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Abstract—Although compression and transmission artifacts
are likely to appear simultaneously in digital videos, their annoy-
ance has been traditionally studied and modeled in isolation. So,
while blockiness, blurriness, and packet-loss metrics exist, hardly
any attempt has been made at modeling their joint impact on
visual perception. In this paper, we evaluate the perceptual impact
of those three artifacts on video quality. Based on data from three
different experiments, in which a pool of participants evaluated
videos impaired with packet-loss, blurriness and blockiness (in
isolation and in combination), we analyze how the different
artifacts combine to produce annoyance and propose several
models for predicting the annoyance of videos impaired with
combinations of packet-loss, blurriness and blockiness.

Keywords—Visual quality perception, spatio-temporal artifacts,
video quality, objective quality metrics.

I. INTRODUCTION

Objective quality metrics [1] are a core component of
quality control loops in video delivery systems. They auto-
matically detect and estimate visual impairment annoyance.
But, their accuracy is related to the extent to which they
properly model human visual perception processes. Because
of this, their design is far from trivial. Most successful video
quality metrics estimate impairment annoyance by comparing
original and impaired videos [2]. Alternatives include artifact
metrics [3], [4], which estimate the strength of individual
artifacts and, then combine the artifact strengths to obtain an
overall annoyance or quality model. The assumption here is
that it is easier to detect individual artifact signals and estimate
their strength because we ‘know’ their appearance and the type
of process that generates them.

Interestingly, whereas much has been done on understand-
ing and modeling the perception of single visual artifacts, little
work has been devoted to studying and characterizing their
joint appearance and the perception of their combinations [5].
Farias et al. [6], [7] studied the appearance, annoyance, and
detectability of common digital video compression artifacts
(in isolation or in combination) by measuring their strength
and overall annoyance. When presented in combination and
at a low strength, artifacts that would otherwise be clearly
recognized were mistaken by others. Also, the presence of
noise in videos seemed to decrease the perceived strength
of other artifacts, while the addition of blurriness had the

opposite effect. Moore et al. [8] investigated the relationships
among visibility, content importance, annoyance, and strength
of artifacts in digital videos, concluding that the artifacts’
annoyance was tightly related to its visibility, but only weakly
related to content. Huynh-Thu and Ghanbari [9] examined the
impact of spatio-temporal artifacts in video and their mutual
interactions. They verified that spatial degradations affect the
perceived quality of temporal degradations (and vice-versa),
but the contribution of spatial degradations to overall quality
is greater than that of temporal degradations. These studies
gave important contributions to the better understanding the
visibility and annoyance of combinations of artifacts. However,
their results are still rather scattered and no clear knowledge
is available on how different spatial and temporal artifacts
combine perceptually and whether their joint impact depends
on the physical properties of the video.

In this work, our goal is to study the perceptual impact
that combinations of spatio-temporal artifacts commonly found
in digital video transmission (i.e., blockiness, blurriness, and
packet-loss) have on annoyance. More specifically, we are in-
terested in understanding the relationship between the artifacts’
perceptual strength and their overall annoyance. We present
the results of three psychophysical experiments in which we
investigate the characteristics of these spatio-temporal artifacts
(when presented in isolation or in combinations). Then, we
test linear and non-linear annoyance models, with and without
interaction terms. These models allow for a better analysis of
the contribution of each artifact to the overall annoyance and
of the interactions among the different artifacts. In this paper,
we propose a set of accurate and psychophysically meaningful
annoyance models that consist of combination functions of the
artifact strengths. In addition, the 308 videos involved in the
three experiments and their corresponding annoyance scores
are available for download to the community as a contribution
of this paper [10].

The paper is divided as follows. In Section II, we present
the setup and methodology used in all three psychophysical
experiments. Section III details the re-alignment procedure
performed on the subjective scores gathered from these exper-
iments. In Section IV, we describe the annoyance perceptual
models and discuss their results. Conclusions are addressed in
Section V.



