
Author’s Accepted Manuscript

Enhancing Inverse Halftoning via Coupled
Dictionary Training

Pedro G. Freitas, Mylène C.Q. Farias, Aletéia P.F.
Araújo

PII: S0923-5965(16)30142-4
DOI: http://dx.doi.org/10.1016/j.image.2016.09.008
Reference: IMAGE15136

To appear in: Signal Processing : Image Communication

Received date: 6 May 2016
Revised date: 27 September 2016
Accepted date: 27 September 2016

Cite this article as: Pedro G. Freitas, Mylène C.Q. Farias and Aletéia P.F.
Araújo, Enhancing Inverse Halftoning via Coupled Dictionary Training, Signal
Processing : Image Communication,
http://dx.doi.org/10.1016/j.image.2016.09.008

This is a PDF file of an unedited manuscript that has been accepted for
publication. As a service to our customers we are providing this early version of
the manuscript. The manuscript will undergo copyediting, typesetting, and
review of the resulting galley proof before it is published in its final citable form.
Please note that during the production process errors may be discovered which
could affect the content, and all legal disclaimers that apply to the journal pertain.

www.elsevier.com/locate/image

http://www.elsevier.com/locate/image
http://dx.doi.org/10.1016/j.image.2016.09.008
http://dx.doi.org/10.1016/j.image.2016.09.008


Enhancing Inverse Halftoning via
Coupled Dictionary Training

Pedro G. Freitas1,a, Mylène C.Q. Fariasb, Aletéia P.F. Araújoa
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Abstract

Inverse halftoning is a challenging problem in image processing. Traditionally, this operation is known to
introduce visible distortions into reconstructed images. This paper presents a learning-based method that
performs a quality enhancement procedure on images reconstructed using inverse halftoning algorithms.
The proposed method is implemented using a coupled dictionary learning algorithm, which is based on
a patchwise sparse representation. Specifically, the training is performed using image pairs composed by
images restored using an inverse halftoning algorithm and their corresponding originals. The learning model,
which is based on a sparse representation of these images, is used to construct two dictionaries. One of these
dictionaries represents the original images and the other dictionary represents the distorted images. Using
these dictionaries, the method generates images with a smaller number of distortions than what is produced
by regular inverse halftone algorithms. Experimental results show that images generated by the proposed
method have a high quality, with less chromatic aberrations, blur, and white noise distortions.

Keywords: Coupled Dictionaries, Image Restoration, Inverse Halftoning, Enhancement, Training

1. Introduction

Printing a digital image requires a conversion
from a digital representation to an analog repre-
sentation. This process is often linked with digi-
tal halftoning, which is the technique of converting
continuous-tone images into images with a limited
number of tones (known as halftones) [1, 2]. The
technique generates images that, although having
a limited number of levels, convey the illusion of
having a higher number of levels. Halftoning tech-
niques can be applied both to grayscale and color
images. On the other hand, inverse halftoning is
the process of generating a reconstruction (or an
approximation) of the original continuous-tone im-
age from their halftoning versions. The inverse
halftoning process is an important image restora-
tion problem and is frequently associated with sev-
eral other multimedia problems, such as content
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protection using watermarking [3], visual cyptog-
raphy [4], compression of multimedia content [5],
error concealment [6], and image quality assess-
ment [7, 8].

Since halftoning techniques discard a consid-
erable amount of information from the original
continuous-tone image, distortions are frequently
introduced in halftone images. As a consequence,
the design of inverse halftoning techniques is chal-
lenging and, when compared to the original im-
age, restored images may contain distortions. Most
common distortions include color distortions, noise,
or blur. Over the years, several inverse halfton-
ing methods have been proposed. Examples in-
clude the works of Freitas et al. [9] and Saika
et al. [10], who propose inverse halftoning meth-
ods that restore continuous-tone images from or-
dered dithering (OD) halftones. Xiong et al. [11],
Kite et al. [12], and Neelamani et al. [13] pro-
pose wavelet-based approaches that restore images
from halftones generated using error diffusion algo-
rithms [14].
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The aforementioned inverse halftoning tech-
niques restore continuous-tone images using the
knowledge about the specific halftoning technique
used to produce the halftone (i.e. ordered dither-
ing, error diffusion, dot diffusion, etc). However,
in recent years, a few inverse halftoning techniques
that work for different halftoning techniques have
been proposed. One example is the work of Wen et
al. [15] that uses a template optimization method
(based on an elitist genetic algorithm) to imple-
ment a lookup-table inverse halftoning technique.
Their method is able to restore Floyd-Steinberg
error diffusion, Jarvis-Judice error diffusion, clus-
ter dither, Bayer disperse dither, and dot diffusion
halftone images. Another example is the work of
Guo et al. [16] that is based on a block truncation
code (BTC). Finally, Gopale and Sarode [17] pro-
pose a descreening inverse halftoning technique that
uses image redundancy and adaptive filtering and
does not require information about the halftoning
process. Although these methods are state-of-the-
art techniques, the continuous-tone images restored
with them still present visual distortions, like for
example noise and blur.
In this paper, we propose a new technique for

effectively enhancing fine textures and details of
restored halftone images, by concealing noise and
blurring effects. More than yet another inverse
halftoning algorithm, the technique aims to im-
prove the results of existing inverse halftoning tech-
niques. Practitioners of inverse halftoning algo-
rithms can use it as a complementary step to im-
prove the quality results obtained with their algo-
rithm.
In the proposed technique, we consider the image

restored with the inverse halftoning technique as a
distorted version of the original image. Then, we
use a coupled dictionary learning algorithm, which
is based on a patchwise sparse representation. This
approach was inspired by recent image restoration
works that use coupled dictionary (CD) learning
algorithms to improve the quality of distorted im-
ages [18]. For instance, Yang et al. [19] propose a
CD training method for restoring images in single
image super-resolution problems. Xiang et al. [20]
attack the image deblurring problem using a CD
learning framework. Reale et al. [21] identify ther-
mal infrared face images from a gallery of visible
light face images using CD.
Finally, it is worth mentioning the works of Son et

al. [22, 23], who use CD to restore continuous tone
images from their halftone version. Unlike Son’s

method, the method proposed in this paper is a
technique for enhancing the visual quality of images
restored using any inverse halftoning algorithm. In
other words, the method has the goal of reducing
the artifacts present in images restored by inverse
algorithms.
The rest of this work is organized as follows.

