applications the original is not available, the use of no-reference approaches is necessary.

Unfortunately, most currently available no-reference tampering detection techniques identify a few types of tamper attacks. For

example, the work of Ng et al. [16] uses higher order statistics to detect copy-and-paste (splicing) attacks, while the work of

Peng and Wang detects only motion blur inconsistencies [20]. The work of Amerini et al. [1] uses a methodology based on scale

invariant features transform (SIFT) to detect copy-and-paste attacks. The framework proposed by Wang et al. checks illumina-

tion angles and possible chromatic aberrations to identify traces of tampering [28]. Their method detects interpolation, double
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interpolation, double compression, frame duplication, and re-projection (acquisition of a video from a display). These specialized

algorithms have limited applications, since in practice it is difficult to ‘guess’ which type of attack was used.

Reduced-reference tampering detection represents a compromise between no-reference and full-reference approaches. Most

reduced-reference algorithms embed “invisible” information (mark) into the content (host) using a watermarking technique.

To verify if the original content was tampered, the algorithms extract the embedded information and verify its integrity. In the

reduced-reference approach, the fragility of the embedded mark is a key element that determines the amount of tampering

that can be detected. Among the available reduced-reference algorithms, we can cite the work of Hou et al. [35] that stores a

verification bit into the 4 × 4 DCT blocks. Their method is robust, but it can only detect spatial tamper with a 4 × 4 granularity.

Another example is the work of Lin et al. [13] that makes use of spatial and temporal redundancies to detect tampering in videos

and images. Their method embeds a mark into high correlated blocks, what makes the algorithm more robust to geometric

attacks, such as rotation and scaling.

Among the reduced-reference methods that are able to detect temporal attacks, the algorithms proposed by Subramanyam

and Emmanuel [24] and by Wang and Farid [29] consider video and compression parameters (size, bitrate, and frame type) to

detect temporal and spatial tampering attacks. Lin and Delp’s algorithm [13] detects compression and temporal attacks (frame

switch, frame drop, and frame rate reduction). Finally, Cross et al.’s method detects MPEG-2 tampering attacks (packet losses and

frame drops), but it is not able to detect the position of the tampering attack [7].

Recently, somemethods were proposed to estimate video forgery using no-reference approaches. Wang et al. [30] proposed a

method for video forgery detection based on the fact that forgeries introduce discontinuity points to the optical flow. Wang et al.

[27] developed a no-referencemethod by proposing amethodwhich assumes correlation patterns on the coefficients of greyscale

values. Using local binary patterns, Zhang et al. [34] introduce an efficient method for detecting frame insertion and deletion. A

novel passive video inter-frame forgery detection method was proposed by Yin et al. [32]. This method uses nonnegative tensor

factorization to find some video forgeries based on the disturbs on the consistency of time-dimension factor. Although these

techniques are promising, they are still restricted to the type of attack [26].

In this paper, we propose a framework for detecting and identifying tampering attacks in audio-visual content. The proposed

framework is a watermark-based reduced-reference algorithm that protects both audio and video components. The algorithm

detects spatial, temporal, local, and global tampering attacks. The framework is composed of a tampering protector stage and

a tampering detector stage. The tampering protector generates and embeds encrypted marks into the host video and audio

components. The tampering detector extracts the marks from both components, decrypts them, and compares them with the

inserted marks to check if the content was tampered.

The paper is divided as follows. Section 2 presents several types of tampering attacks, which the framework can detect.

Section 3 presents the tampering protection stage, while Section 4 describes the tamper detection stage. Section 5 presents the

simulation results, while Section 6 presents the conclusions.

2. Tampering attacks

A digital tampering attack consists of any modification to the original digital content (image, audio, video, text, etc.). These

modifications can be intentional or unintentional. Intentional tampering has the goal of maliciously modifying the content or

removing the copyright. On the other hand, unintentional tampering is a consequence of digital processing operations, such as

brightness correction, format conversion, size reduction, etc. For video signals, tampering attacks can be classified as spatial or

temporal [5,13,14,33].

Spatial tampering attacks correspond to changes made to individual frames of the video. Spatial attacks can be further clas-

sified as local or global. Local spatial attacks correspond to changes made to a set of pixels in a frame. Examples of local attacks

include changing object colors in a picture frame, removing a block of pixels, or overlapping sets of pixels. Global spatial at-

tacks, on the other hand, modify entire video frames. Examples of global attacks include brightness adjustment, video format

conversion, re-scaling dimensions, among others. Global spatial attacks can be applied to a single or to several video frames.