II. ANNOYANCE OF ARTIFACT COMBINATIONS

We performed three psychophysical experiments with the
goal of understanding how spatial (blockiness and blurriness)
and temporal (packet-loss) artifacts commonly encountered
in digital video transmission interact with each other and
contribute to the overall annoyance. In Experiment 1, subjects
analyzed the annoyance of videos impaired by packet-loss in
isolation. In Experiment 2, subjects rated the annoyance of
videos impaired with blockiness and blurriness, in isolation
or in combination. Finally, in Experiment 3, subjects scored
videos impaired with all three artifacts in combinations. The
three experiments shared identical experimental methodology,
interface, protocol, and viewing conditions. The stimuli were
different per experiment but derived from a common set of 7
original contents, as detailed below.

A. Stimuli

As original contents we used seven high definition videos,
shown in Figure 1, with spatial resolution of 1280×720 and a
temporal resolution of 50 frames per second (fps). The videos
were all 10 seconds long and were chosen to span a good
range of spatial and temporal activity distribution.

Fig. 1: Frames of videos top to bottom, left to right: Barbecue,
Park Joy, Into Tree, Park Run, Romeo and Juliet, Cactus, and
Basketball.

To be able to add artifacts individually and combine them
arbitrarily, we used a system for generating artifacts [6].
This allowed higher control in artifact combination, visibility
and strength, which would be impossible when using, for
example, a H.264 codec. To generate blockiness for each video
frame, we calculated the average value of each 8×8 block of
the frame and of the 24×24 surrounding block, then added
the difference between these two averages to the block. To
generate blurriness, we used a simple low-pass filter according
suggested by Recommendation P.930 [11]. To control the
amount of blurriness, we can vary the filter sizes and the cut-
off frequencies. In this work, we used a 5×5 moving average
filter to generate blurriness. We generated test sequences with
combinations of blockiness and blurriness by linearly combin-
ing the original video with blockiness and blurriness artifact
signals in different proportions (i.e., 0.4, 0.6, and 0.8). To
generate packet-loss artifacts, we first compressed the videos
(possibly already impaired with blockiness and blurriness) at
high compression rates, to avoid inserting additional artifacts.
Then, Then, packets from the coded video bitstream were
randomly deleted in different loss percentages (the higher the

percentage, the lower the quality) and changed the interval
between I-frames (time interval among artifacts).

B. Methodology and Equipment

The various test sequences were displayed on a Samsung
LCD monitor of 23 inches (Sync Master XL2370HD) with
resolution 1920 × 1080@60hz (FullHD 1080p). The dynamic
contrast of the monitor was turned off, the contrast was set
at 100 and the brightness at 50. The measured gamma of the
monitor for luminance, red, green, and blue was 1.937, 1.566,
1.908, and 1.172, respectively. We set a constant illumination
of approximately 70 lux. Participants were kept at a fixed
distance of 0.7 meters from the monitor using a chinrest. The
experimental methodology used was the single-stimulus with
hidden reference and a 100-point continuous-scale [12].

The participants were mostly graduate students from the
authors’ institutions. They were considered naive of most kinds
of digital video defects and the associated terminology. No
vision test was performed, but participants were asked to
wear glasses or contact lenses if they needed them to watch
TV. The experiment started after a brief oral introduction.
First, participants performed a training stage that consisted
of watching highly impaired and pristine sequences to get
acquainted with the typical artifact combinations and strengths.
The sequences presented during the training were not scored
and were meant to be visual anchors (references) for the an-
noyance scoring. After the training, the actual scoring session
started. Participants were asked to give an annoyance score to
each test sequence. Sequences as annoying as those seen in
the training session should be given a ‘100’ annoyance score,
sequences half as annoying a ‘50’ annoyance score, and so on.
To avoid fatigue, the session was divided into sub-sessions,
between which participants could take a break for as long as
they wanted to. All experimental sessions lasted between 45
and 60 minutes.

C. Experiments

Experiment 1 investigated the annoyance of packet-loss
artifacts in isolation. 16 participants scored the annoyance
of test sequences for which different percentages of deleted
packets (PDP) were used (PDP = 0.7%, 2.6%, 4.3%, and
8.1%). We also varied the number of M frames between the
I-frames to change the time interval among artifacts (M = 4, 8,
and 12) [13], [14]. A total of 7 originals and 12 combinations
were used, resulting in 12× 7 + 7 = 91 test sequences.