Section 2 contains a brief description of general
halftone and inverse halftone algorithms. Section 3
presents the coupled dictionary learning model and
the proposed methodology. Experimental results
are reported in Section 4, while conclusions are pre-
sented in Section 5.

2. Halftoning and Inverse Halftoning

We consider the halftoning process as the tech-
nique of converting a continuous-tone grayscale im-
age with 255 gray levels, Ig, into a binary black-
and-white image with only two levels (‘0’ or ‘1’),
Ib. More specifically,

Ib = f(Ig), (1)

where f is a function representing the halftoning
algorithm. The function f can be computed us-
ing several mathematical models [24]. Each model
corresponds to a unique dithering pattern strat-
egy, which generates a different way of mapping the
grayscale image Ig into the binary halftone Ib.

Inverse halftoning techniques are methods that
reconstruct continuous-tone images from halftones.
More formally, since f converts Ig to Ib, the inverse
halftoning can be described as

Ig = f−1(Ib). (2)

But, since the process of generating Ib discards a
considerable amount of information, f is not injec-
tive and the inverse mapping is undefined. In other
words, the reconstructed grayscale image is gener-
ated by approximating Ig and not by directly in-
verting the halftoning process. More specifically,

Îg = Ig + ε, (3)

where Îg is an approximation of the original
grayscale image Ig generated by an inverse halfton-
ing algorithm and ε is the approximation error that
corresponds to a visible distortion.
The first row of Fig. 2 shows visual degrada-

tions (artifacts) corresponding to the distortion ε
for different inverse halftoning techniques. Notice
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that the type of visual distortion can vary accord-
ing to the inverse halftoning technique. For exam-
ple, color and noise artifacts may appear when us-
ing the Fast Inverse Halftoning Algorithm for Or-
dered Dithered Images (FIHT) [9] method to recon-
struct the continuous-tones of each RGB channel.
On the other hand, blur artifacts may appear when
using Wavelet-based Inverse Halftoning via Decon-
volution (WInHD) [13] or the Rolling guidance fil-
ter (RGF) [25] inverse halftoning techniques. Blur
may also be introduced when using Local Approx-
imations without (LASIP) or with (LASIPW) reg-
ularized inverse-regularized Wiener inverse [26].
In order to suppress these distortions, in this

work, we use a technique to find the sparse represen-
tation shared by the original and the distorted im-
ages. As shown by Wright and Ma [27], the sparse
representation of the images enables a linear rela-
tionships between non-distorted and distorted im-
ages. Therefore, it is possible to reconstruct an orig-
inal image from its distorted version [28, 29]. The
relationship between non-distorted and distorted
images is learned using an unsupervised coupled
dictionary (CD) learning approach to create two
dictionaries of non-distorted and distorted image
patches [30, 31]. In the next two sections, we de-
scribe the CD methodology and the inverse halfton-
ing enhancement technique.

3. Inverse Halftoning Enhancement via Cou-
pled Dictionary Learning

Given a distorted grayscale image Îg , obtained
from a halftone using an inverse halftoning algo-
rithm, the enhancement problem consists of obtain-
ing an image that best approximates the original
image Ig. More specifically, these distortions of Îg
are modeled as follows:

Îg = SHIg, (4)

where S and H represent the addition of blurring
and noise distortions. These distortions were cho-
sen because they are among the most commonly
visible distortions found in images restored using
inverse halftoning algorithms (see Fig. 2). The dis-
advantage of this model is that it is ill-posed. In
other words, for a distorted image Îg, there are sev-
eral non-distorted images Ig that satisfy this con-
straint. We adapt this problem by dividing the non-
distorted and distorted images, Ig and Îg, into small
patches x and y, respectively.

The patches x of non-distorted images can be rep-
resented as a linear combination of elements in the
non-distorted images dictionary Dx. The dictio-
nary is obtained in a training stage using sampled
non-distorted patches. More specifically, x can be
represented as follows:

x = Dxα
∗, (5)

where α∗ ∈ R
k with ‖α∗‖0 � k. In this case, α∗ is

the sparsest representation of x. In a similar way,
α∗ is also used to represent the patches y of the
distorted image Îg with respect to other dictionary
Dy. In this manner, both distorted (Dy) and non-
distorted (Dx) dictionaries are trained to share the
same sparse representation α∗.