The most popular spatial attacks are the following:

• Composite attack: consists of combining two or more pictures to generate a new picture. In Fig. 1(a), a composition is made

by replacing a region of the original picture frame (‘Diver’) by another image (‘UnB logo’). Notice that, if the composition is

performed in a naive way, the process may generate non-homogeneous borders.
• Cropping attack: consists of removing parts of the picture frame. As shown in Fig. 1(b), this is a local spatial attack.
• Flipping attack: this is a global spatial attack that consists of rotating entire picture frames. This type of attack is difficult to

detect because it keeps the watermark intact. Therefore, the detection algorithm needs to be very robust to detect the rotation

of the reference watermark. An example of a Flipping attack is shown in Fig. 1(c).
• JPEG compression attack: consists of re-coding each picture frame with a JPEG codec. As can be seen in Fig. 1(d), this attack is

almost visually imperceptible.
• Noise addition attack: this is a global attack that inserts noise into picture frames. Any type of noise can be used in this type

of attack. Fig. 1(e) shows an example of this attack using salt-and-pepper noise.
• Scaling attack: consists of changing the picture frame dimensions. In the simulations performed in this work, this attack

consisted of re-scaling the picture frames and discarding part of the content to make it fit into the original dimensions, as

shown in Fig. 1(f).
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Fig. 1. Spatial tampering using the fifth frame of the ‘Diver’ video.

Temporal tampering attacks consist of modifying the information about the frame position (time) [12]. They include attacks

such as switching the position of two (or more) frames or changing the frame rate (removing or duplicating frames). Temporal

tampering attacks are hard to detect and are frequently used to confuse tampering detection algorithms. As a consequence,

robustness to temporal tampering attacks may determine the resilience of the watermarking tampering detection framework

[13].

The most popular temporal tampering attacks are the following:

• Frame Duplication attack: in this temporal attack one or more frames are copied into other temporal locations of the video. In

our tests, a random number of frames are copied and pasted into a posterior position.
• Frame Removal attack (or FrameRate Reduction): this temporal attack reduces the number of frames of the video. This reduc-

tion is achieved by simply deleting some frames. In our tests, all videos are initially 30 frames per second (fps). The attack

consists of randomly deleting one frame in a 5-frames interval.
• Frame Switching attack: this temporal attack consists of picking a set of random frame pairs and interchanging their positions.

This attack is only visually perceptible if the interchanged frames are far away from each other. In our tests, the distance

between the two frames varied from 10 to 20 frames.

In summary, in this work ten types of tampering attacks are used: Composition, Cropping, Flipping, JPEG compression, Noise

Addition, Scaling, Frame Duplication, Frame Removal, and Frame Switching. Although this list is not exhaustive, the proposed

framework can be extended to detect other types of attacks.

3. Tampering protection stage

The tampering protection stage generates encrypted marks and embeds them into the video and audio channels. Fig. 2 shows

a block diagram of the tampering protection stage. Notice from this figure that the protection stage can be roughly divided in

three steps: watermarking generation, encryption, and embedding. In this section, each of these steps is detailed.

3.1. Watermarking generation

To protect both audio and video, we first split the audio–visual content into its audio (A) and video (F) components. Then,

using a pseudo-random number generator with a secret key k, we generate a mark to protect the spatial information (Ms) and

another mark to protect the temporal information (Mt).

The key k is generated according to RFC 1750 Recommendations 7.1 and 7.2 [8]. The random sequence used for generating

the mark complies with the random number generator tests specified in FIPS 140–2 (Security Requirements for Cryptographic

Modules) [9]. More specifically, we use the Secure Hash Algorithm one (SHA-1) [17] as the basis for the Pseudo-Random Number

Generation (PRNG) algorithm [3]. We compute the SHA-1 hash over a true-random value seed concatenating with a 64-bits

counter which is incremented by 1 at each iteration. A 64-bits seed is used as input and we chose 64 bits out of the 160-bits of

the SHA-1 output.

For each frame, Mt consists of a binary random matrix generated using the key k and replicated along the frame dimensions.

Similarly, the spatial mark Ms is a random binary matrix with 5 bits of depth. Both Mt and Ms marks have the same size of host

video frames and different marks are generated for each frame. The difference between the generation of spatial and temporal
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Fig. 2. Block diagram of the tampering protection stage.

marks is that for temporal marks a random number is generated for each frame. This number is replicated and embedded into

the corresponding video frame.