Experiment 2 focused on blockiness and blurriness arti-
facts. 16 participants scored the annoyance of test sequences
containing combinations of blockiness and blurriness at differ-
ent strengths. We represent hereon the artifact strength combi-
nations as a vector (bloc;blur), where ‘bloc’ is the blockiness
strength and ‘blur’ is the blurriness strength. Combinations
contained artifacts at 3 possible strengths (0.0, 0.4, and 0.6)
in a full factorial design (32 = 9 combinations), including the
unimpaired videos (0.0;0.0). Two further combinations, pure
blockiness and pure blurriness at strength 0.8, i.e. (0.8;0) and
(0;0.8), were also added to the set, resulting in 11 × 7 = 77
test sequences.

In Experiment 3, 23 participants rated the annoyance of
test sequences containing different combinations of blockiness,



blurriness, and packet-loss artifacts. Hereafter we represent the
strength combinations as a vector (PDP;bloc;blur), with the
same notation as above. Blockiness, blurriness, and packet-
loss artifacts were combined at 3 different strengths: bloc ∈
[0, 0.4, 0.6], blur ∈ [0, 0.4, 0.6], and PDP ∈ [0, 0.7%, 8.1%],
resulting in 19 × 7 + 7 = 140 test sequences [15]. To avoid
fatigue, the experimental session was divided in three sub-
sessions, with two 10-minutes breaks in between.

III. DATA PREPARATION AND ALIGNMENT

For each sequence in each experiment, we computed a
mean annoyance value (MAV) as the average of the annoyance
scores gathered from all participants [16]. However, these
could not be readily used. Despite the extra care we put in
keeping experimental conditions similar, we expected MAVs
to be misaligned (i.e., not referring to the same underlying
annoyance scale) across our three experiments.

Results gathered from experiments that comply to the
same experimental methodology may still differ because of the
differences in physical location, viewer expectations, or set of
stimuli. [2]. Also, scores may suffer from context effects [17]
as a result of the tendency of participants to use the entire
scoring scale to evaluate the annoyance of the test stimuli. For
example, in an experiment involving unimpaired or just slightly
impaired stimulus, the latter may still get high annoyance
values, as compared to the rest of the set. Similarly, in an
experiment containing mildly to highly impaired stimuli, the
mildly impaired ones may get unnaturally low annoyance
(high quality) scores. As a result, the MAVs of these two
experiments would not be comparable, being expressed on
underlying scales covering a different range of annoyance.

Figure 2 shows the average MAVs across all versions
of the same original content, for the three experiments. For
Experiments 2 and 3, all original contents have similar average
MAVs, roughly in the middle of the annoyance scale, as
one would expect. For Experiment 1, though, the original
contents ‘Park Run’, ‘Cactus’ and ‘Romeo’ have significantly
lower MAVs than the rest, and their corresponding videos in
Experiments 2 and 3. This suggests a misalignment across the
scores given in different experiments. Thus, we opted for re-
aligning the MAVs of the three experiments to the same scale
before proceeding with the annoyance modeling phase.

Pinson et al. proposed the iterative nested least squares
algorithm (INLSA) to compare subjective scores from different
experiments and convert them into a common scale [2], [18].
INLSA makes use of objective video quality metrics to re-align
subjective scores from different experiments, by iteratively
solving two least squares problems. The solution of the first
problem homogenizes the scores from different experiments
using a first-order correction. The solution of the second one
solves the approximation of the homogenized scores using an
objective quality metric. An iteration of these two least-squares
problems provides a full mapping of the scores of the different
experiments onto a common scale.

We re-aligned the scores (MAVs) of Experiments 1-3 with
INLSA using Structural Similarity Index (SSIM, [19]) as the
objective metric. First, we applied a linear function to map
MAVs across the three experiments [18]. Then, we scaled the
scores using Experiment 3 as the reference, since this is the

Fig. 2: Average values of MAV of all test sequences corre-
sponding to each original video.

experiment with the highest number of artifact combinations.
Figure 3 (a) and (b) show the MAVs for the complete set
of experiments before (a) and after (b) applying INLSA.
Notice that in Figure 3 (a), MAVs of Experiment 1 seem to
be clustered towards the top part of the SSIM scale, while
spanning the entire annoyance range. This is not true for MAVs
of the other two experiments. As shown in Figure 3 (b), after
applying INLSA, the MAVs of Experiment 1 annoyance range
is more commensurate to their SSIM range, what suggests that
they can be merged with those of the other two experiments
to be analyzed as a whole.

