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Perceptual Annoyance Models for Videos with
Combinations of Spatial and Temporal Artifacts

Alexandre F. Silva and Mylène C.Q., Member, IEEE, Judith A. Redi

Abstract— Understanding the perceptual impact of compres-
sion artifacts in video is one of the keys for designing better
coding schemes and appropriate visual quality control chains.
Although compression and transmission artifacts, such as block-
iness, blurriness and packet-loss, appear simultaneously in digital
videos, traditionally they have been studied in isolation. In this
paper, we report the results of three subjective quality assessment
experiments aimed at studying perceptual characteristics of a
set of artifacts common in digital videos. With this goal, first
we study the annoyance of each of three artifacts (blockiness,
blurriness and packet-loss) in isolation and then in combination.
Based on the subjective evaluations, we design several models
of the annoyance caused by the joint presence of these three
artifacts on digital video.

Index Terms— Video quality assessment, compression artifacts,
subjective quality, human visual system modeling.

1. INTRODUCTION

In modern digital imaging systems, the quality of the visual
content can undergo a drastic decrease due to impairments
introduced during capture, transmission, storage and/or dis-
play, as well as by any signal processing algorithm that may
be applied to the content along the way (e.g., compression).
Impairments are defined as visible defects (flaws) and can
be decomposed into a set of perceptual features called ar-
tifacts [1]. Being able to detect artifacts and reduce their
strength can improve the quality of the visual content prior
to its delivery to the user [2], [3].

Visual quality assessment methods can be divided into two
categories: subjective and objective methods. In subjective
methods, the quality of a video is measured by performing psy-
chophysical experiments with human subjects [1]. Objective
quality methods, on the other hand, are algorithms (metrics)
that aim at predicting visual quality as perceived by human
observers. Subjective methods are considered most reliable and
are frequently used to provide “ground truth” quality scores.
These methods also provide insights into mechanisms of the
human visual system related to the user quality of experience,
inspiring, not only the design of objective quality metrics, but
of all kinds of multimedia applications [4]. Nevertheless, sub-
jective methods are expensive, time-consuming and, contrary
to objective methods, cannot be easily incorporated into an
automatic quality of service control system.

Objective quality metrics that take into account aspects of
the human visual system usually have the best performance
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[5], [6]. This type of algorithm is often computationally expen-
sive and, therefore, hardly applicable in real-time contexts [7].
Alternatives include artifact metrics [8]–[10], which estimate
the strength of individual artifacts and, then, combine them to
obtain an overall annoyance or quality model. The assumption
here is that, instead of trying to estimate overall annoyance,
it is easier to detect individual artifacts and estimate their
strength because we ‘know’ their appearance and the type of
process that generates them. These metrics have the advantage
of being simple and not necessarily requiring the reference.
They can be useful for post-processing algorithms, providing
information about which artifacts need to be mitigated. Their
design requires a good understanding of the perceptual char-
acteristics of each artifact, as well as the knowledge of how
each artifact contributes to the overall quality.

Little work has been done on studying and characterizing
the individual artifacts [11]–[13], as pointed out by Moorthy
and Bovik [6]. Farias et al. [14], [15] studied the appear-
ance, annoyance, and detectability of common digital video
compression spatial artifacts by measuring the strength and
overall annoyance of these artifact signals when presented
alone or in combination in interlaced Standard Definition (SD)
videos (480i). The presence of noisiness in videos seemed
to decrease the perceived strength of other artifacts, while
the addition of blurriness had the opposite effect. Moore et
al. [16] investigated the relationships among visibility, content
importance, annoyance, and strength of spatial artifacts in
interlaced SD videos. Their results show that the artifacts’
annoyance are closely related to their visibility, but only
weakly related to the video content.

Huynh-Thu and Ghanbari [17] examined the impact of
spatio-temporal artifacts in video and their mutual interactions.
They verified that spatial degradations affected the perceived
quality of temporal degradations (and vice-versa). Moreover,
the contribution of spatial degradations to the quality is greater
than the contribution of temporal degradations. Nevertheless,
as shown by Reibman et al. [18], temporal artifacts, like
packet-loss, have an important contribution to quality and can
be successfully used to predict it. Zhai et al. [19] have studied
the perceptual quality of low bit-rate videos considering mul-
tiple dimensions. Differently from the previous works, their
work does not focus on specific types of artifacts, but on
different settings for video codecs, such as encoder type, video
content, bit rate, frame size, and frame rate. More specifically,
the authors performed a series of experiments that allowed
to establish which codec settings had the greatest impact on
quality. Naccari et al. [20], on the other hand, modeled the
effects of spatial and temporal error concealment, the loss of
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prediction residuals, and the temporal distortion propagation
due to the motion-compensation loop.

Despite these earlier studies, there is no clear knowledge on
how different spatial and temporal artifacts combine percep-
tually and how their joint impact depends on the properties
of high definition videos and of the artifacts themselves. In
this paper, we investigate how spatial and temporal artifacts
combine to determine quality [21], [22]. With this goal,
we present results of three psychophysical experiments that
measure annoyance and detection characteristics of two spatial
artifacts (blockiness and blurriness) and a very important
temporal artifact (packet-loss). The artifacts appear in isolation
or in combination. Up to our knowledge, there is no study
in the literature that performs an analysis of the influence
spatial-temporal artifacts (in isolation and in combinations)
have on the perceived annoyance. Most importantly, there is
no study on how spatial and temporal artifacts interact to
produce overall annoyance. To quantify the contribution of
each artifact to the overall annoyance and of the interactions
among the different artifacts, we test linear and non-linear
annoyance models. Also, as a contribution of this project, a
diverse high-definition (720p) video database is made publicly
available [23].

The paper is divided as follows. Sections 2 and 3 describe
the method used to generate the test sequences and the experi-
mental methodology. Sections 4 to 7 describe the experiments
and discuss their results. Section 8 presents the conclusions.

2. GENERATION OF TEST SEQUENCES

Our goal is to find a perceptual model that describes how
the physical strengths of individual artifacts determine the
overall annoyance or quality of the video. To achieve this goal,
we performed psychophysical experiments using a set of test
sequences with several combinations of blurriness, blockiness,
and packet-loss artifacts at different strengths. Although this
set of artifacts is not exhaustive, these three artifacts are known
to be among the most commonly encountered in video appli-
cations. Seven ten-seconds high-definition videos with spatial
resolution 1280 × 720 (50fps) were used in the experiments.
The videos were chosen following the recommendations of
VQEG that stated that the set of originals must had a good
distribution of spatial and temporal activity [24].

