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Abstract—In this paper, we propose a new no-reference quality
assessment method which uses a machine learning technique
based on texture analysis. The proposed method compares test
images with texture images of a public database. Local Binary
Patterns (LBPs) are used as local texture feature descriptors.
With a Csiszár-Morimoto divergence measure, the histograms of
the LBPs of the test images are compared with the histograms
of the LBPs of the database texture images, generating a set
of difference measures. These difference measures are used to
blindly predict the quality of an image. Experimental results
show that the proposed method is fast and has a good quality
prediction power, outperforming other no-reference image quality
assessment methods.
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I. INTRODUCTION

Humans perform many tasks that remain difficult for com-
puters, like for example in pattern recognition tasks. Another
example of a task in which humans outperform computers
is the quality assessment of a visual content (an image or a
video). Quality assessment is becoming increasingly important
because of its crucial role in various image processing appli-
cations [1], such as compression techniques [2], transmission
processes, displays, restoration algorithms [3], or photo en-
largement techniques [4, 5].

The most robust method for assessing the quality of images
is to use a pool of human observers to evaluate the quality
of a given visual content. This process of using humans
for assessing the visual quality of images is called subjec-
tive quality assessment. In other words, subjective quality
assessment methods consist of psychophysical experiments
in which human subjects estimate the quality of a series of
visual stimuli. Subjective quality assessment methods provide
a Mean Opinion Score (MOS) for each visual stimuli, which
are the average of the individual scores given by subjects for
this stimuli [6]. Psychophysical experiments are expensive,
laborious, time-consuming, and, therefore, hard to incorporate
into an automatic quality assessment system.

In order to make the process of assessing image quality
simpler, many researchers have been developing algorithms
that use computers to perform quality assessment tasks. These
algorithms are defined as objective image quality assessment
(IQA) methods. IQA methods make it possible to implement

fast and cheap procedures that can monitor and control the
final image quality in several image processing applications.
Although a big effort has been dedicated to create efficient
algorithms, the development of IQA methods is still a chal-
lenging area [1].

Objective image quality assessment methods can be clas-
sified in three categories, according to the amount of refer-
ence (original) required by the algorithm. Full reference (FR)
methods estimate the quality of a test image performing some
type of comparison with the reference. Reduced reference
(RR) methods use only partial information about the reference
image. Since requiring the reference image or even partial
reference information is an obstacle for many multimedia
applications, the solution is to use no-reference (NR) methods
that do not require any information about the reference image.

The development of no-reference image quality assessment
(NR-IQA) methods is an even more challenging [7]. Among
the the challenges faced by NR-IQA methods, we can cite:

• Masking models: The development of accurate masking
models are central to determine which image distortions
are noticeable and, therefore, which distortions may affect
quality.

• Suprathreshold distortions: While masking models aim
to determine whether distortions are noticeable, they are
not suitable for distortions which are beyond the threshold
of visibility. For these cases, different perceptual models
need to be developed and incorporated into the image
quality assessment method.

• Content effects: As distortions are superimposed with
image content, they can become more or less noticeable
depending on the type of visual content. This interaction
between the distortion and the content require that IQA
methods takes into the consideration the content charac-
teristics.

• Multiple distortions: Image processing operations (com-
pression, enhancement, or transmission) can simultane-
ously insert multiple forms of distortions. Although there
are methods for assessing the quality of images subject to
a single distortion, the combination of multiple distortions
is still an open question.

• Computational performance: Although a great effort has
been devoted to improve prediction accuracy, state-of-the-
art algorithms still present high computational complexity



and, therefore, are not suitable for real-time applications.

To solve the first three challenges listed above, several ap-
proaches use distortion-specific (DS) NR-IQA methods, which
estimate the strengths of the most relevant distortions in image
applications. Among the currently available DS methods, we
can cite the works of Wang et al. [8], Chabard et al. [9], Li et
al. [10], Farias & Mitra [11], and Manap & Shao [12]. Most
of these NR-IQA methods require the knowledge of at least
one type of distortion and, therefore, have limited applications
in more diverse scenarios.

To add robustness to the incorporation of multiple distor-
tions, non-distortion-specific (NDS) NR-IQA methods must be
developed. NDS methods do not require a prior knowledge of
the distortions and are, therefore, more adequate for assessing
quality in diverse multimedia scenarios. Nevertheless, their
design is more challenging. One possible approach consists
of using the statistics of natural images [13]–[15]. Another
approach that has recently become very popular is the use Ma-
chine Learning (ML) techniques. Among the several NR-IQA
methods based on machine learning, we can cite the works of
Ye et al. [16], Zhang et al. [17], and Liu et al. [18]. Although
machine learning techniques show very promising results, they
still have limitations in terms of accuracy performance and
computational complexity.