3.2. Watermarking encryption

As mentioned earlier, both Ms and Mt are encrypted before the embedding process. The spatial mark Ms is encrypted using

the equation:

�s[x, y] = Ms[x, y] ⊕ k, (1)

where ⊕ is the mathematical XOR operation, k is the encryption key, and �s is the Ms mark after encryption. Similarly, the

temporal mark Mt is encrypted using the equation:

�t [x, y] = Mt [x, y] ⊕ k, (2)

where � t corresponds to the encrypted version of Mt.

3.3. Watermarking insertion

For the video channel F, a new mark is generated by combining � t with �s in random positions. The combination process

can be described by the following equation:

�[x, y, z] =
{
�t [x, y], if z = i

�s[x, y, z], otherwise
(3)

where � is the combined mark, i ∈ [0, 5] is a random number generated with a pseudo-random number generator with the key

k. � is a matrix of 6 bits of depth that contains the two marks concatenated. Since the watermark � t is also embedded in the

audio component A, two copies of Mt are inserted for each frame, increasing the redundancy of Mt.
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Each value of �[x, y, z] is embedded in the corresponding position (x, y) of the video frame. For each pixel, �[x, y, z] is split in

three equal parts, each with 2 bits. Then, they are converted to decimal, resulting in 3 integer marks (�1, �2 and �3). The three

marks are inserted into the three color channels (RGB or YCbCr) of the video frame.

Among the available watermarking methods, the Quantization Index Modulation (QIM) algorithm is one of the methods with

the best performance [4]. The QIM algorithm inserts a mark into the host signal by quantizing it with a uniform scalar quantizer.

The standard quantization operation is given by the following equation:

Q(x, δ) = round

(
x

δ

)
,

where round(.) denotes the mathematical operation of rounding a value to the nearest integer and δ is the step size used by the

quantizer. The watermarked pixel is obtained using the following equation:

s(x) = Q(x, δ) + d(m), (4)

where d(m) is the perturbation value, which depends on the mark m to be embedded.

The original QIM algorithm uses d(m) as a pseudo-noise sequence. These type of embedding methods are often referred as

spread spectrummethods. Some of the earliest examples of spread spectrummethods are the works by Van Schyndel et al. [25],

Bender et al. [2], Cox et al. [6], and Smith et al. [23]. In fact, Bender’s algorithm [2] consists of adding a small amount of δ to

samples of the host signal and, then, subtracting a small amount of δ from other samples.

In this work, the mark m is randomly generated sequence of small values, which is equivalent to a pseudo-random sequence

d(m). Thus, the modulation function is equal to d(m) = m. So, the integer marks �1, �2, and �3 are inserted into the color

channels using the following equation:

Fm[x, y, c] = Q(Fo[x, y, c], δ) + �c[x, y], (5)

where Fo is the original video frame, Fm is the resulting watermarked video frame, δ is the quantization step, c is the correspond-

ing color channel, and x and y are spatial positions. In this work δ = 4, what allows embedding integer numbers with values

between 0 and 3.

To embed the mark into the audio channel A, � t is reshaped into a unidimensional vector � ′
t . Then, �

′
t is embedded into A

using the equation:

Am[x] = Q(Ao[x], δ) + � ′
t [x], (6)

where Am is the marked audio signal corresponding to a single video frame and Ao is the original audio channel.

After A and F are marked, the video is merged back and encoded, generating the marked video. Notice that the embedding

process provides a high temporal redundancy given that several copies of the temporal mark are inserted, both in the video and

audio components. Another important feature of the proposed technique is the ability to detect small changes in content. This is

due to the combination of the two binary marks.

4. Tampering detection stage

The second stage of the proposed framework is the tampering detection stage, which is located at the receiver (decoder) side.

Tampering detection should be performed after a transmission or storage of the video or if there is a suspicion of tampering. The

tampering detection stage is roughly divided in two parts: watermarking extraction and tampering detection, as shown in the

block diagram shown in Fig. 3.

4.1. Watermarking extraction

The watermarking extraction is performed on the previously marked video. First, the marks are extracted from the video and

audio components. From the audio component, the mark is extracted using the following equation:

�̂ ′
A,t [x] = Am[x] mod δ, (7)

where �̂ ′
A,t

is the extracted temporal encryptedmark, mod denotes themathematical operationmodulo, and Am[x] is themarked

audio. After the extraction, the unidimensional mark �̂ ′
A,t

is reshaped into the original dimensions and becomes �̂A,t . Then, �̂A,t

is decrypted using the following equation:

M̂A,t [x, y] = �̂A,t [x, y] ⊕ k, (8)

where M̂A,t is the temporal decrypted mark extracted from A.