(a)

(b)

Fig. 3: MAVs versus SSIM for Experiments 1-3: (a) original
MAVs and (b) MAVs re-aligned with INLSA (RMAV) [18].

IV. ANNOYANCE MODELS

The goal of this work was to verify to what extent models
combining objective artifact strength values (PDP, bloc, and
blur) can predict perceived annoyance (expressed through
re-aligned MAVs, hereafter referred to RMAVs) of videos
impaired by multiple, overlapping artifacts. In addition, we
wanted to study the extent to which each artifact (or com-
bination thereof) would contribute to the overall annoyance
perception. To do so, we tested a set of linear and non-linear
models of these relationships. For ease of interpretation of



the results (i.e., to obtain model coefficients of comparable
magnitude), we imposed all artifact strength values to vary
within the same range [0, 1]. PDP values were re-scaled within
such range by assuming that a PDP greater than 10 would be
unrealistic in real-world network conditions and considering 10
as the maximum possible value for PDP [20]. The normalized
packet-loss strength was given by pdp = PDP/10.

Linear Models. We first tested simple linear models with-
out interaction terms, to quantify the individual contributions
of the different artifacts to annoyance. The basic, ideal model
(eq. 1) assumes the overall annoyance to be the result of the
linear combination of the single artifact strengths. According
to this model, sequences without the presence of any artifact
(i.e. (pdp;bloc;blur)= (0; 0; 0)) are perceived as not annoying
(PRAL1 = 0). However, it may be the case that sequences
without any blurriness, blockiness, or packet-loss artifacts are
perceived as slightly annoying, due for example to impairments
already present in the original content. In fact, the average
RMAV of the unimpaired sequences was 13.47 in our experi-
ments (2.38 for non-realigned MAVs). To account for this, we
also tested a model with the addition of an intercept term δ
(eq. 2). Having defined PRAL1 and PRAL2 as the annoyance
predicted by the models without and with an intercept term,
and pdp, bloc, and blur as the artifact strength parameters, we
have:

PRAL1 = α · pdp + β · bloc + γ · blur, (1)

PRAL2 = α · pdp + β · bloc + γ · blur + δ. (2)

Table I shows the result of the least-squares fit on RMAVs.
For both models, the prediction performance, measured in
terms of the Pearson correlation coefficient (PCC) and Spear-
man correlation coefficient (SCC), is also reported.

TABLE I: Fitting of linear models without interaction term to
RMAV.

Models δ α β γ PCC SCC
PRAL1 35.770 78.404 52.602 0.844 0.867
PRAL2 18.170 19.768 61.499 35.698 0.850 0.870

Previous literature (e.g. [7]) showed that to accurately
model the annoyance of overlapping artifacts, interaction terms
should be taken into account. Artifacts, when combining, may
mask or increase the perceptual strength of the others (inter-
action), thereby impacting on the overall annoyance feeling.
To verify this, we tested a new linear model with interactions,
(PRAL3), defined as:

PRAL3 = α · pdp + β · bloc + γ · blur+
ρ1 · pdp · bloc + ρ2 · pdp · blur+
ρ3 · bloc · blur + ρ4 · pdp · bloc · blur.

(3)

We also tested the same model with the addition of an
intercept term δ, whose predictions we denote, hereafter, as
PRAL4. The results of the least squares fit of both models on
RMAVs are presented in Tables II and III, respectively. In both
tables, column 2 shows the estimated interaction coefficients
and column 5 shows the corresponding p-values (based on t-
test, two-tailed, p < 0.05 indicates significance of the term).

TABLE II: Fitting of the linear model with interactions
(PRAL3) for RMAVs.