3.1. Dictionary Learning

A straightforward strategy to generate the dic-
tionaries Dx and Dy consists of sampling pairs

{xn
i , y

n
i } of patches from Ig and Îg, respectively. To

preserve the correspondence between distorted and
non-distorted information, we collect the patches
from both distorted and non-distorted images at
the same i-th spatial position. This naive strategy
results in huge dictionaries which require a large
amount of memory and processor resources.
To save computational resources, a sparse repre-

sentation of the set of patches is used for dictio-
nary training. In the literature, there are many
approaches for finding dictionaries that guaran-
tee the recovery of signals using sparse represen-
tations [31, 30, 32, 33]. In this paper, we use a
learning-dictionary strategy that minimizes the dif-
ferences between the signal and its sparse represen-
tation. In other words, we use the following opti-
mization problem:

arg min
D,α

‖z −Dα‖22 + λ‖α‖1

subject to ‖Di‖22 ≤ 1,
(6)

where z = {z1, z2, · · · , zi, · · · , zn} is a set of n train-
ing samples, Di is the i-th column of D, λ is a
constant that multiplies the �1 term (regularization
parameter), and α is the sparse representation of
zi.
This optimization problem is not convex in both

D and α, as previously demonstrated in other stud-
ies [34, 31]. However, it can be solved using an
iterative strategy, which consists of finding the op-
timal α via linear programming [35] and then fixing
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it to determine D via quadratic programming [34].
Otherwise, by fixing {αi}, D can be solved as
a constrained quadratic problem [36]. This joint
optimization problem converges to a local mini-
mum [34].

3.2. Coupling Dictionaries

Although the strategy described in the previous
section is efficient to represent z in terms of a dic-
tionary, it is not able to tie the corresponding infor-
mation of distorted and non-distorted patches. To
achieve this, two dictionaries, Dx and Dy, must be
learned in a way that guarantees that they share the
same sparse representation α. An efficient strategy
was proposed by Yang et al. [19]. In this strategy,
sets of pairs p = {{x1, y1}, {x2, y2}, · · · , {xn, yn}}
of non-distorted (x) and distorted (y) patches are
sampled to create a common sparse representation.
After extracting these pairs of patches, we can com-
bine the individual sparse coding problems, i.e.,

arg min
Dx,α

‖x−Dxα‖22 + λ‖α‖1 (7)

and
arg min

Dy ,α
‖y −Dyα‖22 + λ‖α‖1, (8)

to force them to share the same sparse representa-
tion as follows:

arg min
Dx,Dy,α

‖x−Dxα‖22 + ‖y −Dyα‖22 + λ‖α‖1

subject to ‖Dxi‖22 ≤ 1

‖Dyi‖22 ≤ 1,
(9)

or equivalently,

arg min
Dc,α

‖kc −Dcα‖22 + λ‖α‖1

subject to ‖Dci‖22 ≤ 1,
(10)

where kc = [x y]
ᵀ
and Dc = [Dx Dy]

ᵀ
is the Cou-

pled Dictionary (CD).

3.3. Inverse Halftoning Enhancement

After training the dictionaries Dx and Dy, cor-
responding to non-distorted and distorted training
patches, we need to find a model for the image en-
hancement process. For this, we first extract the
patches y from a distorted image Îg, in the same
way it was done during the training of the dictio-
naries. Then, for the i-th patch we find the sparse

representation α with respect to Dy. This α is com-
bined with Dx to generate the i-th non-distorted
patch.
To find the sparse representation of y, we solve

the following problem:

min
α

‖α‖1
subject to ‖Dcα− ỹ‖22 ≤ ε,

(11)

where ỹ = [y w]
ᵀ
and w contains the values of the

previously reconstructed non-distorted patches. Af-
ter solving the above problem, we find the optimal
solution for α∗ (Eq. 5) to reconstruct the patch.
After substituting all distorted {yi} patches by the
corresponding non-distorted patches {xi}, the im-
age Ĩg is reconstructed such that:

Ĩg = Ig + ρ, (12)

where ρ < ε (see Eq. 3) and, therefore, Ĩg is closer

to the original image Ig than Îg.

4. Experimental Results

The experiments were performed using a laptop
with an Intel i7-4700MQ processor and 32GB of
RAM running CentOS Linux 7. The code was
implemented using Matlab R2015a. The training
was first performed using two image databases.
The first database is a set of texture images
from the ‘Texture’ subset of the USC-SIPI Im-
age Database [37]. These images have a single
grayscale channel and dimensions equal to 512x512
or 1024x1024 pixels, with content varying from
harsh to fine textures. The second database is the
LIVE image quality database release 2 [38]. Since
the results of the simulations were very similar for
both databases, only the results of the USC-SIPI
Image Database are reported in this paper.
The texture images of USC-SIPI database were

converted into their halftone versions and the tested
inverse halftoning algorithms were used to restore
a continuous-tone grayscale image. Then, we col-
lected the patch pairs from the original images
and the restored images. These patches were ran-
domly sampled from both sets of images, keep-
ing a record of the spatial indexing corresponding
to both original and restored information. These
patch pairs were used for training the dictionaries
following the learning steps described in Section 3.
This training process was repeated for the follow-
ing state-of-the-art inverse halftoning algorithms:
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Apples Macaw Balls Sunflower

Seal Innsbruck Rails Waterfall

Figure 1: Original images used in the experimental tests.

FIHT [9], LASIP [26], LASIPW [26], RGF [25], and
WInHD [13].

After training the dictionaries, we tested the pro-
posed enhancing method using a set of colored im-
ages with different visual properties (content, color,
frequency, and saliency), as depicted in Fig. 1.
These images were collected from Wikipedia and
are free of copyright, labeled for reuse with mod-
ification, and licensed under Creative Commons.
Their original size is 512×512 pixels.

4.1. Enhancement Performance

To validate the proposed method, we first sam-
pled 100,000 patches with size of 4x4 for training
the pair of dictionaries Dx and Dy. We empirically
set λ = 0.2 (see Eq. 10) and the size of the two
dictionaries as 1024 atoms, what generally yields
acceptable results.