In this work, we propose a NDS-NR-IQA method that
tackles the aforementioned limitations. The proposed method
is a machine learning technique that, unlike other state-of-
the-art ML IQA methods, analyses textures to extract infor-
mation about image content. The algorithm does not make
any assumptions about the content or specific distortions. It
analyzes the texture information of a test image and compares
it with the texture information of a bank of texture images.
More specifically, the Csiszár-Morimoto divergence measure
is used to compare the histograms of the Local Binary Patterns
(LBPs) of the test images with the histograms of the LBPs of
the database texture images. These difference measures are
used by the ML algorithm to blindly predict the quality of an
image.

When compared with state-of-the-art NR-IQA methods,
the proposed method has a different approach and shows
competitive results. Since it uses simple and fast texture feature
extractors based on local binary patterns (LBPs), the proposed
method differs from the algorithm proposed by Ye et al. [16],
which analyzes texture information using large codebooks that
store complex Gabor-filter-based features. Although Zhang et
al. [17] also uses LBPs, their method requires multiple opera-
tions with Laplacian of Gaussian (LOG) filters to decompose
the images into multi-scale subband images and, then, compute
the LBPs for each of these subband images.

This paper introduces the idea of using texture information
banks composed by a set of pure textures images. The method
uses a dissimilarity representation approach that uses the
texture bank as a reference for the test images [19]. Although
the proposed approach can be used for feature extraction in
other computer vision problems, this study focuses on the

development of a robust NDS-NR-IQA method. The proposed
approach has the following advantages:

• High accuracy performance;
• Robustness to different distortions;
• Computational efficiency.
The paper is organized as follows. Section II describes the

proposed NR-IQA method. Sections III-A and III-B present
the experimental setup and results, respectively. Finally, Sec-
tion IV presents the conclusions.

II. PROPOSED METHOD

The proposed method is based on the idea that visual
impairments affect image textures. Ideally, the characteristics
of features used by a IQA method should change (accordingly)
when impairment levels changes, but remain fairly constant
when content varies. Unfortunately, visual content affects
directly the visibility of impairments and, therefore, their
annoyance and the overall image quality. Also, the same
content altered with different types of distortions, with nearly
the same mean squared error (MSE), can lead to very different
values of perceptual quality [20]. To overcome these issues, we
represent an image by the statistics of the texture differences.
The assumption here is that images with similar distortions
and quality levels are represented by similar sets of texture
features.

The design of the proposed method is divided into the
following stages: (1) construction of a texture information
bank, (2) feature vector construction, and (3) image quality
prediction using a support vector regression algorithm. In this
section, we describe each of these stages.

A. Texture Information Bank
Consider that τ = {T1, T2, · · · , Tn} is a set of n distinct

texture images. We want to build a texture information bank,
which consists of a set of statistical features extracted from
texture images. We use the uniform local binary patterns
(LBPs), which is a local operator that has been used to extract
fundamental properties of image texture features with a lot of
success [21]. The uniform LBP operator is defined as:

LBPu
R,P (tc) =


P−1∑
p=0

S(tp − tc), U(LBPR,P ) ≤ 2,

P + 1, otherwise,
(1)

where

U(LBPP,R) = δ(tP−1, I0) +

P−1∑
p=1

δ(tp, tp−1), (2)

and
δ(tx, ty) = |S(tx − tc)− S(ty − tc)|. (3)

In these equations, tc is the value of the central pixel, tp is
the value of its neighbor, P is the total number of neighbors
taken into consideration, R is the radius of this neighborhood,
and S(t) is a step function given by:

S(t) =

{
1 t ≥ 0,

0 otherwise.
(4)
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Figure 1: Illustration of the process of extracting the feature vector xk of a given image Ik. A Csiszár-Morimoto divergence
measure (D) is used to compare the LBP-histogram (H[Ik]) of Ik and each histogram in the TB.

At the central pixel tc, each neighboring pixel tp is assigned
with a binary label (0 or 1), depending on their difference.
Eq. 1 is computed for each pixel of a given texture image
Tj . After the LBPs corresponding to each pixel of Tj are
computed, a LBP map of this texture image is built for this
set of LBPs. After all LBP maps are computed for all texture
images in the set, they are represented as follows:

LBPM = {M1,M2, · · · ,Mn}, (5)

where Mj = {LBP (Tj(x, y)) : 1 ≤ x ≤ X, 1 ≤ y ≤ Y }
corresponds to the local binary pattern map of the j-th texture
image Tj with dimensions (X,Y ). This LBP map is a set that
contains the result of processing all pixels of Tj with the LBP
operator in Eq. 1.