Coef. Estimate Std. Error t-value Pr(> |t|)
α 57.064 2.784 20.494 < 2e− 16a

β 88.685 3.663 24.212 < 2e− 16a

γ 61.703 3.663 16.846 < 2e− 16a

ρ1 -69.785 11.217 -6.222 < 1.65e− 09a

ρ2 -63.363 11.217 -5.649 < 3.74e− 08a

ρ3 -10.196 12.416 -0.821 0.4122
ρ4 55.827 32.768 1.704 0.0895

a Statistically significant at (P < 0.05) PCC = 0.858, SCC = 0.885.

TABLE III: Fitting of the linear model with interactions and
with an intercept coefficient (PRAL4) for RMAVs.

Coef. Estimate Std. Error t-value Pr(> |t|)
δ 14.420 1.689 8.540 6.83e− 16a

α 33.757 3.702 9.118 < 2e− 16a

β 64.681 4.328 14.946 < 2e− 16a

γ 37.698 4.328 8.711 < 2e− 16a

ρ1 -29.924 11.105 -2.695 0.00744a

ρ2 -23.503 11.105 -2.116 0.03514a

ρ3 28.800 12.053 2.390 0.01749a

ρ4 -11.286 30.470 -0.370 0.71134
a Statistically significant at (P < 0.05) PCC = 0.869, SCC = 0.884.

Non-Linear Models. It is reasonable to hypothesize that
the proposed linear models, although fairly accurate, are unable
to mimic complex non-linear interactions of the different
artifacts [21]. Hence, below we report the performance of two
types of non-linear models: a Minkowski metric and a Support
Vector Regression (SVR).

Minkowski metrics have been shown to be useful to mimic
interactions of spatial artifacts in standard definition videos [7].
We tested two models, again without (Eq. 4) and with (Eq. 5)
an intercept term:

PAM1 = (pdpm + blocm + blum)
1
m , (4)

PAM2 = (δ + pdpm + blocm + blum)
1
m . (5)

where m is the Minkowski power. Table 5 show the results of
the least squares fit on RMAVs.

TABLE IV: Fitting of Minkowski models without and with
intercept to RMAV.

Models m δ PCC SCC
PRAM1 0.215 0.562 0.770
PRAM2 0.397 3.424 0.770 0.744

Finally, we also tried a more black-box approach, where
the model would not be defined upfront but learned directly
from the data (i.e. our dataset of 308 videos). We used SVR
to predict annoyance from the artifact strength data, as similar
machine learning-based approaches have been shown to be
suitable to model complex non-linear perceptual processes
related to artifact annoyance [21]. We use 10-fold cross
validation technique on the training set from SVM function
in the R software. For that, dataset was randomly split into
two non-overlapping sets: a training set (80%) and a testing
set (20%). Our tests showed that using a radial kernel for
the SVR was best performing to predict RMAVs. PCC and



SCC values obtained from the trained SVR were 0.9487 and
0.9514, respectively, which were the highest correlation values
obtained in this work.

A. Discussion

For all linear models (PRAL1 to PRAL4), the coefficients
relative to the blockiness term (β) were found have the highest
magnitude, implying that the presence and strength of block-
iness has the biggest impact on the impairment annoyance.
Blurriness was found to have the second highest impact and
packet-loss the third. This ordering was maintained also when
an intercept term was added, although the magnitudes of all
coefficients were considerably reduced.

The majority of the interaction effects were statistically
significant, except for the term relative to the interaction of
blockiness and blurriness (ρ3) in the PRAL3 model (without
intercept). The second order coefficients (for the pairwise
interaction terms) were mostly negative, what suggests that the
perceptual effect of the combination of two artifacts was not a
simple addition of the annoyance generated by the artifacts in
isolation and, resulting in a somewhat lower annoyance. This
may indicate that there are masking effects among artifacts,
with artifacts mutually attenuating each other’s strength and
annoyance. The interaction coefficients with higher magnitude
were those corresponding to the pdp ·bloc and pdp ·blur terms.
This may indicate that packet-loss affected how blockiness and
blurriness was perceived, somehow diminishing their visual
impact. The third order coefficient, associated to the interaction
of all artifacts (ρ4), was non-significant, indicating that com-
binations of three artifacts did not contribute to the estimation
of the overall annoyance (which was fully explained by the
main effects and pairwise interaction terms). It should also be
noted that the inclusion of these interaction terms in the models
improved their predictive power (although not dramatically)