Fig. 2 depicts a comparison of the output results
obtained with our method for the aforementioned
inverse halftoning algorithms. For all images, the
first rows depict the results of the inverse halfton-
ing algorithm and the second rows depict the re-
sults of their enhanced versions using CD. More
specifically, Fig. 2-(a) shows details of each orig-
inal image before the halftoning-and-inverse pro-
cess. Fig. 2-(b), (c), (d), (e), and (f) show the
restoration using FIHT, LASIP, LASIPW, RGF,
and WInHD algorithms, respectively, without en-
hancement (1st row) and with enhancement using
the proposed method (2nd row). From these im-
ages, we can notice that FIHT produces a noisier
and sharper restoration, while the other algorithms
produce blurry images. For all cases, we observe
that distortions are minimized by using the pro-
posed method.

The quality of these images is also measured
objectively. First, we analyzed the fidelity be-
tween the reconstructed image and the correspond-
ing original using the Peak Signal-to-Noise Ratio
(PSNR). The first group of Table 1 depicts the
PSNR values of the reconstructed images for dif-
ferent inverse halftoning algorithms and their en-
hancements using the proposed method. Even
though PSNR is commonly used as an image qual-
ity metric, it is not actually reliable for rating visual
image quality [39]. Taking this into consideration,
we also use the Gradient Magnitude Similarity De-
viation(GMSD) [40] and the Feature Similarity In-
dex (FSIM) [41]. GMSD was chosen because it is a
state-of-the-art metric that delivers a highly com-
petitive prediction accuracy. On the other hand,
FSIM is based on the fact that human visual system
understands an image according to its low-level fea-
tures. FSIM and GMSD scores of the reconstructed
and enhanced images are shown in the second and
third group of Table 1, respectively.
From Table 1, we can notice that the proposed

method is able to enhance the quality of recon-
structed images. However, in some cases, the en-
hancement algorithm has similar performance to
the original inverse halftoning algorithms. This can
be observed in the highlighted regions of Fig. 3. In
this figure, the red color denotes the patches where
sparse recovery enhances the inverse halftoning al-
gorithms, the blue color denotes patches where the
inverse halftoning algorithm (i.e. LASIP) beats
the proposed algorithm, and the gray color in-
dicates the patches where both behave similarly
(the absolute RMSE difference between LASIP and
LASIP+CD is smaller than 0.5). Interestingly, the
proposed algorithm performs better on contour and
high detail regions and worst on homogeneous re-
gions. Furthermore, the regions where the pro-
posed method works better coincide with the image
salient regions [42].
Since inverse halftoning algorithms may intro-

duce color distortions, in order to estimate the per-
formance of the proposed algorithm, it is also im-
portant to estimate the strength of color distor-
tions in reconstructed and enhanced images. In this
work, we use the ΔE∗ CIE color difference met-
ric [43] to estimate the color fidelity of the recon-
structed and enhanced images with respect to the
original image. ΔE∗ is a full reference color metric
that estimates the distance between the colors in
two images. In our experiments, we compute the
ΔE∗ for each image pixel and calculate the average
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Original FIHT LASIP LASIPW RGF WInHD

FIHT+CD LASIP+CD LASIPW+CD RGF+CD WInHD+CD

Original FIHT LASIP LASIPW RGF WInHD

FIHT+CD LASIP+CD LASIPW+CD RGF+CD WInHD+CD

Original FIHT LASIP LASIPW RGF WInHD

FIHT+CD LASIP+CD LASIPW+CD RGF+CD WInHD+CD

Original FIHT LASIP LASIPW RGF WInHD

FIHT+CD LASIP+CD LASIPW+CD RGF+CD WInHD+CD

Original FIHT LASIP LASIPW RGF WInHD

FIHT+CD LASIP+CD LASIPW+CD RGF+CD WInHD+CD

Original FIHT LASIP LASIPW RGF WInHD

FIHT+CD LASIP+CD LASIPW+CD RGF+CD WInHD+CD
(a) (b) (c) (d) (e) (f)

Figure 2: Examples of reconstructed images using different inverse halftoning techniques. From top to bottom: Macaw,
Sunflower, Seal, Rails, and Waterfall.

value for the whole image, getting a single score
for each image. Since ΔE∗ is a distance metric,
the smaller ΔE∗ the better is the color quality of
the reconstructed image. The fourth group of Ta-

ble 1 shows the ΔE∗ values. These values indicate
that the proposed enhancement algorithm produces
better results than using only the reconstruction al-
gorithm.
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Table 1: Objective evaluation of restoration and enhancement fidelity using PSNR, FSIM, GMSD, and ΔE∗ quality metrics.

Metric Method Apples Balls Innsbruck Macaw Rails Seal Sunflower Waterfall Average