The marked video frames (F) contain a combination of the temporal and spatial marks. This combination is extracted, de-

crypted and, then, split. For each frame, the extraction of the mark is performed using the following equation:

σ [x, y, c] = Fm[x, y, c] mod δ, (9)

where σ [x, y, c] is the extracted integer corresponding to the spatial position (x, y) at the color channel c. Notice that σ [x, y, c] ∈
[0, 3].
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Fig. 3. Block diagram of the tampering detection stage.

Then, σ [x, y, c] is converted to its binary representation, generating a binary matrix for each color channel: γ r, γ g, and γ b. To

obtain the extracted mark �̂[x, y], these binary matrices are combined using the following equation:

�̂ = γr‖γg‖γb, (10)

where || denotes the concatenation operator. Notice that �̂ has depth equal to 3 × �. For � = 2, �̂ has six levels of depth. Each

bit is independently addressed using the depth coordinate z.

Once �̂[x, y, z] is created, the next step corresponds to the separation of the spatial and temporal marks. To accomplish this,

a random number i ∈ [0, 5] is generated using the same k used in the embedding process. Then, the spatial and temporal marks

are extracted using the following equations:{
�̂F,t [x, y] = �̂[x, y, l], if l = i

�̂F,s[x, y, z] = �̂[x, y, l], otherwise.
(11)

�̂F,t [x, y] receives the bit corresponding to the temporal mark, while �̂F,s receives the other five bits of the spatial mark. Notice

that �̂F,s has a depth level of 5 bits, while �̂F,t [x, y] has a depth level of only 1 bit. At this point, both marks are encrypted and

have the same size of the video frame.

The spatial mark �̂F,s is decrypted using the following equation:

M̂F,s[x, y] = �̂F,s[x, y] ⊕ k, (12)

where M̂F,s is the decrypted spatial mark (depth of 5 bits). Here, the same key k of the tampering protection stage is used.

Likewise, the mark �̂F,t is decrypted using the equation:
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M̂F,t [x, y] = �̂F,t [x, y] ⊕ k, (13)

where M̂F,t is the temporal decrypted mark.

After the temporal and spatial marks are extracted and decrypted, the original marks, Ms and Mt, are generated using the

same key k, as described in Section 3.1. The detection process is divided in spatial detection and temporal detection, as described

in next section.

4.2. Spatial detection

In spatial tampering detection, the main goal is to detect local and global attacks. For each frame, local detection is performed

by comparing the extracted mark (M̂F,s) with the original mark (Ms) using the following equation:

ρF,s[x, y] =
{
true, if M̂F,s[x, y, z] �= Ms[x, y]

false, otherwise
(14)

where ρF, s is a boolean Spatial Detection Matrix (SDM). In this matrix, each position that has ‘true’ values corresponds to a

‘tampered’ pixel. Notice that using this approach, the exact location of a tampered area can be detected.

When the locations of the tampered areas are detected, the SDM is analyzed to find the percentage of tampered area in

relation to the total area of the video. The idea here is to try to characterize the changes to the video in order to classify the type

of attack. For example, if this percentage is greater than a threshold, τ F, s, this frame is classified as “globally” attacked. Otherwise,

it is classified as “locally” attacked.

Notice that both local and global tamperings damage the temporal mark inserted in the video frame. This is a problem. If the

temporal mark is lost, the temporal detection might fail. To avoid this problem, the temporal mark that is replicated in the audio

channel is used. This allows the detector to differentiate temporal, local, or global attacks, as described next.

4.3. Temporal detection

The temporal detection algorithm uses the temporal marks embedded in the video and audio components, F and A, respec-

tively. First, it estimates the Temporal Detection Matrix (TDM) using the following equation:

ρF,t [x, y] =
{
true, if M̂F,t [x, y] �= Mt [x, y]

false, otherwise
(15)

where Mt is the original temporal mark (reference) and ρF, t is a boolean matrix. When ρF, t contains ‘true’ values, a watermark

loss has occurred and the corresponding frame is probably temporally tampered. To detect if a frame is temporally tampered, the

percentage of ‘true’ values in TDM is compared with a threshold τ F, t. If this percentage is less than τ F, s, this frame is classified as

NOT temporally attacked.

