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Abstract In this work, we studied the use of combination models to integrate audio and
video quality estimates to predict the overall audio-visual quality. More specifically, an
overall quality prediction for an audio-visual signal is obtained by combining the out-
puts of individual audio and video quality metrics with either a linear, a Minkowski, or a
power function. A total of 7 different video quality metrics are considered, from which 3
are Full-Reference and 4 are No-Reference. Similarly, a total of 4 audio quality metrics
are tested, 2 of which are Full-Reference and 2 are No-Reference. In total, we tested 18
Full-Reference audio-visual combination metrics and 24 No-Reference audio-visual com-
bination metrics. The performance of all combination metrics are tested on two different
audio-visual databases. Therefore, besides analysing the performance of a set of individual
audio and video quality metrics, we analyzed the performance of the models that combine
these audio and video quality metrics. This work gives an important contribution to the area
of audio-visual quality assessment, since previous works either tested combination models
only on subjective quality scores or used linear models to combine the outputs of a limited
number of audio and video quality metrics.

Keywords Video quality metrics · Audio quality metrics · Audio-visual quality metrics ·
Qoe · Multimedia quality assessment

� Helard A. Becerra Martinez
helardb@unb.br

Mylène C. Q. Farias
mylene@ieee.org

1 Department of Computer Science, University of Brası́lia (UnB), Campus Universitário Darcy
Ribeiro, 70919-970 Brası́lia, DF, Brazil

2 Department of Electrical Engineering, University of Brası́lia (UnB), Campus Universitário Darcy
Ribeiro, 70919-970 Brası́lia, DF, Brazil

http://crossmark.crossref.org/dialog/?doi=10.1007/s11042-018-5656-7&domain=pdf
mailto:helardb@unb.br
mailto:mylene@ieee.org


Multimed Tools Appl

1 Introduction

The great progress achieved by communications in the last twenty years is reflected by the
amount of multimedia services available nowadays. One of the most popular multimedia
services is the internet-based streaming, which has more recently gained an even bigger
popularity. It is, nevertheless, understood that the success of this service relies heavily on
its trustworthiness and on the quality of the content provided. Under these circumstances,
the development of efficient real-time quality monitoring tools, which can quantify the
audio-visual experience of multimedia services (as perceived by the end user) can bring real
benefits to Internet Service Providers (ISP) and broadcast companies.

Psychophysical experiments are considered the most precise method to estimate the qual-
ity of audio-visual signals [10]. Unfortunately, these experiments are often expensive in
terms of time and resources. Therefore, fast algorithms (objective quality metrics) arise as
a good alternative for automatically determining the quality of audio-visual signals, as per-
ceived by the end user [2]. To obtain a numerical estimate for the perceived quality, objective
quality metrics use computational methods to process and evaluate signals. Depending on
the amount of reference (original signal) information required by their algorithms, objec-
tive quality metrics can be classified as Full-Reference (FR), Reduced Reference (RR), and
No-Reference (NR) metrics. In the case of FR metrics, the entire reference is needed at the
measurement point to obtain the quality estimation. For the RR metrics, only a part of the
reference is needed, which can be made available at the measurement point through an aux-
iliary channel. Finally, for the NR metrics the quality estimation is obtained blindly, using
only the test video.

There is an ongoing effort to develop video quality metrics that estimate quality as per-
ceived by human viewers, but most of the achievements have been in the development of FR
video quality metrics [2, 11, 18]. Much remains to be done in the area of no-reference (NR)
quality metrics [18]. Also, very few objective metrics have addressed the issue of simultane-
ously measuring the quality of multimedia content (e.g. video, audio, and text), as pointed
out by Pinson et al. [20]. For the simpler case of audio-visual content, a lot of work has been
done on trying to understand audio-visual quality, what resulted in several subjective mod-
els [6, 22]. But, only a few works tackle the problem of developing audio-visual objective
quality metrics [5, 28].