P
S
N
R

FIHT 20.4558 24.2834 20.0043 21.6705 19.8340 19.1716 22.8609 20.0833 21.0455

FIHT+CD 20.5425 24.2927 20.0281 21.7181 20.0285 19.2783 22.9233 20.3397 21.1439

LASIP 34.8503 32.6038 28.3815 32.2517 26.6425 27.3351 29.4121 24.9422 29.5524

LASIP+CD 34.9107 33.0873 29.0368 32.7689 27.3706 28.0053 30.3871 25.3020 30.1086

LASIPW 34.3779 32.1201 28.8698 32.2838 27.3844 27.9374 29.5718 25.3399 29.7356

LASIPW+CD 34.6645 32.5878 29.0814 32.4299 27.6205 27.9239 29.6811 25.5747 29.9455

RGF 29.9674 27.0864 22.3269 27.6421 21.3362 22.4640 24.2723 20.7262 24.4777

RGF+CD 30.1347 27.2315 22.7493 27.7821 21.3968 22.4477 24.6701 20.7365 24.6436

WinHD 33.1707 29.5114 28.1179 31.0409 26.5176 27.5363 28.4972 25.0452 28.6797

WinHD+CD 34.5786 30.3231 28.7520 31.4908 27.4606 27.8707 28.5945 25.4494 29.3150

F
S
IM

FIHT 0.9328 0.8803 0.9191 0.8972 0.9272 0.9409 0.9219 0.9513 0.9213

FIHT+CD 0.9410 0.8817 0.9288 0.9019 0.9373 0.9502 0.9247 0.9597 0.9282

LASIP 0.9819 0.9714 0.9481 0.9673 0.9588 0.9676 0.9609 0.9664 0.9653

LASIP+CD 0.9826 0.9757 0.9589 0.9692 0.9702 0.9756 0.9667 0.9738 0.9716

LASIPW 0.9795 0.9712 0.9506 0.9666 0.9653 0.9722 0.9633 0.9732 0.9677

LASIPW+CD 0.9813 0.9756 0.9578 0.9694 0.9655 0.9712 0.9658 0.9725 0.9699

RGF 0.9307 0.8922 0.7944 0.9062 0.7756 0.8138 0.8722 0.7855 0.8463

RGF+CD 0.9336 0.8987 0.8115 0.9098 0.7757 0.8102 0.8804 0.7767 0.8496

WinHD 0.9798 0.9659 0.9512 0.9676 0.9671 0.9719 0.9624 0.9733 0.9674

WinHD+CD 0.9806 0.9705 0.9560 0.9680 0.9673 0.9734 0.9607 0.9746 0.9689

G
M

S
D

FIHT 0.0801 0.1330 0.1044 0.0898 0.1053 0.0831 0.0807 0.0675 0.0930

FIHT+CD 0.0765 0.1329 0.0993 0.0880 0.1022 0.0799 0.0805 0.0612 0.0901

LASIP 0.0396 0.0498 0.0784 0.0602 0.0645 0.0505 0.0673 0.0519 0.0578

LASIP+CD 0.0399 0.0493 0.0701 0.0594 0.0544 0.0437 0.0596 0.0440 0.0525

LASIPW 0.0450 0.0601 0.0794 0.0665 0.0597 0.0492 0.0666 0.0443 0.0588

LASIPW+CD 0.0428 0.0517 0.0750 0.0625 0.0595 0.0479 0.0634 0.0430 0.0557

RGF 0.0865 0.1020 0.1817 0.1151 0.2106 0.1764 0.1608 0.1917 0.1531

RGF+CD 0.0849 0.1047 0.1731 0.1150 0.2068 0.1720 0.1547 0.1852 0.1495

WinHD 0.0447 0.0723 0.0842 0.0660 0.0592 0.0488 0.0745 0.0447 0.0618

WinHD+CD 0.0427 0.0705 0.0780 0.0635 0.0571 0.0478 0.0664 0.0431 0.0586

Δ
E

∗

FIHT 8.0881 7.4621 8.3023 9.4527 8.8893 9.9822 7.8637 8.8652 8.6132

FIHT+CD 8.0600 7.1777 8.2669 9.2131 8.9166 9.9479 7.7117 8.8822 8.5220

LASIP 1.8752 2.6582 3.1945 2.5188 4.4409 3.6138 2.6212 5.4520 3.2968

LASIP+CD 1.6837 2.4372 2.9816 2.2711 4.1390 3.3448 2.3953 5.2305 3.0604

LASIPW 1.9313 3.0626 3.2666 2.5430 4.9916 4.0004 2.7671 5.9844 3.5684

LASIPW+CD 1.7614 2.9223 3.1684 2.3578 4.8835 3.8531 2.6464 5.9668 3.4450

RGF 2.8669 3.8693 4.6568 3.4845 6.1927 5.4156 4.0297 8.3631 4.8598

RGF+CD 2.7102 3.6813 4.4286 3.2669 6.0805 5.2942 3.8296 8.2951 4.6983

WinHD 1.8246 4.5780 3.4865 3.2724 4.9678 3.7485 3.8594 5.7593 3.9371

WinHD+CD 1.7638 4.4548 3.3893 3.0935 4.9494 3.6818 3.6943 5.7476 3.8468

In order to verify the effect of regularization pa-
rameter λ, we vary it from 0.1 to 0.5 and repeat the
procedure described in the last section using the
LASIP inverse halftoning method. Table 2 shows
the PSNR, FSIM, GMSD, and ΔE∗ values obtained
for five λ values in this interval. From this table, we

can notice that the smaller the value of λ, the better
the results. If we compare the average results of Ta-
ble 2 with the results of the LASIP reconstruction
without the enhancement (see Table 1), we can no-
tice that the proposed method improves the quality
of the reconstructed image when λ < 0.4. Larger
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Apples Macaw Balls Sunflower

Seal Innsbruck Rails Waterfall

Figure 3: Comparison of enhancement between the original reconstruction using LASIP [26] inverse halftoning algorithm and
the proposed method. Red blocks denotes patches where the proposed enhancement outperforms the original inverse halftoning
algorithm. Blue blocks denotes patches where the proposed algorithm inserts noise and the original LASIP is superior. The
gray areas of these images indicates that the two methods perform in a like manner.

LASIP CD (λ = 0.1) CD (λ = 0.2) CD (λ = 0.3) CD (λ = 0.4) CD (λ = 0.50)

Figure 4: The effect of λ on the enhanced image given the restored image. From left to right: inverse halftoning reconstruction
(LASIP), λ = 0.1, 0.2, 0.3, 0.4, and 0.5.

values of λ produce worse results. Fig. 4 shows the
impact that different λ values have on image qual-
ity.