Notice that the ‘true’ percentage is not a very accurate criteria to determine temporal tampering because the spatial tampering

may damage the temporal mark. To double check if the frame is temporally attacked, the audio mark can be used when ρF, t is

higher than τ F, t. The mark (M̂A,t ) is compared with the original mark using the following equation:

ρA,t [x, y] =
{
true, if M̂A,t [x, y] �= Mt [x, y]

false, otherwise
(16)

where ρA, t is the TDM of the audio mark. From ρA, t, the percentage of ‘true’ values is compared to a threshold τ A, t. When the

lost percentage in ρA, t is smaller than τ A, t, the frame is not temporally tampered. Therefore, the detection using ρF, t indicates

that spatial tampering can damage the temporal mark embedded in the frame (video component). If the criteria for audio and

video comparison show that temporal watermarking loss has occurred, the frame is classified as temporally attacked.

Next, a queue 
 is created to estimate the temporal attack type. This queue stores the temporal detection result. If the frame

is classified as ‘temporally attacked’, 
 stores a copy of the extracted temporal mark. Otherwise, 
 stores ∅ (null) in the corre-

sponding frame position.

4.3.1. Temporal tampering position

Once the temporal attack location is determined, the attack type can be estimated. For this, the original temporal mark is

generated and stored in a queue �. Then, 
 is analyzed using � as a reference.

The first analysis consists of searching all occurrences in � that do not occur in 
. If mismatches are found, the distances

among all tampering attacks are computed. If all occurrences have the same distance, this attack is classified as a Framerate

reduction. Otherwise, it is classified as Frame Deletion attack.

The second analysis consists in verifying if all elements of � are also in 
 and if the index ordering is kept. Also, 
 is checked

to verify if it contains elements that does not exist in�. If both conditions are satisfied, thismeans that
 containsmore elements

than the original �. This indicates that new frames were inserted into the video and the attack is classified as a Frame Insertion

attack.

The third analysis consists of searching all � elements that occur more than once in 
. This means that one or more frames

were copied and pasted into other video positions. So, this attack is classified as Frame Duplication attack.



134 R. Rigoni et al. / Information Sciences 328 (2016) 127–143

Fig. 4. Sensitivity versus specificity classification curves for (a) Canoe, (b) Fish, (c) Park Run, and (d) all videos.

Fourth, for each element marked as tampered at position i ∈ 
, the correct position j ∈ � is found. Then, the element 
[j] is

verified to check if it is equal to �[i]. If they are equal, then this attack is classified as a Frame Switch attack.

4.4. Thresholds analysis

To determine the optimal value of the thresholds defined in Sections 4.2 and 4.3, a sensitivity analysis was performed. Fore-

most, the true positive rate was computed against the false positive rate at various threshold settings for each video. In other

words, for each video, the spatial attacks were classified (local or global) and the appropriate threshold (τ F, s) values were com-

puted. This analysis is directly related to a cost-benefit analysis of diagnostic decision making.

Fig. 4 shows the receiver operating characteristic (ROC) curve of the attack classification (local or global) for the videos (a)

“Canoe”, (b) “Fish”, and (c) “Park Run”. In a similar way, the classification was computed for all videos, as shown in Fig. 4(d). In

this figure, the classification model is a mapping of instances between global and local classes. The classifier boundary between

classes must be determined by a threshold value. The best values of these thresholds are listed in Table 1. From this table, it is

possible to notice that the best value for τ F, s is, on an average, 85.593%.

5. Simulations and results

In this work, two sets of copyright-free videos are used. The first data set consists of videos from the ReefVid database, which is

maintained by the University of Queensland, Australia [15]. These videos are in AVI format, compressed with MPEG-4 (framesize

384 × 288, frame rate 25 fps). The audio content in these videos were inserted artificially. Sample frame thumbnails of this set

are shown in Fig. 5.

The second set of video sequences used in this work are from the Consumer Digital Video Library (CDVL) [21]. The videos

have a resolution of 1280 × 720, color space of 4:2:0, and frame rate of 30 frames per second (fps). All videos had accompanying

audio. Sample frame thumbnails are shown in Fig. 6.
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Table 1

AUC, optimal thresholds and precision of analyzed videos.

Video AUC Best threshold Precision

1 0.866 88.063 0.902

2 0.87 86.364 0.899

3 0.852 85.084 0.888

4 0.871 85.452 0.906

5 0.855 87.681 0.897

6 0.893 83.478 0.92

7 0.951 88.389 0.962

8 0.866 87.179 0.899

9 0.916 88.333 0.938

10 0.782 88.139 0.853

11 0.907 81.818 0.928

12 0.891 83.842 0.915

13 0.888 84.172 0.913

14 0.873 84.53 0.906

15 0.913 81.367 0.933

Average 0.879 85.593 0.911

All 0.940 81.367 0.954

Fig. 5. Frame thumbnails of ReefVid video sequences used in the simulations.