When an intercept constant was added to the linear models,
their prediction power (measured by the PCC and SCC values
between predicted annoyance scores and RMAVs) increased.
This supports our hypothesis that, although unimpaired, the
original contents (i.e. (pdp;bloc;blur)= (0; 0; 0)) showed in the
experiments might have contained slight, pre-existing artifacts,
judged as annoying by our participants. The value of δ obtained
for the PRAL4 model, the most accurate of the linear ones
was indeed 14.42, which is quite close the average RMAV of
the unimpaired sequences (13.47).

For the non-linear Minkowski models, the predicting power
of the fit models was lowest among all models. The addition
of an intercept coefficient was beneficial also in this case,
improving the predictive performance. The Minkowski power
found (m < 0.397) was considerably lower than the values
found by other authors [7], what indicates that the model is
sensitive to small changes in artifact strengths.

Finally, the SVR-based approach has the best performance,
in terms of prediction of RMAVs. This indicates that, although
the linear models were quite informative with respect to the
interactions among artifacts in generating visual annoyance,
they might not be able to capture the complex non-linear
processes that underlie human perception, in line with what
was already proposed in literature [21]. Nevertheless, the
SVR-based model lacks interpretability and further work is

needed to unveil the relative importance of the different artifact
strengths in determining the predicted annoyance.

Added value of re-aligning MAVs. It is worthwhile at this
point to wonder whether the INLSA-based MAV realignment
was beneficial. To verify this, we fit again all models, but on
the non-realigned MAVs. For the sake of brevity, we report
here only the main findings. Table V summarizes the accuracy
of all models in predicting RMAVs and MAVs in terms of PCC
and SCC values between subjective annoyance scores and their
predictions.

TABLE V: Pearson (PCC) and Spearman (SCC) correlation
coefficients between the different model predictions and the
annoyance scores, when fit on re-aligned (RMAV) and non-
realigned (MAV) scores

prediction on RMAV prediction on MAV
Models PCC SCC PCC SCC
PRAL1 0.844 0.867 0.726 0.721
PRAL2 0.850 0.870 0.730 0.727
PRAL3 0.858 0.885 0.797 0.771
PRAL4 0.869 0.884 0.803 0.787
PRAM1 0.562 0.770 0.472 0.652
PRAM2 0.770 0.744 0.660 0.654
PRASV R 0.949 0.951 0.868 0.817

In all cases, the models fit on RMAVs obtained better
performance than the models fit on MAVs. This supports our
choice of re-aligning the data before fitting the models. It is
worth mentioning that, whereas for the Minkowski models the
coefficient estimates were mostly similar when fitting them
on MAVs or RMAVs, for the linear models this was not the
case. When fitting on MAVs, in all linear models the pdp
coefficient α was higher than the blur one (γ), contrary to
what we found when fitting to RMAVs. This may be due to
the fact that, as shown in Figure 3, the MAVs of Experiment
1 sequences, which contained only packet-loss artifacts, were
overestimated. As a consequence, the impact of packet-loss
artifacts on annoyance was exaggerated.

V. CONCLUSIONS

In this paper, we evaluated the perceptual impact of com-
binations of blockiness, blurriness, and packet-loss on video
quality. We performed three experiments in which videos
impaired with these artifacts, in isolation and in combinations,
were evaluated by a pool of subjects. We then analyzed how
the different artifact strengths combine to produce annoyance
and proposed several annoyance models, including linear mod-
els with and without interactions, Minkowski models, and
a non-linear model based on SVR. The SVR-based model
had the best performance, indicating that complex non-linear
interactions between artifact appearances underlie below an-
noyance perception. Interactions were also observed in the
linear models, notably suggesting that the overlap of multiple
artifacts may generate masking effects, decreasing the overall
annoyance perception. It should be noted that all models in
this work have been based on known (and controlled) values
of artifact strengths. Further work is needed to determine to
what extent the annoyance scores of the videos are predictable
when these strengths are unknown and their values need to



be estimated using an artifact metric or an analysis of the
(encoded or decoded) bitstream.
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