It is difficult to generate artifacts in isolation using compres-
sion algorithms, such as H.264 or H.265 codecs. When videos
are compressed, several types of artifacts (i.e., blockiness,
blurriness, ringing, etc.) are simultaneously introduced, at
different levels of strengths. Even if we used artifact metrics
to measure the strengths of each individual artifact, it would
not be possible to control the combination of artifacts or the
strengths of each artifact in the compressed video. It is worth
pointing out that the outputs of the artifact metrics would
not be directly (or linearly) related to the artifact perceptual
strengths, due to (1) the fact that artifact metrics tend to
measure annoyance rather than strength and (2) the relative
low accuracy of current artifact metrics, specially in multiple
artifact scenarios. Therefore, it would be complicated to pro-
duce the videos with the combinations of artifacts necessary
to obtain an annoyance model, which describes how artifacts

combine to produce annoyance and what are the perceptual
interactions among artifacts.

Although most psychophysical studies varies the presence
and strength of artifacts by changing the bitrate and/or the
codec implementation [1], [25], some studies generate each
artifact individually and control their strength by linearly
changing their amplitude [16], [26]. For example, Libert et
al. [26] compared the presence and strength of artifacts by
changing the bitrate and/or the codec implementation and
they concluded that the later can validly approximate the
changes produced by varying the bit-rate goal. In this work,
we used a previously developed system to impair our video
stimuli [14], [15], [27], which was based on ITU Recom-
mendation P.930 [28]. We decided to simulate artifacts, rather
than obtaining them by applying compression algorithms or
transmission systems, because we wanted to be able to control
the artifacts individually and to combine them arbitrarily,
i.e. to control both the appearance and the strength of each
artifact. This allows us to measure artifact psychophysical
characteristics, when presented in isolation or in combination,
and test several annoyance models [27].

A. Test sequences

Blockiness is the appearance of the underlying block encod-
ing structure of typical compression schemes. It is often caused
by coarse quantization of the spatial frequency components
during the encoding process [28]. The algorithm used for
generating blockiness calculates the average value of each
8×8 block of the frame and the average of the 24×24
surrounding block and adds the difference between these two
averages to the block [14], [15]. Blurriness is characterized
by a loss of spatial details and a reduction in sharpness [28].
Recommendation P.930 suggests generating blurriness using
a simple low-pass filter [14], [15]. To control the amount
of blurriness, we can vary the filter sizes and the cut-off
frequencies. In this work, we used a 5×5 moving average
filter to generate blurriness.

As the name suggests, packet-loss artifacts are caused
by a complete loss of the packet being transmitted, as a
consequence of digital transmission errors. As a consequence,
parts (blocks) of the video are missing for several frames.
To generate test sequences with packet-loss, we used the
reference H.264 codec. To avoid inserting additional artifacts,
we compressed the original videos at high compression rates,
generating high quality videos. To vary the “packet-loss”
strength levels, we randomly deleted packets from the coded
video bitstream with different loss percentages (the higher the
percentage, the lower the quality) and changed the interval
between I-frames (time interval among artifacts).

The algorithm for generating test sequences consists of the
following steps [14], [15]. First, we generated videos with one
type of artifact signal at a high level of annoyance. These
maximum levels of artifact annoyance were established in
a previous experiment, in which the artifact strengths were
matched to the perceptual strengths of real digital video
artifacts [14]. Then, the test sequences (Y ) with a combi-
nation of blockiness and blurriness artifacts were generated
by linearly combining the original video with the videos with
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(a) Joy Park (b) Into Trees (c) Crowd Run (d) Romeo & Juliet (e) Cactus (f) Basketball (g) Barbecue

Figure 1: Sample frames of original videos.

very strong blockiness and blurriness artifacts (Xbloc and Xblr,
respectively). To create a test sequence Y with both blockiness
and blurriness, we used the following expression:

Y = X0 + s1 · (X0 −Xbloc) + s2 · (X0 −Xblur), (1)

where X0 was the original video and s1 and s2 (0 ≤ s1, s2 ≤
1) were the relative strength parameters corresponding to the
blockiness and blurriness signals, respectively. In general s1+
s2 ≤ 1, but, in some cases, we allowed s1 + s2 ≥ 1 to make
artifacts stronger. To generate a sequences with combinations
of blockiness, blurriness, and packet-loss, we first generated
videos with a combination of blockiness and blurriness and,
then, we inserted packet-loss artifacts using the packet-deletion
procedure described earlier.

3. EXPERIMENTAL SETUP

We designed an experimental procedure composed of three
psychophysical experiments. In the first experiment, we ex-
amined packet-loss artifacts in isolation. In the second ex-
periment, we studied blockiness and blurriness artifacts in
isolation and in combination. Finally, in the third experi-
ment, we combined blockiness, blurriness, and packet-loss
to study their joint perceptual impact on quality. Although
these three experiments were performed at different times and
with different participants, the experimental protocol and the
environmental conditions were the same for all of them.

The experiments were performed using a PC computer
with a Samsung LCD monitor of 23 inches (Sync Master
XL2370HD), with the dynamic contrast of the monitor turned
off, the contrast set to 100, and the brightness set to 50.
The measured gamma of the monitor for luminance, red,
green, and blue were approximately 1.937, 1.566, 1.908, and
1.172, respectively. The room had the lights dimmed to avoid
reflection and the experiments were run with one subject at a
time. The subjects were seated straight ahead of the monitor,
centered at or slightly below eye height for most subjects. The
distance between the subject’s eyes and the video monitor was
3 video monitor screen heights [1]. We used a chin rest to
guarantee that the distance between the subject’s eye and the
monitor remained the same.

Subjects were volunteers from the Delft University of Tech-
nology, The Netherlands, and from the University of Brası́lia,
Brazil. Most subjects were considered naive of most digital
video defects and the associated terminology. No vision test
was performed, but subjects were asked to wear glasses or
contact lenses if they needed them. Before starting the exper-
iment, the experimenter made sure the subject was properly
seated at the adequate distance. Subjects were then explained
the tasks to be performed and told to disregard the content of
the videos and judge only the impairments they saw.

Since initial judgments are generally erratic, ITU recom-
mends that the first five to ten trials be discarded [1]. Instead
of discarding the first trials, we included practice trials with a
set of at least 5 test sequences. First, subjects watched videos
with strong impairments and, then, they rated the annoyance
of a separate set of videos (not included in the main session).
Besides eliminating erratic answers, practice trials exposed
subjects to a good range of impairments and gave them a
chance to try the scoring interface.