In this work, we investigate how to assess the quality of audio-visual signals using
combinations of simple audio and video quality metrics. The audio and video metrics are
combined using three models: Linear, Minkowski, and Power functions. The combination
models were inspired in the analysis of data gathered from 3 psychophysical experiments
in which audio and video quality scores were collected. Using these combination models,
we propose a set of FR and NR audio-visual quality assessment methods. Each method is
composed by a video quality metric, an audio quality metric, and a model that combines the
audio and video (objective) predictions to provide an overall audio-visual quality estimate.
A total of 7 different video quality metrics are considered, from which 3 are FR and 4 are
NR. Similarly, a total of 4 audio quality metrics are considered, 2 of them are FR and 2 are
NR. The performance of these audio-visual quality methods is tested and validated using
two audio-visual quality databases.

Besides presenting a performance analysis of a set of audio and video quality metrics,
the results presented in this work contribute to a better understanding of how audio and
video objective quality scores can be combined to predict the overall audio-visual quality.
Given the mature state-of-the-art of audio and video quality metrics, we believe this is an



Multimed Tools Appl

important step towards the design of accurate audio-visual quality metrics. In this work,
we explore the use of three combination models (Minkowski, linear, and power models)
for audio-visual quality assessment. We tested these models using a set of video and audio
quality metrics (both NR and FR), validating them on two different quality databases. We
believe this work is an important contribution to the area of audio-visual quality assessment,
given that previous works either tested combination models only on subjective scores or
used only linear models to combine the outputs of a limited number of audio and video
quality metrics.

This paper is divided as follows. Section 2 presents a brief description of some combina-
tion techniques used in previous studies. In Section 3, we describe the three psychophysical
experiments that are part of the UnB Audio-Visual Quality (UnB-AVQ) Database 1. In
Section 4, we present the combination models used to merge the audio and video predic-
tions. In Sections 5 and 6, the FR and NR audio-visual quality assessment methods are
presented. A performance analysis of the two approaches is carried out using the database
described in Section 3. In Section 7, both groups of FR and NR audio-visual metrics are
tested using the NTIA audio-visual quality database. Finally, in Section 8, our conclusions
are discussed.

2 Related work

Several audio and video quality metrics have been proposed in the past few years. Several
of these metrics present good performance levels, in terms of complexity and accuracy [1],
but they are only capable of estimating either audio or video quality, but not both. Among
the different approaches used in the design of quality metrics, a few methods use different
models to combine the contributions of the most common degradations (artifacts) to produce
the overall quality. For instance, Farias designed a no-reference (NR) video quality metric
in which the overall annoyance is predicted by combining the outputs of blurring, blocking,
and noise strength metrics [4]. One of the combinations models used in this work was a
weighted Minkowski model. Additionally, Wang and Bovik [24] developed an objective NR
image quality metric, targeted at JPEG compressed images, which combines the outputs of
a blocking and a blurring strength metrics to estimate the overall image quality. The outputs
of these two metrics were combined using a non-linear power model.

Given the progress achieved in the area of audio and video quality assessment (indepen-
dently) [3], the next step is the design of an audio-visual quality metric. Considering that
audio-only or video-only quality metrics cannot estimate audio-visual quality [21], a recent
research trend is the use of models that combine the outputs of audio and video metrics to
estimate audio-visual quality [20]. The first audio-visual combination models were tested
on subjective quality scores [6, 21, 27]. Although these works cannot be used in real mul-
timedia applications, their results have helped understand how individual audio and video
quality estimates can be combined to predict the overall audio-visual quality.

Currently, there are only a few audio-visual objective quality metrics available in the lit-
erature. Up to our knowledge, most of them are parametric metrics, i.e. metrics that estimate
quality using the information available at the receiver, such as bitrate, frame rate, quan-
tization index, motion vectors, and network information. Among the currently available
audio-visual parametric metrics, we can cite the works of Garcia et al. [5] and Yamagishi
and Gao [28]. The parametric model proposed by Yamagishi and Gao [28], standardized
in ITU-T Recommendation P.1201, uses information extracted from packet headers and
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network. Garcia et al. [5] proposed a parametric metric that uses impairment factors, which
are extracted from the bitstream or packet headers, to quantify the overall quality. Although
parametric metrics are faster than pixel-based video quality metrics, they are dependent on
the type of coding and transmission process, what makes them less generally applicable.
In other words, they cannot predict the quality of ‘offline’ content, like, for example, con-
tent transcoded among different compression standards/bitrates or processed using specific
signal processing techniques.