4.2. Computational Performance

The scalability of the learning stage is analyzed
by varying the number of patches. As depicted in
the bar-plot in Fig. 5, the time spent during the
learning stage increases (linearly) with the num-
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Table 2: Effect of regularization parameter on enhancement performance.

Metric λ Apples Balls Innsbruck Macaw Rails Seal Sunflower Waterfall Average

P
S
N
R

0.1 34.7865 33.1051 29.2936 32.8036 27.4162 28.0692 30.7598 25.3020 30.1920
0.2 34.7878 33.0259 29.1112 32.7161 27.4110 27.9891 30.5168 25.2139 30.0965
0.3 34.7097 32.8966 28.8561 32.5450 27.1311 27.7111 30.2740 24.9551 29.8848
0.4 32.1311 29.0823 25.5889 28.5804 22.9801 23.9100 25.8035 21.7816 26.2322
0.5 30.5571 27.5080 22.7458 27.8700 21.6170 22.7020 24.4403 20.9673 24.8009

F
S
IM

0.1 0.9831 0.9771 0.9624 0.9709 0.9702 0.9753 0.9695 0.9730 0.9727
0.2 0.9825 0.9763 0.9592 0.9691 0.9710 0.9763 0.9675 0.9743 0.9720
0.3 0.9820 0.9757 0.9558 0.9680 0.9699 0.9760 0.9667 0.9737 0.9710
0.4 0.9649 0.9390 0.9120 0.9367 0.8745 0.9025 0.9211 0.8709 0.9152
0.5 0.9435 0.9076 0.8105 0.9188 0.7947 0.8323 0.8854 0.8045 0.8622

G
M

S
D

0.1 0.0389 0.0476 0.0667 0.0578 0.0534 0.0434 0.0553 0.0445 0.0509
0.2 0.0399 0.0508 0.0692 0.0602 0.0523 0.0427 0.0587 0.0430 0.0521
0.3 0.0403 0.0519 0.0726 0.0609 0.0537 0.0434 0.0594 0.0439 0.0533
0.4 0.0594 0.0722 0.1147 0.0974 0.1445 0.1168 0.1182 0.1428 0.1083
0.5 0.0787 0.0938 0.1774 0.1134 0.1944 0.1598 0.1525 0.1724 0.1428

Δ
E

∗

0.1 1.6918 2.4389 2.9532 2.2712 4.1244 3.3352 2.3552 5.2120 3.0477
0.2 1.6938 2.4509 2.9819 2.2797 4.1332 3.3440 2.3789 5.2606 3.0654
0.3 1.7002 2.4639 3.0191 2.2925 4.1957 3.3937 2.4061 5.3714 3.1053
0.4 1.9014 2.8603 3.5204 2.6208 5.4231 4.2964 3.0447 6.8758 3.8179
0.5 2.0777 3.1358 4.2284 2.7489 6.1046 4.8446 3.4138 7.4063 4.2450

ber of samples. It is worth pointing out that the
time values in this graph do not consider the time
spent on ‘file reading’ and ‘sampling’ stages, which
are approximately constant for all test images (130
seconds on average).
In order to estimate the overhead of the proposed

enhancement, we varied the size of the images and
the values of λ. The original images were resized
from 16×16 to 2048×2048 pixels and, then, the
halftoning, its inverse, and the enhancement steps
were performed. The λ values ranged from 0.05 to
0.5 with steps of 0.05. These results are presented
in Table 3. We can notice that the enhancement
time increases with the image size. On the other
hand, the higher the value of λ, the smaller the en-
hancing time. By comparing the results in Table 2
with the results in Table 3, we can conclude that
the appropriate values for λ are in the range from
0.1 to 0.2.

4.3. Discussion

The implementation of the proposed method in
this paper has some limitations that compromise its
performance. First, the method was implemented
using an unoptimized Matlab program (e.g. there
are several code snippets that can be improved us-
ing vectorization resources instead of loops). Sec-
ond, both training and restoration stages include
patch-based operations (i.e., the processing of a
given patch is independent of other patches). Given
this independence between patches, the proposed
method could have been implemented in parallel
and used in real-time applications.

Figure 5: Computation time for learning dictionaries, in
terms of the number of samples.

Although the method improves the quality of re-
stored images, differences reported by regular qual-
ity metrics are small. It is worth pointing out
that quality assessment of enhanced images is still
a challenge [44, 45]. Examples of the poor perfor-
mance of quality metrics for enhancement problems
can be found in the work of Chang et al. [46]. Al-
though Vu et al. [47] proposes a metric to assess
the quality of images with contrast and brightness
enhancements, this metric would not work for the
images generated by the proposed method because
they have a different type of enhancement.

The straightforward solution for assessing the
quality of the enhanced images would be to con-
struct a new database and, then, perform a psy-
chophysical experiment to identify which tech-
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Table 3: Average runtime (in seconds) for image enhancement, in terms of image spatial resolution and λ value.

λ
Size 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
16 0.163 0.110 0.106 0.103 0.102 0.098 0.085 0.078 0.075 0.073
32 1.210 0.798 0.724 0.525 0.469 0.402 0.319 0.258 0.258 0.258
64 5.289 3.171 2.458 2.100 1.893 1.621 1.312 1.092 1.077 1.077
128 19.055 12.435 9.899 8.541 7.705 6.770 6.605 6.428 6.426 6.054
256 78.272 47.696 46.786 42.725 35.355 33.116 30.147 29.009 29.301 28.001
512 280.872 179.606 154.014 144.039 139.613 122.245 117.847 115.407 111.794 102.709
1024 922.758 612.294 511.995 509.157 439.530 430.370 403.812 388.118 378.996 355.401
2048 3455.220 2070.507 1791.728 1773.035 1739.235 1689.187 1583.255 1421.524 1320.260 1358.376

niques has a better subjective quality. Nevertheless,
the quality assessment of enhanced images requires
a whole new study, which is out of scope of this
paper.