Experimental trials were performed with the complete set
of test sequences presented in a random order. Videos were
played once and subjects were not allowed to go back and
watch them again. The experiment used the ITU BT.500
Single Stimulus (SS) with hidden reference methodology [1].
Subjects were instructed to search each video for impairments
and to perform detection and annoyance tasks. The detection
task consisted of detecting impairments in the video sequence.
After each test sequence was played, the question “Did you
see a defect or an impairment?” appeared in the monitor. The
subject was supposed to choose a ‘yes’ or ‘no’ answer. Only
if they detected impairments, they performed the annoyance
task. The annoyance task consisted of giving a score of
how annoying the detected impairment was. The scoring was
performed on a continuous numerical annoyance scale, ranging
between 0 and 100. Any defect as annoying as the worst
impairments in the practice stage should be given ‘100’,
half as annoying ‘50’, ten percent as annoying ‘10’ and so
forth. Videos with no detected impairments were automatically
assigned an annoyance score of 0.

The mean opinion score (MOS) across subjects is used as a
measure of the annoyance caused by the impairments. In the
following sections, we refer to it as Mean Annoyance Value
(MAV). Also, the Probability of detection (Pdet) is computed
taking the ratio of subjects who saw the impairment over the
total number of subjects.

4. EXPERIMENT 1: PACKET-LOSS

In Experiment 1, 16 subjects rated the annoyance of test
sequences containing only packet-loss artifacts. As mentioned
earlier, to vary the strength of the artifacts, we randomly
deleted packets from the coded video bitstream. The Percent-
ages of Deleted Packets (PDP) used were 0.7%, 2.6%, 4.3%,
and 8.1%. To vary the time interval among introduced artifacts,
we varied the number of frames between the I-frames. Three
frame intervals (M) were used: 4, 8 and 12. The set of PDP and
M parameters used in this experiment are given in Table I. A
total of 7 originals and 12 parameter combinations were used,
resulting in 12× 7 + 7 = 91 test sequences. To avoid fatigue,
these videos were evaluated in a single experimental session,
divided in three sub-sessions with two 10-minutes breaks.

We analyze the probability of detection (Pdet) for all test
sequences of Experiment 1. Results show that Pdet increases
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TABLE I: Exp. 1: Combinations of the parameters PDP and
M used for each of the 7 originals.

Comb M PDP Comb M PDP Comb M PDP
1 4 0.7 5 8 0.7 9 12 0.7
2 4 2.6 6 8 2.6 10 12 2.6
3 4 4.3 7 8 4.3 11 12 4.3
4 4 8.1 8 8 8.1 12 12 8.1

TABLE II: Exp. 1: Pairwise comparisons between average
MAVs for different M values. (* Significant at 0.05 level. )

M values Diff. Mean Std. Error
4 8 -0.170 1.512

12 -9.134* 1.664
8 12 -8.964* 1.946

with MAV. In particular, some videos gathered all Pdet values
equal to one (e.g., ‘Into Tree’ and ‘Barbecue’). This means
that for these two originals, all subjects saw impairments in
all test cases. It is worth pointing out that these two scenes
have large smooth regions (e.g. skies) that make impairments
easier to detect. ‘Park Joy’, ‘Cactus’ and ‘Basketball’ have
values of Pdet that grow (and saturate) very fast as MSE
increases. On the other hand, for ‘Park Run’ and ‘Romeo &
Juliet’ Pdet increases at a slower rate. This indicates that, for
these scenes, it is harder to detect packet-loss artifacts. ‘Romeo
& Juliet’, although having small spatial and temporal activity,
is relatively dark and has a very clear focus of attention (the
couple). On the other hand, ‘Park Run’ has lots of spatial and
temporal activity and not a lot of camera movement. All of
this makes it harder to spot packet-loss artifacts.

Figure 2 shows a plot of the average MAVs for the three
values of M and the four values of PDP. Notice that MAV
increases with both PDP and M, but PDP has a bigger effect
on MAV than M. The effect of PDP on MAV is clearly
significant. But, we analyzed the influence of M on MAV by
performing a repeated-measure ANOVA (RM-ANOVA) with
significance level of 95% (α = 0.05). Table II shows the
pairwise comparisons between average MAVs for different
M parameters. Notice that there are significant statistical
differences between average MAVs for any pair of M values,
with exception of the pair M = 4 and M = 8 for PDP=0.7%.

Figure 2: Exp. 1: Average MAV plots for different values of
PDP: 0.7%, 2.6%, 4.3% and 8.1%.

5. EXPERIMENT 2: BLOCKINESS AND BLURRINESS

In Experiment 2, 16 subjects performed annoyance and
detection tasks on test sequences containing combinations
of blockiness and blurriness artifacts. Strength combinations
are represented by a vector (bloc; blur), where ‘bloc’ is

TABLE III: Exp. 2: Set of combinations used for each of the
7 originals: ‘bloc’ and ‘blur’ correspond to the blockiness and
blurriness strengths, respectively.

Comb (bloc;blur) Comb (bloc;blur) Comb (bloc;blur)
1 (0.0;0.0) 5 (0.4;0.4) 9 (0.6;0.6)
2 (0.0;0.4) 6 (0.4;0.6) 10 (0.0;0.8)
3 (0.0;0.6) 7 (0.6;0.0) 11 (0.8;0.0)
4 (0.4;0.0) 8 (0.6;0.4)

TABLE IV: Exp. 2: Pairwise comparisons of MAVs for videos
with only blockiness (F̂=85.62, α ≤0.01) and only blurriness
(F̂=334.75, α ≤0.01). (* Significant at 0.05 level)

Blockiness Blurriness
Strengths Diff. Mean Std. Error Diff. Mean Std. Error
0.4 0.6 -22.982* 1.863 -22.295* 2.796

0.8 -33.125* 3.179 -66.107* 2.526
0.6 0.8 -10.143* 2.571 -43.813* 2.464

the blockiness strength and ‘blur’ is the blurriness strength.
The experiment contained a set of videos with all possible
combinations of the two artifact types at strengths 0.0, 0.4,
and 0.6 (full factorial design: 32 = 9). Two additional com-
binations, consisting of pure blockiness and pure blurriness at
strength 0.8, were added to the experiment. Table III shows
all combinations used in the experiment. A total of 7 originals
and 11 combinations were used in this experiment, resulting in
11×7+7 = 84 test sequences. To avoid fatigue, these videos
were evaluated in a single experimental session, divided in
three sub-sessions by two 10-minutes breaks.

The values of Pdet for all original videos are smaller than
0.2, except for the original ‘Into Tree’, which has large smooth
regions. Similarly to Experiment 1, test sequences with low
Pdet values got lower MAVs, while test sequences with higher
Pdet values got higher MAVs. Figures 3(a) and (b) show
plots of the average MAVs for sequences with only blockiness
and blurriness, respectively, at strengths 0.4, 0.6, and 0.8. As
expected, average MAVs increase with the artifact strength.
We performed an RM-ANOVA to check if MAV differences
for different blockiness and blurriness strengths are significant.
Table IV displays the results, showing that there are significant
statistical differences for all pairs of different strengths in only-
blockiness and only-blurriness sequences.