It is worth pointing out that, in previous works, one of the most popular combination
models is the linear model [5, 6, 27]. This model has the advantage of being very sim-
ple, however it does not provide a good accuracy performance. In fact, studies have shown
that better accuracy performance can be obtained when a power model, which inludes a
multiplicative cross term (audio quality × video quality), is used to predict audio-visual
quality [20]. In this work, besides testing linear and power models, we also tested Minkowki
models.

3 Psychophysical experiments

To design better audio-visual metrics, we first need to understand how audio and video
components interact with each other and how these components can be combined to produce
the overall audio-visual quality. With this goal, in this work, we use data collected from
human observers/listeners who participated in three psychophysical experiments. Using the
subjective responses from all participants we were able to measure the audio, video, and
audio-visual quality of compressed audio-visual signals.

The experiments are part of the UnB Audio-Visual Quality (UnB-AVQ) Database 1. In
these experiments, six original high definition video sequences (with audio and video com-
ponents) from The Consumer Digital Video Library1 are used. Representative frames of
the original sequences are shown in Fig. 1. Each sequence is eight seconds long and has a
spatial and temporal resolution of 1280×720 (720p) and 30 frames per second (fps) respec-
tively. Each source sequence was compressed using four video bitrates and three audio
bitrates. The video and audio components were individually compressed and, then, com-
bined. The bitrate values were chosen to provide similar ranges of quality for the audio
and video sequences. Specifications of the codecs, bitrates, and number of sequences are
listed in Table 1. Detailed information regarding the UnB-AVQ database can be found in a
previous work [14].

All three experiments were conducted following the International Telecommunications
Union (ITU) recommendation ITU-R. BT-500 [10], which details the necessary equipment,
the physical conditions, the selection of participants, and the experimental methodology.
The experiments were run with two participants at a time. Therefore, two separate desk-
top computers, two LCD monitors, and two sets of earphones were installed in the room.
Detailed specifications of the equipment used in the experiments are depicted in Table 2.
Experiments took place in a recording studio (sound proof) with the lights completely
dimmed to avoid any light reflection on the monitors. Distance between subject’s eyes and
the monitor was set at three screen heights (3H), in accordance with ITU-R. BT-500 [10].

1http://www.cdvl.org.

http://www.cdvl.org
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(a) (b)

(c) (d)

(e) (f)

Fig. 1 Sample frames of the original videos from the UnB Audio-Visual Quality (UnB-AVQ) Database 1,
available at http://www.ene.unb.br/mylene/databases.html

Participants were volunteers from the University of Brasilia, Brazil. They were mostly
graduate students from the departments of Computer Science and Electrical Engineering.
No particular vision or hearing test was performed on the participants. But, they were

Table 1 Detailed Specifications for Experiments I-III of UnB Audio-Visual Quality (UnB-AVQ) Database 1

Experiment I Experiment II Experiment III

Component Video Audio Audio + Video

Bitrate 30, 2, 1, 0.8 MB/s 128, 96, 48 KB/s 128, 96, 48 KB/s

30, 2, 1, 0.8 MB/s

Codec H.264 MPEG-1 Layer 3 MPEG-1 Layer 3

H.264

# Test seq. 30 24 78

# Subjects 16 16 17

Download from: http://www.ene.unb.br/mylene/databases.html

http://www.ene.unb.br/mylene/databases.html
http://www.ene.unb.br/mylene/databases.html
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Table 2 Technical specifications of monitors and earphones used in the subjective experiments

Monitor 1 Samsung SyncMaster P2370

Resolution: 1,920×1,080; Pixel-response rate: 2 ms;

Contrast ratio: 1,000:1; Brightness: 250 cd/m2

Monitor 2 Samsung SyncMaster P2270

Resolution: 1,920×1,080; Pixel-response rate: 2 ms;

Contrast ratio: 1,000:1; Brightness: 250 cd/m2

Earphones Philips SHL580028 Headband Headphones

Sensitivity: 106 dB; Maximum power input: 50 mW;