5. Conclusions

This paper presented a method for improving
the quality of images reconstructed using inverse
halftoning algorithms based on coupled dictionar-
ies. The dictionaries are trained considering the
common sparse representation between the original
images and the images reconstructed using inverse
halftoning algorithms. The dictionary training (us-
ing a second dictionary) enforces that the sparsity
derived from the restored images can be used to en-
hance their quality. Experimental results show that
the proposed coupled dictionary approach is able
to conceal distortions caused by inverse halftoning
algorithms in high detailed regions. Future works
include the implementation of a selective patch pro-
cessing approach to apply the proposed enhance-
ment strategy only to selected patches. Moreover,
future works will also include an investigation for
adapting the algorithm to be computed in paral-
lel. Examples of the results can be found at the
following address http://tiny.cc/pbo7ey.
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References

[1] D. E. Knuth, Digital halftones by dot diffusion, ACM
Transactions on Graphics (TOG) 6 (4) (1987) 245–273.

[2] C. M. Miceli, K. J. Parker, Inverse halftoning, Journal
of Electronic Imaging 1 (2) (1992) 143–151.

[3] J. Ge, J. Pan, E. Fang, Application of digital water-
marking technology to artistic screening image, in: Ad-
vanced Graphic Communications, Packaging Technol-
ogy and Materials, Springer, 2016, pp. 187–196.

[4] M. Bharathi, R. Charanya, P. Student, T. Vijayan,
Halftone visual cryptography & watermarking, Inter-
national Journal of Engineering 2 (4).

[5] F. Ebner, P. McCandlish, Compression of grayscale im-
age data using multi-bit halftoning, uS Patent 8,437,043
(May 7 2013).

[6] C. B. Adsumilli, M. C. Farias, S. K. Mitra, M. Carli,
A robust error concealment technique using data hid-
ing for image and video transmission over lossy chan-
nels, Circuits and Systems for Video Technology, IEEE
Transactions on 15 (11) (2005) 1394–1406.

[7] N. Damera-Venkata, T. D. Kite, W. S. Geisler, B. L.
Evans, A. C. Bovik, Image quality assessment based on
a degradation model, Image Processing, IEEE Transac-
tions on 9 (4) (2000) 636–650.

[8] Z. Shi, X. Wang, L. Fu, A method of color inverse
halftoning image quality assessment based on image
structural property, in: Advanced Graphic Communi-
cations, Packaging Technology and Materials, Springer,
2016, pp. 257–262.

[9] P. Freitas, M. Farias, A. de Araujo, Fast inverse
halftoning algorithm for ordered dithered images,
in: Graphics, Patterns and Images (Sibgrapi), 2011
24th SIBGRAPI Conference on, 2011, pp. 250–257.
doi:10.1109/SIBGRAPI.2011.14.

[10] Y. Saika, K. Okamoto, F. Matsubara, Probabilistic
modeling to inverse halftoning based on super resolu-
tion, in: Control Automation and Systems (ICCAS),
2010 International Conference on, 2010, pp. 162–167.

[11] Z. Xiong, M. T. Orchard, K. Ramchandran, Inverse
halftoning using wavelets, Image Processing, IEEE
Transactions on 8 (10) (1999) 1479–1483.

[12] T. D. Kite, N. Damera-Venkata, B. L. Evans, A. C.
Bovik, A fast, high-quality inverse halftoning algorithm
for error diffused halftones, Image Processing, IEEE
Transactions on 9 (9) (2000) 1583–1592.

[13] R. Neelamani, R. Nowak, R. Baraniuk, Model-based in-
verse halftoning with wavelet-vaguelette deconvolution,
in: Image Processing, 2000. Proceedings. 2000 Interna-
tional Conference on, Vol. 3, IEEE, 2000, pp. 973–976.

[14] N. Damera-Venkata, B. L. Evans, Adaptive threshold
modulation for error diffusion halftoning, Image Pro-
cessing, IEEE Transactions on 10 (1) (2001) 104–116.

[15] Z.-Q. Wen, Y.-L. Lu, Z.-G. Zeng, W.-Q. Zhu, J.-H. Ai,
Optimizing template for lookup-table inverse halftoning
using elitist genetic algorithm, Signal Processing Let-
ters, IEEE 22 (1) (2015) 71–75.

[16] J.-M. Guo, H. Prasetyo, K. Wong, Halftoning-based

10



block truncation coding image restoration, Journal of
Visual Communication and Image Representation 35
(2016) 193–197.

[17] A. M. Gopale, T. K. Sarode, Adaptive filtering a de-
screening approach for color scanned halftones, in: Ad-
vances in Computing, Communications and Informat-
ics (ICACCI), 2015 International Conference on, IEEE,
2015, pp. 700–706.

[18] L.-W. Kang, C.-M. Yu, C.-Y. Lin, C.-H. Yeh, Image
and video restoration and enhancement via sparse rep-
resentation, Emerging Technologies in Intelligent Ap-
plications for Image and Video Processing (2016) 1.

[19] J. Yang, Z. Wang, Z. Lin, S. Cohen, T. Huang, Coupled
dictionary training for image super-resolution, Image
Processing, IEEE Transactions on 21 (8) (2012) 3467–
3478.

[20] S. Xiang, G. Meng, Y. Wang, C. Pan, C. Zhang, Im-
age deblurring with coupled dictionary learning, Inter-
national Journal of Computer Vision 114 (2-3) (2015)
248–271.