Figure 3(c) shows a plot of the average MAVs for sequences
with combinations of blockiness and blurriness. Table V shows
the results of an RM-ANOVA test that performed pairwise
comparisons of the average MAVs of these sequences. Results
show that there are significant statistical differences between
average MAVs obtained for any pair of blockiness and blur-
riness combinations (F̂ = 124.68, α ≤ 0.01), with the only
exception of the pair (0.4;0.6) and (0.6;0.4). This means that
a change in the artifact strength was perceived by subjects.

We also performed an analysis to check if there are dif-
ferences among sequences with one or with two artifacts.
Results of the pairwise comparisons of average MAVs between
blockiness+blurriness and of only-blockiness sequences are
shown in Table VI (F̂ = 141.78, α ≤ 0.01 for (0.4;0.0)
and F̂ = 151.13, α ≤ 0.01 for (0.6;0.0)), while results of
the pairwise comparisons of average MAVs between block-
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(a) (b)

(c)

Figure 3: Exp. 2: Average MAVs for: (a) blurriness, (b)
blockiness, and (c) combinations of blockiness and blurriness.

iness+blurriness and only-blurriness sequences are shown in
Table VII (F̂ = 520.12, α ≤ 0.01 for (0.0;0.4) and
F̂ = 358.22, α ≤ 0.01 for (0.0;0.6)). Notice that there are
significant statistical differences between average MAVs for
any pair of these combinations. In other words, on average,
adding an extra artifact affected the MAV.

TABLE V: Exp. 2: Pairwise comparisons of MAVs of se-
quences with combinations of blockiness and blurriness. (*
Significant at 0.05 level.)

Combinations Diff. Mean Std. Error
(0.4;0.4) (0.4;0.6) -17.420* 2.044

(0.6;0.4) -20.866* 1.841
(0.6;0.6) -32.375* 2.044

(0.4;0.6) (0.6;0.4) -3.446 1.499
(0.6;0.6) -14.955* 1.445

(0.6;0.4) (0.6;0.6) -11.509* 1.097

TABLE VI: Exp. 2: Pairwise comparisons of MAVs between
sequences with only blockiness and sequences with combina-
tions of blockiness and blurriness. (* Significant at 0.05 level.)

Combinations Diff. Mean Std. Error
(0.4;0.0) (0.4;0.4) -19.330* 2.027

(0.4;0.6) -36.750* 2.453
(0.6;0.0) (0.6;0.4) -17.214* 1.844

(0.6;0.6) -28.723* 1.921

TABLE VII: Exp. 2: Pairwise comparisons of MAVs between
sequences with only blurriness and sequences with combina-
tions of blockiness and blurriness. (* Significant at 0.05 level.)

Combinations Diff. Mean Std. Error
(0.0;0.4) (0.4;0.4) -47.393* 2.492

(0.6;0.4) -68.259* 2.124
(0.0;0.6) (0.4;0.6) -42.518* 2.507

(0.6;0.6) -57.473* 2.553

6. EXPERIMENT 3: BLOCKINESS, BLURRINESS AND
PACKET-LOSS

In Experiment 3, 23 subjects performed annoyance and
detection tasks on test sequences containing different com-
binations of blockiness, blurriness, and packet-loss arti-
facts. The strength combinations are represented as a vector
(PDP;bloc;blur), where ‘PDP’ is the level of packet-loss
strength, ‘bloc’ is the level of blockiness strength, and ‘blur’
is the level of blurriness strength.

Considering the results from the previous experiments, we
selected a subset of artifact strength values to limit the number
of artifact combinations. For packet-loss ratio, we chose M =
12 because this was the most realistic setting for the GOP
size, which is recommended to be at most half of the frame
rate. Also, we chose PDP = 0.7% and 8.1% because these
values corresponded to the highest differences in annoyance
(as shown in the analysis of Experiment 1). With respect to
blockiness and blurriness, we chose strength values equal to
0.4 and 0.6, which were considered to be more representative
of these artifacts (as shown in the analysis of Experiment 2).
Table VIII shows all combinations used in this experiment,
which include three strengths for each artifact type. Again, 7
originals and 19 combinations were used, resulting in 19×7+
7 = 140 test sequences. To avoid fatigue, these videos were
evaluated in a single experimental session, divided in three
sub-sessions by two 10-minutes breaks.

All original videos got Pdet values below 0.09, with the
exception of the video ‘Park Run’ (Pdet = 0.17). ‘Park Run’
has a lot of spatial and temporal activity and not a lot of camera
movement, what could have led some subjects to think they
saw impairments in the originals. Similarly to Experiment 1
and 2, test sequences with low Pdet values got lower MAVs,
while test sequences with higher Pdet values got higher MAVs.

Figure 4 show plots of average MAV over all test se-
quences with pure strong blockiness (0.0;0.6;0.0), blurriness
(0.0;0.0;0.6), and packet-loss (8.1;0.0;0.0). For comparison
purposes, the plot also shows the average MAVs for the
original sequences. As expected, the average MAV for origi-
nals is close to zero and when the artifact strengthens, MAV
increases. Average MAV values are higher for blockiness
(average MAV for bloc= 0.6 is 48.56), followed by packet-
loss (average MAV for PDP=8.1% is 37.99), and blurriness
(average MAV for blur=0.6 is 32.45). This is in agreement with
results of Experiment 2, where blockiness artifacts are the most
annoying artifacts. To check if these average MAVs differences
between different artifacts were statistically significant, we
performed an RM-ANOVA. Results in Table IX show that

TABLE VIII: Exp. 3: Combinations for each original: ‘bloc’
corresponds to the blockiness strength, ‘blur’ to the blurriness
strength, and ‘PDP’ to the packet-loss ratio.

Comb. (PDP;Bloc;Blur) Comb. (PDP;Bloc;Blur) Comb. (PDP;Bloc;Blur)
1 (0.0;0.0;0.0) 8 (8.1;0.0;0.6) 15 (0.7;0.6;0.0)
2 (0.0;0.6;0.0) 9 (0.7;0.4;0.0) 16 (8.1;0.6;0.0)
3 (0.0;0.0;0.6) 10 (8.1;0.4;0.0) 17 (0.7;0.6;0.4)
4 (8.1;0.0;0.0) 11 (0.7;0.4;0.4) 18 (8.1;0.6;0.4)
5 (0.7;0.0;0.4) 12 (8.1;0.4;0.4) 19 (0.7;0.6;0.6)
6 (8.1;0.0;0.4) 13 (0.7;0.4;0.6) 20 (8.1;0.6;0.6)
7 (0.7;0.0;0.6) 14 (8.1;0.4;0.6)
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TABLE IX: Exp. 3: Pairwise comparisons for sequences with
only packet-loss, blockiness and blurriness. (*. Significant at
0.05 level.)