Frequency response: 1028 Hz; Speaker diameter: 40 mm.

asked to wear glasses or contact lenses if they needed them to watch TV. The number of
participants for each experiment is depicted in Table 1

Regarding the assessment method, a double-stimulus continuous quality-scale method-
ology was applied (ITU Recommendation BT-500 [10]). Such metho-dology implies that,
for each trial of the experiment, two sequences (with the same content) are presented to the
participant: a reference sequence and a test sequence. After these two sequences are pre-
sented (in random order), participants are asked to give a quality score for each sequence.
Additionally, to familiarize the participant with the test procedure and guarantee reliable
results, Display and Training sessions were included at the beginning of the experiment.

In Experiment I, subjects evaluated the quality of video (only) sequences compressed
using the H.264 codec. In Experiment II, subjects evaluated the quality of audio (only)
sequences compressed with MPEG-I layer-3 codec. Finally, in Experiment III, both audio
and video components were independently compressed and subjects evaluated the overall
audio-visual quality.

For all experiments, the quality scores were averaged over the subjects to produce a Mean
Opinion Score (MOS) for each test sequence, presented in a 0 – 100 range. Figure 2 presents
a scatter plot with results from the subjective experiments for each single component (audio
and video). After analysing the experimental results, we observed that the bitrate of the
video component has a higher impact on the global audio-visual quality than the bitrate of
the audio component. Also, the characteristics of both video and audio content affect the

Fig. 2 Subective Results Unb
AVQ Database 1, available at
http://www.ene.unb.br/mylene/
databases.html
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perceived audio-visual quality [13, 14]. The videos and the corresponding subjective data
of the UnB Audio-Visual Quality (UnB-AVQ) Database 1 are available for download at the
website of the Group of Digital Signal Processing of the University of Brasilia.2

4 Perceptual quality models

Based on the results gathered from Experiments I-III, we developed a set of subjective
audio-visual quality models. Similarly to what is found in the literature [6], three functions
were used to combine the audio and video MOS values, referred as MOSa and MOSv),
respectively.

The first subjective audio-visual quality model is a simple linear model, given by the
following equation:

PrMOS1 = α · MOSv + β · MOSa + γ. (1)

The fitting returned three scaling coefficients denoted by α, β (video and audio regression
coefficients, respectively), and γ (an intercept).

The second model is a weighted Minkowski function, given by:

PrMOS2 = (α · MOSp
v + β · MOSp

a )
1
p . (2)

Similarly, the fitting for the second model returned three coefficients denoted by α, β,
(weight coefficients for video and audio, respectively) and ρ (a power coefficient).

The third subjective model is a power model, given by:

PrMOS3 = (γ + α · MOSp
v · MOSp

a ). (3)

The fitting for the third model resulted in four coefficients, denoted by γ (an intercept
coefficient), α (a weight coefficient), and ρ1, ρ2 (power coefficients for video and audio,
respectively).

Pearson Correlation Coefficients (PCC) for all three perceptual models are depicted in
Table 3. By comparing all three models results, we noticed that the power model (PrMOS3)
had a slightly better performance in terms of correlation, reaching a Pearson Correlation
Coefficient (PCC) of 0.92. Further analysis showed that the models PrMOS2 and PrMOS3
had good correlation values for lower bitrate levels (i.e., higher levels of compression).

Inspired by these subjective audio-visual models, we combine a set of well-known audio
and video quality metrics using all 3 combination models. This resulted in a set of FR and
NR audio-visual quality metrics, which are described in the following sections.

5 FR audio-visual metrics

To design a FR audio-visual quality metric, we use 3 video quality metrics and 2 audio qual-
ity metrics. The chosen audio quality metrics are: the perceptual evaluation of audio quality
(PEAQ) [23], a well-known standardized algorithm, and the virtual speech quality objective
listener (VISQOL) [7], which has a good performance in comparis6on to other audio met-
rics [8, 9]. Additionally, both audio metrics are computationally inexpensive. Meanwhile,
the chosen video metrics are: the video quality metric (VQM) [19], the peak signal-to-noise

2http://www.ene.unb.br/mylene/databases.html.