To extract the statistical information of the j-th texture Tj ,
we compute the histogram of Mj , as follows:

H[Tj ] = {hj(l1), hj(l2), · · ·hj(lP+1)}, (6)

where
hj(li) =

∑
x,y

f(Mj(x, y), i), (7)

and

f(v, u) =

{
1 v = u,

0 v 6= u.
(8)

In the above equations, (x, y) is the position of a given pixel
of Mj and li is the i-th LBP label. The histograms computed
for each texture Tj ∈ τ are stored in the texture information
bank (TIB): η = {H[T1], H[T2], · · · , H[Tn]}.

B. Feature Vector

Fig. 1 illustrates the process of extracting the feature vector
xk of a given image Ik. This process consists of estimating
the distance between the LBP-histogram of the image Ik and

each histogram in η. More specifically, given an image Ik,
we extract its LBP map and compute its histogram H[Ik],
similarly to what was done for textures in the previous sec-
tion. Then, to obtain the divergences dj = D(H[Ik], H[Tj ])
between H[Ik] and each histogram stored in η, we use one of
Csiszár-Morimoto divergence measures [22, 23] as D. Since
there are n distinct textures, the set xk = {d1, d2, · · · , dn}
is the feature vector associated with image Ik. This feature
vector is the input of a support vector regression algorithm to
estimate the quality of Ik.

C. Support Vector Regression

After we calculate the feature vector xk of a given image
Ik, we map this information to subjective scores and obtain a
quality prediction. We use a support vector regression (SVR)
algorithm to predict quality from the feature distance vector.
We chose SVR because this machine learning algorithm has
been successfully used in other NR-IQA approaches [14, 16].
Also, it is robust for high-dimensional feature spaces [24, 25].

The process of mapping the feature vector xk to the quality
prediction, can be expressed by:

Qp(Ik) = SV R(xk,Θ), (9)

where Θ is the trained model for regression and Qp(Ik) is the
objective quality score predicted by the model.

III. EXPERIMENTS

A. Experimental Setup

The experiments were performed by running the simulations
on an Intel i7-4790 processor at 3.60GHz. The USC-SIPI
Image Database [26] is used to build the TIB. This database
contains 64 grayscale texture images, which means that the
feature vectors (xk) for each image have n = 64 dimensions.
The implementation of SVR uses LibSVM on a Python



Method
JPEG JPEG2k WN GB FF ALL

SROCC LCC KRCC SROCC LCC KRCC SROCC LCC KRCC SROCC LCC KRCC SROCC LCC KRCC SROCC LCC KRCC
PSNR 0.852 0.854 0.644 0.882 0.867 0.694 0.976 0.978 0.893 0.782 0.775 0.586 0.887 0.872 0.700 0.801 0.763 0.596
SSIM 0.948 0.809 0.809 0.944 0.823 0.806 0.979 0.937 0.882 0.889 0.799 0.733 0.934 0.808 0.789 0.890 0.906 0.723

BRISQUE 0.903 0.928 0.744 0.911 0.918 0.750 0.973 0.985 0.882 0.962 0.967 0.852 0.883 0.909 0.702 0.934 0.933 0.777
CORNIA 0.924 0.944 0.774 0.933 0.934 0.787 0.967 0.968 0.863 0.974 0.969 0.880 0.933 0.928 0.793 0.953 0.944 0.816

CQA 0.887 0.902 0.718 0.897 0.899 0.725 0.982 0.991 0.906 0.913 0.923 0.754 0.870 0.892 0.704 0.910 0.905 0.740
SSEQ 0.885 0.909 0.704 0.909 0.914 0.740 0.962 0.973 0.926 0.936 0.940 0.803 0.853 0.863 0.690 0.901 0.894 0.736

PROPOSED 0.932 0.955 0.782 0.952 0.965 0.822 0.974 0.984 0.880 0.963 0.964 0.853 0.891 0.916 0.742 0.961 0.970 0.846

(a) Median SROCC, LCC, and KRCC of simulations on the LIVE2 database.