Combinations Diff. Mean Std. Error
(8.1;0.0;0.0) (0.0;0.6;0.0) -10.590* 2.006

(0.0;0.0;0.6) 5.534 2.701
(0.0;0.6;0.0) (0.0;0.0;0.6) 16.124* 2.203

TABLE X: Exp. 3: Pairwise comparisons for sequences with
packet-loss and either blockiness or blurriness. (*. Significant
at 0.05 level.)

Combinations Diff. Mean Std. Error
(8.1;0.0;0.0) (8.1;0.0;0.4) -8.180* 1.624

(8.1;0.0;0.6) -17.950* 1.838
(8.1;0.4;0.0) -21.199* 1.509
(8.1;0.6;0.0) -28.994* 1.653

(8.1;0.0;0.4) (8.1;0.0;0.6) -9.770* 1.659
(8.1;0.4;0.0) -13.019* 1.668
(8.1;0.6;0.0) -20.814* 1.620

(8.1;0.0;0.6) (8.1;0.4;0.0) -3.248 1.555
(8.1;0.6;0.0) -11.043* 1.488

(8.1;0.4;0.0) (8.1;0.6;0.0) -7.795* 1.418

MAVs differences between blockiness and the other two
artifacts are significant (F̂ = 24.906, α ≤ 0.01). But, the
difference between average MAVs between packet-loss and
blurriness are not statistically significant.

Figure 4(b) shows a plot of the average MAV for test
sequences with combinations of strong packet-loss artifacts
(PDP=8.1%) and either blockiness (bloc=0.4 or 0.6) or blur-
riness (blur=0.4 or 0.6). Table X shows the RM-ANOVA test
performed on the average MAVs of these sequences. Results
of these pairwise comparisons show that there are significant
statistical differences between the average MAVs obtained for

(a) (b)

(c) (d)

Figure 4: Exp 3: (a) Average MAVs for blockiness, blurriness
and packet-loss, (b) MAVs for packet-loss by itself (PDP) and
in combination with blurriness (+blur) and blockiness (+bloc),
(c) MAVs for blockiness by itself (bloc) and in combination
with packet-loss (+PDP), and (d) MAVs for blurriness by itself
(blur) and in combination with packet-loss (+PDP).

combinations of packet-loss and either blockiness or blurriness
artifacts (F̂ = 99.542, α ≤ 0.01). The only exception is the
pair of combinations (8.1;0.0;0.6) and (8.1;0.4;0.0). In other
other words, combining packet-loss with either blockiness and
blurriness, on average, affects the MAV.

Figure 4(c) shows a plot of the average MAV for test
sequences with blockiness and packet-loss artifacts. Table XI
show the results of the RM-ANOVA tests performed on the
average MAVs of these sequences. Notice that there are
significant statistical differences for all pairs of combinations
(F̂ = 101.252, α ≤ 0.01). Figure 4(d) shows a plot of the
average MAV for test sequences with combinations packet-
loss and blurriness. Table XII shows the results of the RM-
ANOVA tests performed on the average MAVs of these
sequences. Again, there are significant statistical differences
for all pairs of these combinations (F̂ = 93.310, α ≤ 0.01).
In general, combinations of packet-loss and blockiness have
higher average MAVs than combinations of packet-loss and
blurriness. Also, for combinations of packet-loss, blockiness,
and blurriness, the presence of an additional artifact incurs in
an increase of the average MAV’s.

TABLE XI: Exp. 3: Pairwise comparisons for sequences
with combinations of packet-loss and blockiness artifacts. (*.
Significant at 0.05 level.)

Combinations Diff. Mean Std. Error
(0.0;0.6;0.0) (0.7;0.4;0.0) 10.137* 1.554

(8.1;0.4;0.0) -10.609* 1.787
(0.7;0.6;0.0) -4.994* 1.343
(8.1;0.6;0.0) -18.404* 1.536

(0.7;0.4;0.0) (8.1;0.4;0.0) -20.745* 1.677
(0.7;0.6;0.0) -15.130* 1.439
(8.1;0.6;0.0) -28.540* 1.494

(8.1;0.4;0.0) (0.7;0.6;0.0) 5.615* 1.506
(8.1;0.6;0.0) -7.795* 1.418

(0.7;0.6;0.0) (8.1;0.6;0.0) -13.410* 1.343

TABLE XII: Exp. 3: Pairwise comparisons for sequences
with combinations of blurriness and packet-loss artifacts. (*.
Significant at 0.05 level.)

Combinations Diff. Mean Std. Error
(0.0;0.0;0.6) (0.7;0.0;0.4) 12.975* 2.310

(8.1;0.0;0.4) -13.714* 2.732
(0.7;0.0;0.6) -5.820* 1.749
(8.1;0.0;0.6) -23.484* 2.122

(0.7;0.0;0.4) (8.1;0.0;0.4) -26.689* 1.812
(0.7;0.0;0.6) -18.795* 1.983
(8.1;0.0;0.6) -36.460* 1.756

(8.1;0.0;0.4) (0.7;0.0;0.6) 7.894* 2.177
(8.1;0.0;0.6) -9.770* 1.659

(0.7;0.0;0.6) (8.1;0.0;0.6) -17.665* 1.625

7. COMPARISON OF DATA FROM EXPERIMENTS

Research shows that even results gathered from experiments
using the same experimental methodology may differ con-
siderably because of differences in physical location, viewer
expectations, and especially set of stimuli [29]. It is known
that subjects have a tendency to use the entire scoring scale
to evaluate the quality of the test stimuli presented in an
experimental session. As consequence, scores may suffer from



IEEE TRANSACTIONS ON MULTIMEDIA, VOL. XX, NO. XX, MM 2016 7

context effects [30]. For example, mildly impaired stimuli may
get higher annoyance scores in an experiment containing only
unimpaired or slightly impaired stimuli than in an experiment
containing slightly to highly impaired stimuli.

In our experiments, we used different artifacts at different
strengths. It is reasonable to assume that they may have
spanned different ranges of MAVs that are not necessarily
equivalent. In other words, the highest MAVs in the three
experiments may correspond to videos impaired with artifacts
of very different perceptual strengths.