http://www.ene.unb.br/mylene/databases.html
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Table 3 Pearson correlation coefficients (PCC) of subjective models tested on low and high quality material
sub-sets

Video bitrate Audio bitrate Number of PCC PCC PCC

(Mbps) (Kbps) Sequences PrMOS1 PrMOS2 PrMOS3

Low (1, 0.8) All (48, 96, 128) 36 0.8050 0.8178 0.8214

Low (48, 96) 24 0.8227 0.8539 0.8540

High (128) 12 0.6971 0.7268 0.7307

High (2, 30) All (48, 96, 128) 36 0.8602 0.8769 0.8944

Low (48, 96) 24 0.7891 0.8161 0.8441

High (128) 12 0.9034 0.9119 0.8933

Global Results 78 0.9110 0.9197 0.9285

All values in bold type represent the best correlation results among the different values

ratio (PSNR), and the structural similarity (SSIM) index [26]. All three metrics are very
well-known FR metrics, with relatively low computational complexity.

To obtain an audio-visual FR quality metric, the output of an audio metric and the output
of a video metric are combined using one of the models described in Section 4. In total, 6
FR combination metrics (3 video × 2 audio) were tested for each model (linear, Minkowski,
and power), resulting in 18 different combinations of FR metrics. Table 4 shows the Pearson
and Spearman Correlation Coefficients (PCC and SCC, respectively) corresponding to the
results of all 18 FR audio-visual combination metrics tested on the data of Experiment III.
Additionally, correlation coefficients for the individual audio and video metrics are depicted
at Table 5.

Notice that the audio and video metrics VISQOL and VQM have the best individ-
ual accuracy performances, reaching coefficient values around 0.40 and 0.70, respectively.
The VQM-VISQOL combination metric has the best correlation coefficients, with values
above 0.8 for all three models (linear, Minkowski, and power). In particular, the power
model provides the best results (among all three models) with a PCC and SCC of 0.82
and 0.81, respectively. For the other combination metrics, a slightly better performance is
obtained with the linear and power models. On the other hand, the PSNR-PEAQ and SSIM-
PEAQ Minkowski combination metrics has the smallest correlation values. Analysing these

Table 4 Pearson and Spearman Correlation Coefficients (PCC and SCC) of the 18 FR audio-visual metrics
– tested on UnB Audio-Visual Quality (UnB-AVQ) Database 1

Video Audio Linear Minkowski Power

PCC SCC PCC SCC PCC SCC

VQM VISQOL 0.818 0.807 0.819 0.819 0.822 0.817

PEAQ 0.753 0.778 0.691 0.710 0.720 0.736

PSNR VISQOL 0.750 0.741 0.745 0.730 0.757 0.749

PEAQ 0.703 0.698 0.606 0.603 0.657 0.650

SSIM VISQOL 0.707 0.704 0.667 0.664 0.710 0.720

PEAQ 0.629 0.648 0.571 0.655 0.632 0.649

All values in bold type represent the best correlation results among the different values
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Table 5 Pearson and Spearman Correlation Coefficients (PCC and SCC) of the individual FR audio and
video metrics – tested on UnB Audio-Visual Quality (UnB-AVQ) Database 1

Audio Video

Single Metric VISQOL PEAQ VQM PSNR SSIM

PCC 0.424 −0.320 0.709 0.657 0.570

SCC 0.404 −0.321 0.736 0.651 0.662

results, we notice that a better integration capacity is achieved using the linear and power
combination models.

To test if the differences in Table 4 are statistically significant, a two-tailed t-test was per-
formed on the SCC values, considering 15 trials. These trials were set by randomly selecting
4 out of 6 original videos in the Database I and, then, calculating the SCC value. The
SCCs values for each combination metric are then grouped and compared with each other.
Figure 3 presents the box plot of the SCC values for each of the 18 FR audio-visual metrics.

T-test results for all FR combination metrics are presented in Table 6. Each cell in this
table reports the null hypothesis test (95% confidence interval) between the pairs of mean
correlation values of the combination metrics in the corresponding row and column. A cell
value equal to “1” denotes that the performance of the row combination is statistically supe-
rior to the performance of the column combination, while a value “−1” denotes that the
performance of the row combination metric is statistically worse than the performance of
the column combination metric. Finally, a value of “0” denotes that both row and column
combination metrics are statistically equivalent, in other words, the null hypothesis cannot
be rejected.