Fig. 6. Frame thumbnails of CDVL video sequences used in the simulations. Database can be downloaded from www.cdvl.org or http://www.gpds.ene.

unb.br/mylene/2013-UNB-AV/testseq/.

http://www.cdvl.org
http://www.gpds.ene.unb.br/mylene/2013-UNB-AV/testseq/
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Fig. 7. Spatial and temporal perceptual information measures.

Table 2

Impact of marks on test videos for ReefVid database.

Video Frames PSNR SSIM

Canoe 413 45.53459 0.99966

Diver 337 45.40895 0.99968

Coral 314 45.51629 0.99967

Fish 612 45.56291 0.99964

Seaweed 191 45.44542 0.99937

Beach 803 45.59478 0.99955

Rock 19 45.37220 0.99967

Sky 273 45.45621 0.99966

Birds 102 45.38711 0.99967

Deepsea 58 45.41717 0.99958

Aquamarine 1123 45.51627 0.99940

Rocks 751 45.57977 0.99973

Bill 900 45.54493 0.99936

Alga 576 45.55015 0.99966

Sunset 1938 45.64242 0.99970

All test sequences were chosen to guarantee good spatial and temporal distributions. Some videos have a higher spatial

activity (texture), while others have higher temporal activity (movement). The audio content was also taken into account, select-

ing sequences that had speech, music, and ambient sound. This diversity is an important requirement when choosing a video

database for testing tampering attacks.

Fig. 7 shows the spatial and temporal information measures for the CDVL video database (computed as defined by Os-

taszewska and Kloda [18]). Notice that the video “Reporter” has the highest temporal activity and the lowest spatial activity.

The video “Music” has both a high temporal activity and a high spatial activity, while the video “Park Run” has relatively low

spatial and temporal activities.

The first test performed in this work consists of analyzing the quality of themarked videos. Although the goal of the proposed

framework is to protect the video content from tampering, it is important that the overall quality of the videos are not decreased

by the watermarking algorithm. This analysis was made by comparing the frames of marked and original videos using two

popular full-reference visual quality metrics: the Peak Signal-to-Noise Ratio (PSNR) and Structural SIMilarity (SSIM) index [31].

Table 2 shows the average SSIM and PSNR values for all marked frames of the ReefVid database. The PSNR values obtained are all

above 45 dB, while the SSIM values are all above 0.999. These values indicate that the marked videos have a very good quality

with visually imperceptible distortions.

Next, 10 types of attacks (three temporal and seven spatial – see Section 2) were performed on the database images. For the

spatial attacks, the same tests were performed for all videos of the ReefVid and CDVL databases. But, due to lack of space, only the

results for the video ‘Sunset’ are shown. Fig. 8 shows the proportion of attacked (tampered) and detected regions for all frames

of this video. The attacks correspond to the areas modified using several types of tampering. The darker bars are the proportions

of areas detected as tampered, while the lighter bars are the proportions of the corresponding attacks. It is worth pointing out

that less than 25% of the video is attacked and, therefore, the bars do not reach the 100% limit. When the bars have the same size

this means that the proposed framework was able to detect all tampering attacks.

Fig. 9 shows the detection rate by frame for the video ‘Diver’. The darker bars are the proportions of areas detected as tam-

pered, while the lighter bars are the proportions of the corresponding attacks. The proposed framework is able to detect more
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Fig. 8. Global spatial tampering detected for all frames of ’Diver’ video.

Fig. 9. Percentage of detected local attack for each frame of ‘Diver’ video.
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Fig. 10. Spatial attacks (left) and their detections (right) of five tested videos. (For interpretation of the references to color in this figure, the reader is referred to

the web version of this article).

than 85% of tampering attacks for all analyzed attacks.When both light and dark bars have the same size, the proposed framework

is able to detect all tampering attacks. As can be noticed, the worst performance is obtained for Cropping attacks. In Cropping

attacks, several attacked areas may overlap into a single region. In these cases, the framework identifies only one attacked area.

When comparing Figs. 9 and 8, we notice an apparent disparity between JPEG attack detection. This is because for JPEG com-

pression attacks, some high frequencies are not eliminated and the embeddedmark is not completely lost. As a consequence, the

regions are not classified as tampered (Fig. 8), but the frame can be classified as tampered (Fig. 9).