For example, videos with the highest packet-loss strengths
in Experiment 1 may have received the highest MAVs. But,
the same MAVs in Experiment 3 may correspond to videos
with much more annoying artifacts (and a lower quality), most
likely presenting packet-loss in combination with blockiness
and blurriness. Hence, before combining the MAVs into the
same dataset, we must re-align them.

In fact, if we compare the MAVs obtained by sequences with
strongest packet-loss configuration in isolation (i.e., (8.1;0;0))
in Experiment 1 and Experiment 3, we see a striking differ-
ence. In Experiment 1, this is the highest level of impairment
encountered by subjects throughout the whole experiment. As
such, it obtains a relatively high MAV (on average, across all
contents, MAV > 70, see Fig. 2). On the other hand, the same
videos impaired with the same combination in Experiment 3,
are perceived only as mildly annoying (across all contents,
MAV ∼ 40, see Fig. 4 (a)). This is probably because, in
comparison with videos that are distorted by multiple artifacts,
heavy packet-loss is not as annoying. This discrepancy clearly
points towards the presence of context effects in the MAVs
of Experiment 1: MAVs are artificially inflated due to the
relatively narrow range of quality spanned by the videos
included in experiment. A re-alignment process is therefore
necessary to map the MAVs of Experiment 1 to a range that
is more commensurate to the annoyance values measured in
Experiments 2 and 3.

Pinson et al. proposed a technique to merge data from differ-
ent experiments known as the iterative nested least squares al-
gorithm (INLSA) [29], [31]. INLSA re-scales subjective scores
from different experiments using objective quality metrics as a
common external variable. The procedure is performed solving
two least squares problems. A single first-order correction
method is used in the first problem to homogenize the het-
erogeneous scores of the different experiments. An approxi-
mation of the linear combinations of the parameters across the
scores of the different experiments is obtained by solving the
second problem. A full mapping of the scores of the different
experiments into a common scale is obtained by performing
an iteration of these two least-squares problems. To sample
the mapping among scores of the different experiments, it is
necessary to choose a common set of stimuli from all the
experiments involved in the realignment.

Before comparing the data of the three experiments, we
used INLSA to re-align the annoyance scores. We used SSIM
[32] as the objective quality metric. Experiment 3 was used
as the reference experiment because it had the highest number
of artifact combination. Figures 5 show the MAV for the
complete set of experiments before (top) and after (bottom)

Figure 5: (top) MAVs and (bottom) RMAVs (after applying
INLSA [31]) versus SSIM for Experiments 1-3.

using INLSA, respectively, against the corresponding SSIM
[32] value of the video. Notice that for the same SSIM values
each experiment has different MAVs. In particular, and as
expected, for Experiment 1, the entire MAV range is clustered
on the top part of the SSIM scale. This means that videos
with relatively low levels of impairments (as measured by
SSIM) are judged as highly annoying (probably due to context
effects, as mentioned above). This is not true for the other two
experiments.

After mapping the MAVs from Experiments 1 and 2 onto
the scale of Experiment 3, the MAVs of Experiment 1 span a
more comparable range of annoyance, also given the objective
metric value. The range of the RMAVs of Experiment 1
(Avg. = 32.17, Std = 5.52) is smaller than the original range
spanned by its MAVS (Avg. = 42.78, Std. = 25.47), and
more skewed towards the lower part of the annoyance scale.
In other terms, RMAVs now denote that annoyance values of
videos impaired with only packet loss (as it is the case for
Experiment 1) are lower as compared with those of sequences
distorted by multiple artifacts. This result suggests that scores
from Experiment 1 can be merged with those of the other
two experiments, allowing to analyze the data from the three
experiments as a whole.

A. Annoyance Models

In this work we study if models that combine the artifact
strength values (PDP, bloc, and blur) can predict the perceived
annoyance of videos impaired by multiple and overlapping
artifacts. With this goal we fitted a set of linear and non-
linear models. Prior to fitting the models, all artifact strength
values were normalized to the same range [0, 1], with the
strength value ‘1’ corresponding to the strongest artifact level
found in practice and the value ‘0’ corresponding to the
absence of the artifact. Blockiness and blurriness were already
generated using this scale, but the packet-loss strength values
needed to be normalized. To re-scale PDP to fit this range, we
assumed that PDP values greater than 10 would be unrealistic
in practical network conditions and set 10 as the maximum
PDP value [33], [34]. The normalized packet-loss strength
is obtained by dividing the original values by 10, i.e. pdp
= PDP/10.

1) Linear Models: The first linear model we tested was a
simple linear model without any interaction term, given by:

PAL1 = α · pdp + β · bloc + γ · blur, (2)
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TABLE XIII: Fitting of the linear models to MAV and RMAV.

Models δ α β γ PCC SCC
PAL1 50.060 72.480 48.620 0.726 0.721
PAL2 23.515 29.350 50.606 26.740 0.730 0.727
PRAL1 35.770 78.404 52.602 0.844 0.867
PRAL2 18.170 19.768 61.499 35.698 0.850 0.870

TABLE XIV: Fitting of the linear model with interactions
(PAL3) to MAVs.

Coef. Estimate Std. Error t-value Pr(> |t|)
α 85.024 3.302 25.749 < 2e− 16a

β 88.550 4.344 20.386 < 2e− 16a

γ 64.118 4.344 14.761 < 2e− 16a

ρ1 -123.393 13.301 -9.277 < 2e− 16a

ρ2 -120.320 13.301 -9.046 < 2e− 16a

ρ3 -22.561 14.724 -1.532 0.127
ρ4 175.670 38.860 4.521 < 8.87e−06a

a Statistically significant at (P < 0.05) PCC = 0.860, SCC = 0.841.

where PAL1 corresponds to the predicted (non-realigned)
MAVs and pdp, bloc, and blur correspond to the strength of
each artifact. Line 2 of Table XIII shows the results of the
fitting. We also adapted eq. 2 to include an intercept coefficient
(δ), referring to this model as PAL2:

PAL2 = α · pdp + β · bloc + γ · blur + δ. (3)

Line 3 of Table XIII shows the fit results for MAVs prior to
the re-alignment with INLSA.

We tested the above models (Eqs. 2 and 3) on the MAVs re-
aligned using INLSA, hereafter referred to as RMAVs. Line
4 of Table XIII shows the results for the first linear model
(PRAL1) fit, while line 5 shows the results for the second
linear model (PRAL2, with intercept term). To evaluate the
goodness of the fit of each model, we report the Pearson corre-
lation coefficient (PCC) and Spearman correlation coefficient
(SCC) between predicted and subjective MAVs (or RMAVs)
where the fit was based on the entire dataset. For both models,
a better fit was obtained using RMAV instead of MAV.