[21] C. Reale, N. M. Nasrabadi, R. Chellappa, Coupled dic-
tionaries for thermal to visible face recognition, in: Im-
age Processing (ICIP), 2014 IEEE International Con-
ference on, IEEE, 2014, pp. 328–332.

[22] C. Son, H. Park, Sparsity-based inverse halftoning,
Electronics letters 48 (14) (2012) 832–834.

[23] C.-H. Son, H. Choo, Local learned dictionaries opti-
mized to edge orientation for inverse halftoning, Image
Processing, IEEE Transactions on 23 (6) (2014) 2542–
2556.

[24] R. A. Ulichney, Review of halftoning techniques, in:
Electronic Imaging, International Society for Optics
and Photonics, 1999, pp. 378–391.

[25] Q. Zhang, X. Shen, L. Xu, J. Jia, Rolling guidance filter,
in: Computer Vision–ECCV 2014, Springer, 2014, pp.
815–830.

[26] A. Foi, V. Katkovnik, K. Egiazarian, J. Astola, In-
verse halftoning based on the anisotropic lpa-ici decon-
volution, in: PROCEEDINGS OF THE 2004 INTER-
NATIONAL TICSP WORKSHOP ON SPECTRAL
METHODS AND MULTIRATE SIGNAL PROCESS-
ING, SMMSP 2004, 2004, pp. 49–56.

[27] J. Wright, Y. Ma, Dense error correction via-
minimization, Information Theory, IEEE Transactions
on 56 (7) (2010) 3540–3560.

[28] J. Wright, Y. Ma, J. Mairal, G. Sapiro, T. S. Huang,
S. Yan, Sparse representation for computer vision and
pattern recognition, Proceedings of the IEEE 98 (6)
(2010) 1031–1044.

[29] D. L. Donoho, Compressed sensing, Information The-
ory, IEEE Transactions on 52 (4) (2006) 1289–1306.

[30] J. Mairal, F. Bach, J. Ponce, G. Sapiro, Online dic-
tionary learning for sparse coding, in: Proceedings of
the 26th Annual International Conference on Machine
Learning, ACM, 2009, pp. 689–696.

[31] K. Kreutz-Delgado, J. F. Murray, B. D. Rao, K. En-
gan, T.-W. Lee, T. J. Sejnowski, Dictionary learning
algorithms for sparse representation, Neural computa-
tion 15 (2) (2003) 349–396.

[32] S. Gao, I. W.-H. Tsang, L.-T. Chia, Sparse representa-
tion with kernels, Image Processing, IEEE Transactions
on 22 (2) (2013) 423–434.

[33] Y. Chen, N. M. Nasrabadi, T. D. Tran, Hyperspec-
tral image classification via kernel sparse representa-
tion, Geoscience and Remote Sensing, IEEE Transac-

tions on 51 (1) (2013) 217–231.
[34] H. Lee, A. Battle, R. Raina, A. Y. Ng, Efficient sparse

coding algorithms, Advances in neural information pro-
cessing systems 19 (2007) 801.

[35] E. J. Candes, T. Tao, Decoding by linear programming,
Information Theory, IEEE Transactions on 51 (12)
(2005) 4203–4215.

[36] C. J. Albers, F. Critchley, J. C. Gower, Quadratic min-
imisation problems in statistics, Journal of Multivariate
Analysis 102 (3) (2011) 698–713.

[37] A. G. Weber, The USC-SIPI image database version 5,
USC-SIPI Report 315 (1997) 1–24.

[38] H. R. Sheikh, M. F. Sabir, A. C. Bovik, A statistical
evaluation of recent full reference image quality assess-
ment algorithms, IEEE Transactions on image process-
ing 15 (11) (2006) 3440–3451.

[39] Z. Wang, A. C. Bovik, Mean squared error: love it or
leave it? a new look at signal fidelity measures, Signal
Processing Magazine, IEEE 26 (1) (2009) 98–117.

[40] W. Xue, L. Zhang, X. Mou, A. C. Bovik, Gradient mag-
nitude similarity deviation: a highly efficient perceptual
image quality index, IEEE Transactions on Image Pro-
cessing 23 (2) (2014) 684–695.

[41] L. Zhang, L. Zhang, X. Mou, D. Zhang, Fsim: a feature
similarity index for image quality assessment, Image
Processing, IEEE Transactions on 20 (8) (2011) 2378–
2386.

[42] M. C. Farias, W. Y. Akamine, On performance of image
quality metrics enhanced with visual attention compu-
tational models, Electronics letters 48 (11) (2012) 631–
633.

[43] G. Sharma, W. Wu, E. N. Dalal, The ciede2000 color-
difference formula: Implementation notes, supplemen-
tary test data, and mathematical observations, Color
Research & Application 30 (1) (2005) 21–30.

[44] D. M. Chandler, M. M. Alam, T. D. Phan, Seven chal-
lenges for image quality research, in: IS&T/SPIE Elec-
tronic Imaging, International Society for Optics and
Photonics, 2014, pp. 901402–901402.

[45] D. M. Chandler, Seven challenges in image quality as-
sessment: past, present, and future research, ISRN Sig-
nal Processing 2013.

[46] Z. Chen, T. Jiang, Y. Tian, Quality assessment for com-
paring image enhancement algorithms, in: 2014 IEEE
Conference on Computer Vision and Pattern Recogni-
tion, IEEE, 2014, pp. 3003–3010.

[47] C. T. Vu, T. D. Phan, P. S. Banga, D. M. Chandler, On
the quality assessment of enhanced images: A database,
analysis, and strategies for augmenting existing meth-
ods, in: Image Analysis and Interpretation (SSIAI),
2012 IEEE Southwest Symposium on, IEEE, 2012, pp.
181–184.

11