Method
JPEG JPEG2k WN BLUR PN CD ALL

SROCC LCC SROCC LCC SROCC LCC SROCC LCC SROCC LCC SROCC LCC SROCC LCC
PSNR 0.901 0.894 0.931 0.933 0.935 0.943 0.936 0.908 0.932 0.955 0.886 0.899 0.809 0.786
SSIM 0.931 0.875 0.925 0.875 0.876 0.855 0.909 0.810 0.887 0.838 0.813 0.819 0.812 0.722

BRISQUE 0.712 0.804 0.774 0.810 0.642 0.685 0.602 0.732 0.775 0.797 0.508 0.592 0.688 0.761
CORNIA 0.874 0.923 0.903 0.930 0.838 0.857 0.915 0.948 0.669 0.671 0.613 0.666 0.787 0.832

CQA 0.632 0.753 0.827 0.870 0.655 0.684 0.618 0.687 0.732 0.761 0.511 0.529 0.653 0.701
SSEQ 0.876 0.904 0.867 0.905 0.916 0.924 0.897 0.929 0.825 0.812 0.703 0.754 0.843 0.858

PROPOSED 0.920 0.939 0.864 0.886 0.834 0.852 0.907 0.934 0.825 0.836 0.361 0.393 0.850 0.861

(b) Median SROCC and LCC of simulations on the CSIQ database.

Method
JPEG JPEG2k JPEGXR ALL

SROCC LCC KRCC SROCC LCC KRCC SROCC LCC KRCC SROCC LCC KRCC
PSNR 0.793 0.789 0.589 0.863 0.794 0.672 0.804 0.747 0.604 0.814 0.765 0.608
SSIM 0.841 0.887 0.673 0.843 0.850 0.678 0.824 0.843 0.642 0.837 0.865 0.655

BRISQUE 0.881 0.940 0.736 0.869 0.955 0.810 0.921 0.950 0.802 0.909 0.931 0.756
CORNIA 0.877 0.932 0.729 0.893 0.924 0.762 0.901 0.948 0.747 0.869 0.917 0.698

CQA 0.905 0.947 0.780 0.929 0.939 0.810 0.943 0.956 0.824 0.921 0.925 0.771
SSEQ 0.800 0.851 0.626 0.904 0.961 0.810 0.912 0.923 0.780 0.853 0.847 0.687

PROPOSED 0.868 0.921 0.714 0.810 0.845 0.643 0.921 0.961 0.790 0.902 0.946 0.771

(c) Median SROCC, LCC, and KRCC of simulations on the JPEGXR database.

Table I: Correlation indexes across 100 train-test simulations on (a) LIVE2, (b), CSIQ, and (c) JPEGXR databases.

Figure 2: Box plot of SROCC distributions of NR algorithms
from 100 runs of simulations using the LIVE2 database.

interface provided by Scikit library. The metaparameters (i.e.,
kernel, penalty parameter, epsilon, etc.) of the SVR algorithm
are found using exhaustive grid search methods provided by
the Sklearn’s API. The Total Variation [27] is used as the
Csiszár-Morimoto divergence D in dj = D(H[Ik], H[Tj ]).
The parameters of LBP used are: R = 1 and P = 8.

The proposed algorithm is tested using the following public
image quality databases (DB):

• The CSIQ [28] database has a total fo 866 test images,
consisting of 30 originals and 6 different categories of
distortions.

• The LIVE2 [29] database has 982 test images, including
29 originals and 5 categories of distortions. The distor-
tions include JPEG, JPEG 2000 (JPEG2k), JPEG, white
noise (WN), Gaussian blur (GB), fast fading (FF), global
contrast decrements (CD), and additive Gaussian pink
noise (PN).

• The JPEGXR [30] IQA database has 181 test sequences,
including 10 references and 3 type of distortions includ-
ing JPEG, JPEG 2000, and JPEGXR.

The proposed method is compared with the fastest state-
of-the-art NR-IQA methods: BRISQUE [31], CORNIA [16],
CQA [32], and SSEQ [33]. In addition to these methods,
two well-established FR methods are also tested: PSNR and
SSIM [20].

Spearman’s Rank Ordered Correlation (SROCC), Pearson
(linear) Correlation Coefficient (LCC), and Kendall’s Rank
Correlation Coefficient (KRCC) are used to evaluate the pre-
diction accuracy of the methods. The correlation coefficients
are computed by comparing the subjective scores provided in
the databases with the predicted scores obtained using the IQA
methods. Since the NR-IQA methods follow a training-based
approach, the databases are split into two random subsets, with
80% of data used for training and 20% for testing in each



simulation. Reported results correspond to the median values
obtained for 100 random combinations of training and testing
subsets.