From the results depicted in Table 6, the superior performance of the VQM-VISQOL
combination metric, over all combination metrics, is confirmed. However, the results also
show that there is no significant difference between the three models (linear, Minkowski,
and power) for the VQM-VISQOL combination metric (t-Test results equal to “0”). Next,
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Fig. 3 Box plot of the SCC values of 18 audio-visual FR combination metrics, across 15 trials for UnB
Audio-Visual Quality (UnB-AVQ) Database 1. Labels: V1 = VQM, V2 = PSNR, V3 = SSIM, A1 =
VISQOL, A2 = PEAQ, L = Linear, M = Minkowski, P = Power
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Table 6 Results of two-tailed t-Test executed on the SCC values obtained from 15 trials among the 18 FR
audio-visual metrics for UnB Audio-Visual Quality (UnB-AVQ) Database 1

Value “1” denotes row metric is superior to the column metric. Value “−1” denotes row metric worse to the
column metric. Value of “0’ denotes both row and column metrics equivalent

the performance of the PSNR-VISQOL combination metric for the three models (linear,
Minkowski, and power) and of the VQM-PEAQ combination metric for the linear model
are superior to the performance of most of the other combination metrics. The weakest
performance corresponded to the combination metrics PSNR-PEAQ and SSIM-PEAQ.

6 NR audio-visual metrics

The NR audio-visual metrics are obtained using 4 NR video quality metrics and 2 NR audio
quality metrics. The chosen audio metrics are the original and reduced versions of the single
ended speech quality assessment metric (SESQA and RSESQA) [12]. The SESQA metric,
originally proposed for speech quality, and its reduced version RSESQA, both have a good
accuracy performance for generic audio sequences [13]. Moreover, they are among the few
NR Speech/Audio metrics currently available in the literature. Meanwhile, the chosen NR
video metrics are: a blockiness-blurriness (BB) metric [25], the blind/referenceless image
spatial quality evaluator (BRISQUE) [15], the blind image quality index (BIQI) [17], and
the naturalness image quality evaluator (NIQE) [16]. These metrics were selected due to
their low computational complexity and their good accuracy performance.
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Table 7 Pearson and Spearman Correlation Coefficients (PCC and SCC) of NR audio-visual combination
metrics – tested on UnB Audio-Visual Quality (UnB-AVQ) Database 1

Video Audio Linear Minkowski Power

PCC SCC PCC SCC PCC SCC

BB RSESQA 0.793 0.797 0.778 0.792 0.810 0.807

SESQA 0.614 0.678 0.614 0.676 0.646 0.676

BRISQUE RSESQA 0.541 0.494 0.544 0.504 0.537 0.453

SESQA 0.379 0.324 0.365 0.283 0.407 0.317

BIQI RSESQA 0.549 0.511 0.582 0.571 0.511 0.478

SESQA 0.413 0.430 0.413 0.423 0.504 0.500

NIQE RSESQA 0.541 0.494 0.543 0.506 0.540 0.456

SESQA 0.379 0.324 0.369 0.291 0.408 0.333

All values in bold type represent the best correlation results among the different values

The outputs of an audio metric and a video metric (both NR) are combined using all
combination models described on Section 4. A total of 8 NR combination metrics (4 video
× 2 audio) were tested using the three combination models (linear, Minkowski, and power),
what produced 24 different NR audio-visual quality combination metrics. Table 7 shows
the PCCs and SCCs for all 24 NR audio-visual combination metrics tested on the data
the audio-visual UnB Audio-Visual Quality (UnB-AVQ) Database 1. Results show that the
BB-RSESQA combination metric presents the best performance. For this metric, the power
model has a slightly better performance (PCC = 0.81) when compared to the other two
models. There is no clear performance superiority among the three models, but the power
model has a slight advantage. Combinations metrics BRISQUE-SESQA and NIQE-SESQA
presented the lowest correlation values.