2) Linear Models with Interactions: It has be shown that
interaction terms must be taken into account when modeling
the annoyance caused by combinations of artifacts because
masking and facilitation processes may occur when artifacts
are combined [15]. To investigate if the presence of one
artifact may affect the perception of the other(s) and how this
impacts the overall annoyance, we fitted a linear model with
interactions, (PAL3), defined as:

PAL3 = α · pdp + β · bloc + γ · blur+
ρ1 · pdp · bloc + ρ2 · pdp · blur+
ρ3 · bloc · blur + ρ4 · pdp · bloc · blur.

(4)

Results of this fit for MAVs are shown in Table XIV.
Column 2 of this table shows the values of the model co-
efficients, while column 5 shows the corresponding p-values
(based on t-test, two-tailed, p < 0.05). Notice that the first,
second, and third order coefficients are statistically significant,
except for the ρ3 coefficient corresponding to the interaction
of blockiness and blurriness.

We also tested the same model with the addition of an
intercept term δ, denoted as PAL4. The results of this fit for

TABLE XV: Fitting of the linear model with interactions
(PAL4) to MAVs.

Coef. Estimate Std. Error t-value Pr(> |t|)
δ 14.117 2.078 6.792 5.95e− 11a

α 62.207 4.557 13.650 < 2e− 16a

β 65.050 5.327 12.211 < 2e− 16a

γ 40.619 5.327 7.625 3.24e− 13a

ρ1 -84.372 13.670 -6.172 2.18e− 09a

ρ2 -81.299 13.670 -5.947 7.58e− 09a

ρ3 15.613 14.836 1.052 0.29348
ρ4 109.970 37.507 2.932 0.00363a

a Statistically significant at (P < 0.05) PCC = 0.853, SCC = 0.823.

TABLE XVI: Fitting of the linear model with interactions
(PRAL3) for RMAVs.

Coef. Estimate Std. Error t-value Pr(> |t|)
α 57.064 2.784 20.494 < 2e− 16a

β 88.685 3.663 24.212 < 2e− 16a

γ 61.703 3.663 16.846 < 2e− 16a

ρ1 -69.785 11.217 -6.222 < 1.65e− 09a

ρ2 -63.363 11.217 -5.649 < 3.74e− 08a

ρ3 -10.196 12.416 -0.821 0.4122
ρ4 55.827 32.768 1.704 0.0895

a Statistically significant at (P < 0.05) PCC = 0.880, SCC = 0.886.

TABLE XVII: Fitting of the linear model with interactions
and with an intercept coefficient (PRAL4) for RMAVs.

Coef. Estimate Std. Error t-value Pr(> |t|)
δ 14.420 1.689 8.540 6.83e− 16a

α 33.757 3.702 9.118 < 2e− 16a

β 64.681 4.328 14.946 < 2e− 16a

γ 37.698 4.328 8.711 < 2e− 16a

ρ1 -29.924 11.105 -2.695 0.00744a

ρ2 -23.503 11.105 -2.116 0.03514a

ρ3 28.800 12.053 2.390 0.01749a

ρ4 -11.286 30.470 -0.370 0.71134
a Statistically significant at (P < 0.05) PCC = 0.871, SCC = 0.886.

MAVs are shown in Table XV. Again, the first, second, and
third order terms have a statistically significant effect, except
(again) for the ρ3 coefficient that corresponds to the interaction
of blockiness and blurriness. Linear models with interactions
(bottom rows of Tables XIII and XV) have better correlation
values than the linear models without interaction terms.

Fitting the two linear models with interaction terms with
and without a fixed intercept on RMAVs, we obtained the
predictions (PRAL3) and (PRAL4). Table XVI shows the
results obtained for the model without the intercept coefficient
(PRAL3), while Table XVII shows the results obtained for
the model with the intercept coefficient (PRAL4). For both
models, all main effects and first order interactions are sta-
tistically significant, except for ρ3 (interaction of blockiness
and blurriness) in PRAL3. The second order interactions
are not statistically significant for both models. Correlation
coefficients are higher when RMAVs are used.

3) Non-Linear Models: The proposed linear models, al-
though fairly accurate, may be unable to capture the com-
plex non-linear interactions of the artifact combinations [35].
Therefore, we tested two different types of non-linear models:
a Minkowski metric model and a model based on Support
Vector Regression (SVR). We tested two Minkowski metrics,
one without the intercept term (PAM1) and another with the
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TABLE XVIII: Fitting of Minkowski models on MAV and
RMAV.

Models m δ PCC SCC
PAM1 0.215 0.472 0.652
PAM2 0.419 4.018 0.660 0.654
PRAM1 0.215 0.562 0.770
PRAM2 0.397 3.424 0.770 0.744

intercept term (PAM2), as given by the following equations:

PAM1 = (pdpm + blocm + blum)
1
m , (5)

and
PAM2 = (δ + pdpm + blocm + blum)

1
m , (6)

where PAM1 and PAM2 are the predicted annoyance, and m
is the Minkowski power, obtained as a result of the fitting. It
is worth pointing that this is the same combination rule used
by Huib de Ridder to predict annoyance caused by blockiness,
ringing [12] and by Farias et al. to predict annoyance caused by
blockiness, blurriness, noisiness, and ringing [15]. De Ridder’s
model was tested on a smaller data set of still images and
returned m > 1.6 values, whilst Farias’s model was tested on
interlaced SD videos and returned m > 0.8 values. Our results
are different from the results obtained by both authors, what
is expected since our stimuli consist of HD videos with both
spatial and temporal artifacts.

Lines 2 and 3 of Table XVIII show the results of the fit
on non-realigned MAVs of the model without intercept term
(PAM1) and the model with intercept (PAM2), respectively.
Lines 4 and 5 show the results of fitting on re-aligned
MAVs of the model without intercept term (PRAM1) and the
model with intercept (PRAM2), respectively. We can observe
that these non-linear models perform worse than the linear
ones. Within non-linear models, we observe again a better
performance of those fit on RMAVs.

Finally, we used Support vector regression (SVR) to predict
annoyance from the artifact strength data, using both MAVs
and RMAVs. Machine learning-based approaches such as SVR
have been shown to be suitable to model complex non-linear
perceptual processes related to artifact annoyance [35]. In
these approaches, the model is not previously defined but is
learned from the data (i.e. our database of impaired videos).
To train SVR, we used a k-fold cross validation setup. We
split the dataset in k equally sized, non-overlapping sets. We
then ran the training k times, for each of which a different fold
was used as test set, and the remaining k− 1 folds were used
for training. In this way, each data point has a chance of being
validated against the other [36]. In our experiments, we set k
to 10, thereby running 10 repetitions of the training. We then
computed the correlation between subjective data and model
predictions per each run, and took their average as the SVR
model performance measure. The SVR trained on RMAVs
returned PCC and SCC values equal to 0.855 and 0.833,
respectively, whereas the model trained on MAVs returned
PCC and SCC values equal to 0.850 and 0.828, respectively.