B. Prediction Performance Evaluation

Tables I (a)-(c) show the correlation coefficients obtained
for the considered IQA methods tested on the LIVE2, CSIQ,
and JPEGXR databases, respectively. For each database, the
tables show SROCC, LCC, and KRCC values obtained for
the sets of images containing each distortion type and for the
complete set of images (ALL).

For LIVE2 (Table I-a), we can notice that the proposed
method surpasses many of the state-of-the-art NR-IQA meth-
ods. This can be clearly seen in Fig. 2, which shows the box
plot of SROCC distributions for different NR-IQA methods
simulations for LIVE2. Notice that the proposed method
outperforms the other methods for this database.

For the CSIQ database, the proposed method achieves
a statistically better performance than other NR-IQA (see
Table I-b). Interestingly, NR approaches perform worse than
PSNR for this database. It is worth pointing out that these
PSNR scores are consistent with the values reported by Larson
and Chandler [28]. Even though the proposed method presents
the best overall results, it has the worst performance for CD
distortions. We believe the robustness of LBP operators to
changes in contrast may be affecting its prediction capability.
Further studies are needed to determine whether the per-
formance can be improved with the inclusion of additional
features that respond accordingly to contrast.

Results presented in Table I-c indicate that most NR-IQA
methods perform statistically close for JPEGXR database.
These small differences in performance are probably caused
by the fact that test images in JPEGXR database have closer
distortions levels than images in the other two databases. This
issue can be eliminated by training the algorithm with a larger
texture database.

C. Computational Performance Evaluation

Due to the low computational complexity of the LBP
operator, the small memory space required by the texture
information bank, and the simplicity of the Csiszár-Morimoto
divergence, the proposed method has a low data rate and a
reduced computational time. As shown in the first line of
Table II, the proposed algorithm is considerably faster than
other NR-IQA algorithms. The computational advantage of the
proposed method is shown more clearly in the second line of
Table II, which shows the ratio of the average simulation time
of each tested method over the average time of the proposed
method. From Table II, we can notice that the proposed
method is adequate for real-time applications.

PSNR SSIM BRISQUE CORNIA CQA SSEQ PROPOSED
Time 0.0055 0.0447 0.1576 1.8964 1.3691 1.8112 0.0323

Speedup 0.1702 1.3839 4.8792 58.7121 42.3869 56.0743 1.0000

Table II: Average computational time for performing an ob-
jective quality assessment (in seconds).

D. Discussion
1) Implementation Complexity: Although the proposed

method has shown great advantage in terms of execution time
compared to other methods, there are some considerations
about the speed that are worth discussing. First, the imple-
mentation of the proposed algorithm uses a non-optimized
Python implementation. Therefore, we must point out that
the algorithm can be further optimized in order to become
more attractive for real-time multimedia applications. Second,
all operations used to compute the LBP maps are performed
independently for each pixel. Likewise, the Csiszár-Morimoto
divergence measures are also computed independently for each
texture. Hence, the performance of the proposed method can
be improved with a parallel implementation of the algorithm.
Moreover, due to simplicity of the LBP operator, which uses
only relational operators and sums, it is also possible to
implement the proposed method in a dedicated hardware.

2) Modularity: The texture information bank approach has
the advantage of representing the image in terms of textures.
It does not depend on the knowledge of specific distortions.
Therefore, the proposed method is modular and can be ex-
panded to any number of distortions. New distortions can be
inserted in the model by adding images with these distortions
in the training set.

3) Applicability: Despite the fact that the texture infor-
mation bank has been presented as a strategy to extract
features for predicting visual quality of images, the proposed
method could be adapted for other applications. Particularly,
computer vision applications based on texture analysis are
possible candidates to use this technique. Among possible
applications, we can cite texture classification [34], face spoof-
ing detection [35, 36], gender recognition [37], expression
recognition [38], etc.

IV. CONCLUSIONS

This paper presents a new NR-IQA method that requires no
previous assumption about the type of distortions in the test
images. The method uses a machine learning technique based
on a very efficient texture analysis strategy, what makes it
faster and simpler than other NR-IQA methods. Results show
that the proposed method has a competitive quality prediction
performance, when compared with state-of-the-art NR-IQA
methods. Future works include the investigation of the impact
of the method parameters (including the size of the texture
information bank and the statistical properties of textures) on
accuracy of the predicted quality. Furthermore, it is important
to investigate if the addition of contrast and color features can
improve the prediction performance for images affected with
these types of distortions.
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