The correlation coefficients corresponding to the individual performance of all audio
and video metrics are shown at Table 8. These correlation values show that the proposed
combination models are able to significantly improve the quality prediction. In fact, an
analysis of all correlation coefficients indicates that all combination models improved the
performance, with the power model presenting a slightly better integration capacity.

Again, two-tailed t-test was performed to determine whether the differences in correla-
tion values between pairs of combination metrics are statistically significant. Here, we used
the same parameters and methodology used for the set of FR combination metrics. Figure 4
shows the box plot of the SCC values for each of the 24 NR audio-visual combination
metrics. T-test results for all NR combination metrics are presented in Table 9.

Results in Table 9 confirm that the BB-RSESQA combination metric has the best per-
formance among all combination metrics. Yet, the differences in correlation among the

Table 8 Pearson and Spearman Correlation Coefficients (PCC and SCC) of the individual NR audio and
video metrics – tested on UnB Audio-Visual Quality (UnB-AVQ) Database 1

Audio Video

Single Metric RSESQA SESQA BB BRISQUE BIQI NIQE

PCC 0.432 0.132 0.614 0.317 0.306 0.317

SCC 0.380 0.280 0.670 0.290 0.328 0.289
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Fig. 4 Box plot of SCC values from 24 audio-visual NR metrics, across 15 trials in UnB Audio-Visual
Quality (UnB-AVQ) Database 1. Labels: V1 = BB, V2 = BRISQUE, V3 = BIQI, V4 = NIQE, A1 =
RSESQA, A2 = SESQA, L = Linear, M = Minkowski, P = Power

three combination models are not statistically significant. Surprisingly, using the Minkowski
model for the BIQI-RSESQA combination metric results in a very good performance, only
inferior to the performance of the BB-RSESQA and BB-SESQA combination metrics.

Table 9 Results of two-tailed t-Test executed on the SCC values obtained from 15 trials among the 24 NR
audio-visual metrics in Database I

Value “1” denotes row metric is superior to the column metric. Value “−1” denotes row metric worse to the
column metric. Value of “0’ denotes both row and column metrics equivalent
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(c)(b)(a)

(f)(e)(d)

(i)(h)(g)

(j)

Fig. 5 Sample frames of the original videos of the NTIA Database [21]

Finally, the weakest performance corresponds to the BRISQUE-SESQA and NIQE-SESQA
combination metrics.

7 NTIA audio-visual database analysis

Both sets of FR and NR audio-visual combination metrics were tested on a second database
(NTIA Database), provided by The National Telecommunications and Information Admin-
istration (NTIA) [21]. This database contains sequences with audio and video components
at VGA resolution (640 × 480, 4:2:2, 30 fps). For each original sequence, there are 5 test
conditions, which correspond to different combinations of audio (8, 32, 64 KB/s ) and video
(100, 192, 250, 448, 500, 1000 KB/s) bitrates. Representative frames of the original videos
are shown in Fig. 5. Each quality estimate obtained with all 18 FR and 24 NR audio-visual
combination metrics are compared to the 10 subjective scores of the NTIA Database, which
were gathered from 10 experiments performed in 6 different laboratories.
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Table 10 Pearson and Spearman Correlation Coefficients (PCC and SCC) of the 18 FR audio-visual metrics
– tested on NTIA Audio-Visual Database [21]

Video Audio Linear Minkowski Power

PCC SCC PCC SCC PCC SCC

VQM VISQOL 0.520 0.544 0.521 0.543 0.522 0.530

PEAQ 0.402 0.412 0.407 0.425 0.412 0.468

PSNR VISQOL 0.425 0.434 0.447 0.454 0.449 0.464

PEAQ 0.265 0.283 0.298 0.293 0.301 0.372

SSIM VISQOL 0.431 0.462 0.455 0.471 0.468 0.485

PEAQ 0.219 0.248 0.251 0.259 0.302 0.501

All values in bold type represent the best correlation results among the different values

Table 11 Pearson and Spearman Correlation Coefficients (PCC and SCC) of the individual FR audio and
video metrics – tested on NTIA Audio-Visual Database [21]