4) Model comparison: The different models considered in
the previous session achieved different degrees of accuracy,
yet in some cases at the expenses of increased complexity. For

TABLE XIX: Akaike Information Criterion for the linear and
Minkowsky models. A lower value indicates a better trade-off
between model complexity and accuracy.

Model df AIC Model df AIC
PAL1 4 2776.212 PRAL1 4 2607.776
PAL2 5 2638.636 PRAL2 5 2464.547
PAL3 8 2604.215 PRAL3 8 2499.193
PAL4 9 2562.162 PRAL4 9 2434.164
PAM1 2 3207.925 PRAM1 2 3144.523
PAM2 3 2693.669 PRAM2 3 2608.433

TABLE XX: Average correlation across the 10-fold cross-
validation runs between model predictions and (R)MAVs

Model PCC SCC Model PCC SCC
PAL1 0.706 0.713 PRAL1 0.836 0.849
PAL2 0.711 0.719 PRAL2 0.844 0.851
PAL3 0.775 0.747 PRAL3 0.849 0.867
PAL4 0.782 0.762 PRAL4 0.861 0.858
PAM1 0.463 0.628 PRAM1 0.560 0.745
PAM2 0.640 0.630 PRAM2 0.736 0.745
PASV M 0.855 0.834 PRASV M 0.851 0.829

example, models with interaction terms have more degrees of
freedom (i.e., parameters to be fit) than models without; as
a consequence, although more accurate, they may be more
prone to overfitting. To compare the models in terms of the
trade-off between complexity and accuracy, we use the Akaike
Information Criterion (AIC) [37]. AIC expresses the trade-
off between accuracy of fitting and the number of degrees of
freedom in the model, thereby controlling for the bias/variance
trade-off and overfitting. Table XIX below summarizes the
AIC values computed for all models, where a model with
lower AIC is preferred. Notice that although PRAL4 (the
linear model with interaction and bias terms fit on re-aligned
data) has more parameters, it has the lowest AIC, i.e. the best
trade-off between goodness-of-fit and complexity.

To verify whether the PRAL4 model also gives the best
performance in terms of correlation, we perform again its
fitting and that of all the other models in a 10-fold cross-
validation setting, to obtain measurements comparable to those
obtained for the SVR. The outcomes are reported in table XX.
Notice that PRAL4 outperforms all models, including SVR.

B. Discussion

Models fit on RMAVs obtained a better performance, show-
ing that re-aligning the data before fitting the models is ben-
eficial. When an intercept constant was added to the models,
the correlation coefficients increased. One possible cause for
this result is that the original content may contain pre-existing
artifacts, which subjects judged as slightly annoying.

For all linear models, the coefficients corresponding to bloc
had the highest magnitude, indicating that blockiness had the
biggest impact on the perceived annoyance. When fitting linear
models on MAVs, pdp had a stronger impact on annoyance
than blur, while when the fitting was done on RMAVs, blur
had a higher impact. This divergence is caused by the fact that
MAVs corresponding to sequences affected by packet-loss in
Experiment 1 were overestimated (probably due to context
effects). Therefore, when no re-alignment was performed, the
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exaggerated MAVs of sequences with packet-loss caused this
artifact to have a higher impact.

The majority of the second order coefficients were sta-
tistically significant. For the models fitted on MAVs, the
exception is ρ3, indicating that the specific combination of
blockiness and blurriness does not influence the annoyance
scores. In fact, for models fitted on MAVs, the majority of
the interaction coefficients that include pdp were statistically
significant. For models fit on RMAVs, the ρ3 in the PRAL3

model (without intercept) was also not statistically significant.
Most second order coefficients were negative, implying that
the overall annoyance caused by the presence of two artifacts
is not simply an addition of the respective annoyances. The co-
presence of two artifacts might, in fact, reduce their combined
overall annoyance. In other words, there may be masking
effects among artifacts, with artifacts mutually attenuating
each other’s strength. Interaction coefficients with higher mag-
nitudes were those corresponding to the pdp·bloc and pdp·blur
terms. This suggests that packet-loss affects how blockiness
and blurriness are perceived.

Third order interaction coefficients (ρ4) were significant for
MAVs and non-significant for RMAVs. Again, since in the
non-realigned MAV set the contribution of the pdp parameter
was overestimated, any interaction term containing pdp (ρ1,
ρ2, and ρ4) had a statistically significant impact on MAVs.
This is not true for models fit on RMAVs, for which the
specific strength combination of the three artifacts did not
contribute to the overall annoyance.

Correlation coefficients obtained for Minkowski models
were lower than what was obtained for the linear models.
The Minkowski powers found (0.215 < m < 0.420) were
considerably lower than the values found by other authors [12],
[15]. This may indicate that these models were, in fact, more
sensitive to small changes in artifact strengths. For these
models we obtained similar correlation coefficients for the
fits on MAVs and RMAVs. Finally, the SVR-based approach
achieved correlations slightly lower than those achieved by the
best linear model PRAL4. We can conclude, then, that in this
setting, linear models better for accurately modeling artifact
annoyance.

8. CONCLUSIONS

We presented the results of three subjective experiments
aimed at studying the characteristics of three artifacts (block-
iness, blurriness and packet-loss) commonly found in digital
videos, while investigating their interactions with each other.
Results showed that annoyance increased with both the number
of artifacts and their strength, with blockiness being the most
annoying artifact. We proposed several models for predicting
annoyance, including linear models with and without inter-
actions and interception terms, Minkowski models, and a
non-linear model based on SVR. Interactions were observed
in the linear models, notably suggesting that the overlap of
multiple artifacts generated masking effects, overall decreasing
the annoyance perception. The correlation coefficients of fits
using RMAVs were higher than for the fits using unscaled
MAVs.

In this paper, we have used videos with synthetic artifacts
in order to have a precise control of the parameters that affect

the strength of each artifact. As future work, we intend to test
the proposed models in videos with realistic distortions, i.e.
generated using typical operations in a video communications
pipeline (e.g. compression + transmission). We will also sub-
stitute the physical parameters used in our models (e.g., pdp,
blo, and blu) with the corresponding artifact metrics. For that,
we need to perform new psychophysical experiments to obtain
perceptual strength measures for each artifact. With these
perceptual measures, we can map the output of the artifact
metrics into the physical parameters used in our models.
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