Fig. 10 shows four spatial attacks and their detections. In this figure, the red highlights illustrates the tampered regions. The

first line shows Composition, Cropping, Flipping, and Salt-and-pepper (Noise) attacks. The second line shows their corresponding

detections. Thus, Fig. 10(a) shows the Composition attack and its detection for a frame of the video ‘Cannoe’. Fig. 10(b) illustrates

the Cropping attack and its corresponding detection for the video ‘Diver’. Fig. 10(c) shows an example of a 180 degrees Flipping
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Table 3

Efficiency of spatial detections per area for ReefVid database (%).

Video Composition Flip JPEG. Rotation Noise Scale Cropping

Canoe 96.57 88.89 93.65 88.86 94.37 88.84 88.88

Diver 96.53 88.79 93.52 88.85 94.41 88.85 88.65

Coral 96.66 88.95 93.20 88.86 94.38 88.85 88.74

Fish 96.62 88.90 92.99 88.86 94.22 88.83 88.81

Seaweed 96.53 88.86 93.49 88.86 94.52 88.83 88.77

Beach 96.65 88.88 93.54 88.86 94.40 88.84 88.79

Rock 96.82 88.92 93.22 88.88 94.61 88.83 86.91

Sky 96.66 88.88 92.80 88.86 94.46 88.86 88.98

Birds 96.59 88.90 93.60 88.86 94.24 88.85 88.94

Deepsea 96.65 88.87 93.66 88.86 94.40 88.80 88.55

Aquamarine 96.62 88.81 93.52 88.85 94.29 88.83 88.83

Rocks 96.62 88.81 93.48 88.86 94.34 88.79 88.68

Bill 96.68 88.81 92.89 88.85 94.37 88.86 88.71

Alga 96.54 88.88 93.49 88.87 94.37 88.86 88.87

Sunset 96.65 88.84 92.69 88.86 94.42 88.86 88.83

Average 96.63 88.87 93.32 88.86 94.39 88.84 88.66

Table 4

Efficiency of spatial detections per area for CDVL database (%).

Video Composition Flip JPEG. Rotation Noise Scale Cropping

Boxer 96.66 88.93 93.35 88.88 94.43 88.88 89.01

Park Run 96.72 88.89 93.64 88.88 94.49 88.88 88.91

Crowd Run 96.78 88.89 93.56 88.87 94.45 88.88 88.95

Basketball 96.72 88.90 93.43 88.87 94.56 88.87 88.94

Music 96.64 88.90 92.92 88.87 94.48 88.88 88.89

Reporter 96.74 88.79 92.81 88.87 94.44 88.88 88.92

Average 96.71 88.88 93.28 88.87 94.47 88.88 88.94

attack and its detection for the same video. Notice that, for the Flipping attack, most of the frame is detected as being tampered

since the majority of the spatial positions of the mark has been altered. Finally, Fig. 10(d) shows a Salt-and-pepper noise attack

and its detection for the video ‘Rock’.

Table 3 shows the average efficiency percentage of seven spatial attacks, for all tested videos of the ReefVid database. The

average efficiency percentage is computed as the ratio between the amount of detected areas and the amount of attacked areas.

From this table, the framework has around 96% of successful detections for the Composition attack. The average of false-negative

percentages is 4%, since the image inserted by the Composition attack has always the same size. Flipping, Rotating, and Scaling

attacks have an average of false-negative percentages of around 12%, since these are all global attacks in which the watermark

is lost in the same way. For the JPEG compression attack, since the compression factor used by the attack is always 95%, the

average efficiency percentage is around 93% for all videos. Since the Salt-and-pepper (Noise) attack is applied randomly to frames,

attacked positions may overlap and detection may fail in these overlapping positions. As a result, this attack has an average false-

negative percentage of 4%. A similar situation of overlapping positions is encountered for the Cropping attack, causing an average

false-negative percentage of 12%.

These same tests were performed for the videos from the CDVL database. As shown in Table 4, the results are similar to

those presented in Table 3. Considering that the CDVL videos have a higher spatial resolution and contain other audio/video

characteristics, this implies that the prediction accuracy of the proposed method is invariant to the spatial resolution and to the

audio and video characteristics.

As mentioned earlier, in this work three types of temporal attacks were performed. Test results for two types of temporal

attacks are shown in Figs. 11 and 12. Fig. 11 shows a Frame Duplication attack for the video ‘Coral’. In the first line of the fig-

ure, the 28-th frame was copied and pasted between the 28-th and 29-th frame. The detection is shown in the second line of

the figure. Fig. 12 shows the result for a Switch attack of the video ‘Sunset’. On the first line, the 163-th and 529-th frames of

the video have their position interchanged. On the second line of the figure, the detection is presented. The last tested attack

is the FrameRate reduction, which have similar results.

The average efficiency and accuracy of the temporal detection for the ReefVid and CDVL databases are shown in Tables 5

and 6, respectively. In Frame Switch, an overlapping of the attacked positions occurred, i.e. some frames were switched more

than once and ended up back on its original position. For FrameRate and Duplication attacks, the framework is able to detect

almost all tampered frames.

While Tables 5 and 6 show the average efficiency percentage for all videos, Fig. 13 shows the exact number of detected and

attacked frames for the ‘Sunset’ video. For Frame Duplication and FrameRate reduction, there were no false-positives, i.e. the

detector was able to detect 100% of all test attacks. For Frame Switch, there were only 7.8% of false-negatives for a video with

1938 frames (Fig. 14).
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Fig. 11. Frame duplication attack and its detection for video ‘Coral’.

Fig. 12. Temporal Frame Switch attack for video ‘Sunset’ and its detection.

Table 5

Average percentage efficiency of temporal detections for

ReefVid database (%).

Video Switch FrameRate Duplication

Canoe 100.0 100.0 100.0

Diver 83.3 100.0 100.0

Coral 91.6 100.0 100.0

Fish 91.6 100.0 94.7

Seaweed 100.0 100.0 100.0

Beach 90.0 100.0 100.0

Rock 80.0 100.0 100.0

Sky 63.1 100.0 100.0

Birds 71.4 100.0 100.0

Deepsea 100.0 100.0 100.0

Aquamarine 100.0 100.0 100.0

Rocks 100.0 100.0 100.0

Bill 100.0 97.4 100.0

Alga 94.1 96.0 100.0

Sunset 92.8 100.0 100.0

Average 90.5 99.5 99.6
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Table 6

Average percentage efficiency of temporal detections for

CDVL database (%).

Video Switch FrameRate Duplication

Boxer 83.3 100.0 100.0

Park Run 100.0 90.0 91.6

Crowd Run 89.4 100.0 100.0

Basketball 50.0 91.6 98.1

Music 92.3 90.9 87.5

Reporter 100.0 100.0 96.2

Average 85.8 95.4 95.5

Fig. 13. Number of temporal detected and attacked frames of the ‘Sunset’ video.

Fig. 14. Temporal FrameRate reduction attack for video ‘Sky’.
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Table 7

Mean efficiency of spatial detections per frame for some methods (%).

Method Spatial attack Temporal attack

Zhi-yu and Xiang [35] 50.49 –

Hsu et al. [11] 98.34 –

Lin et al. [12] 82.05 –

Pan and Lyu [19] 100 –

Subramanyam and Emmanuel [24] 85.01 99.5

Amerini et al. [1] 98.17 –

Wang and Farid [29] – 100

Proposed framework 97.86 96.53

Table 7 shows the spatial and temporal efficiencies of the proposed technique in comparison to seven methods available in

the literature [1,11,12,19,24,29,35]. In this table, the efficiency is computed as the ratio between the amount of tampered frames

and the amount of detected tampered frames. The table shows the percentage of cases in which an attacked frame is detected as

being tampered, independent of the size of the attacked areas (detection per frame).

The proposed method is able to detect a larger number of tampering attacks than other methods available in the literature. As

shown in Table 7, the proposed method achieves an average detection rate of 97.86% for Spatial Attacks and 96.53% for Temporal

Attacks. While [24] and [29] present better results for temporal attacks, [24] has a worse performance for spatial attacks and

[29] is not designed to detect them. On the other hand, [1] and [11] have better results for spatial attacks, but are not designed

to detect temporal attacks. In summary, most of the methods available in the literature are designed to detect only one specific

type of tampering attack. The proposed method uses a single technique to detect several types of tampering attack, obtaining

better or equivalent results.

6. Conclusions and future work

In this paper, we presented a framework to detect temporal, global, and local tamperings in digital videos. The proposed

framework is based on a simple and fast watermarking algorithm that does not degrade the video quality. It allows identifying

the localization of spatial and temporal tampering attacks with pixel granularity. The combination of spatial and temporal marks

increases the sensitivity and robustness of the proposed technique. Also, the replication of the temporal mark in the audio and

video components makes it possible to identify temporal attacks even when all video content is lost. By analyzing the tampering

vector, the framework is also able to determine the type of tampering attack. Overall, when compared with other algorithms, the

proposed framework has a good performance, presenting a high accuracy, efficiency, and a low percentage of false-positives and

false-negatives.
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