Audio Video

Single Metric VISQOL PEAQ VQM PSNR SSIM

PCC 0.285 0.132 0.241 0.203 0.242

SCC 0.351 0.250 0.253 0.209 0.245

C
O

R
R

E
L

A
T

IO
N

0,7

0,6

0,5

0,4

0,3

0,2

0,1

METRIC COMBINATION

V
3-

A
2-

P

V
3-

A
2-

M

V
3-

A
2-

L

V
3-

A
1-

P

V
3-

A
1-

M

V
3-

A
1-

L

V
2-

A
2-

P

V
2-

A
2-

M

V
2-

A
2-

L

V
2-

A
1-

P

V
2-

A
1-

M

V
2-

A
1-

L

V
1-

A
2-

P

V
1-

A
2-

M

V
1-

A
2-

L

V
1-

A
1-

P

V
1-

A
1-

M

V
1-

A
1-

L

Fig. 6 Box plot of the SCC values for the 18 audio-visual FR combination metrics, tested on the NTIA
audio-visual Database. Labels: V1 = VQM, V2 = PSNR, V3 = SSIM, A1 = VISQOL, A2 = PEAQ, L =
Linear, M = Minkowski, P = Power
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For the FR combination metrics, the average PCCs and SCCs obtained for all 10 datasets
are shown in Table 10. Notice that all metrics have much lower correlation coefficients for
this database, barely reaching 0.5. Although these results present lower correlations than
the ones obtained for the UnB-AVQ Database 1, the VQM-VISQOL combination metric
has a superior performance, in agreement with what was observed in our previous analy-
sis. In fact, this combination has the best correlation values (between 0.52 and 0.54) for
all three models (linear, Minkowski, and power), with no combination model standing out
from the rest. Also, the PSNR-PEAQ and SSIM-PEAQ combinations presented the lowest
correlations values, in agreement with the results observed for the UnB-AVQ Database 1.

The performance of the individual audio and video metrics are shown at Table 11. It is
interesting to notice that VISQOL has a slightly better performance than the three other
video quality metrics, although all the individual metrics have a very good performance.
The analysis of the correlation values for the individual metrics and for their combination
indicate that the three combination models provide a similar accuracy performance.

To verify whether the differences in correlation values are statistically relevant, a t-test
was carried out. For this case, each of the 18 FR combination metrics produced a set of 10

Table 12 Results of two-tailed t-Test executed on the SCC values obtained from 10 subjective experiments
(NTIA audio-visual Database) among the 18 FR audio-visual metrics

Value “1” denotes that the row metric is superior to the column metric. Value “−1” denotes that the row
metric worse to the column metric. Value of “0’ denotes that both row and column metrics equivalent
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Table 13 Pearson and Spearman Correlation Coefficients (PCC and SCC) of NR audio-visual combination
metrics – tested on NTIA audio visual Database [21]

Video Audio Linear Minkowski Power

PCC SCC PCC SCC PCC SCC

BB RSESQA 0.735 0.740 0.754 0.756 0.758 0.760

SESQA 0.741 0.714 0.741 0.704 0.743 0.704

BRISQUE RSESQA 0.412 0.430 0.465 0.433 0.449 0.404

SESQA 0.412 0.424 0.488 0.508 0.388 0.473

BIQI RSESQA 0.476 0.479 0.527 0.460 0.468 0.454

SESQA 0.464 0.459 0.484 0.508 0.451 0.460

NIQE RSESQA 0.387 0.403 0.448 0.431 0.452 0.381

SESQA 0.397 0.427 0.451 0.488 0.391 0.452

All values in bold type represent the best correlation results among the different values

correlation scores, which resulted from the comparison of the predicted quality and the sub-
jective score gathered in each of the experiments. These correlation scores were grouped
and used in a two-tailed t-test (95% confidence interval). Figure 6 shows the box plot of the
SCC values of each of the 18 FR combination metrics, tested on Database II. Table 12 shows
the t-test results of all these FR combination metrics. The VQM-VISQOL combination met-
ric presents the best performance. Additionally, all three models of the combination metrics
PSNR-VISQOL and SSIM-VISQOL exhibit a superior performance when compared to the
other combination metrics. Moreover, the power model for the SSIM-PEAQ combination
metrics also present a good performance. In summary, although these results are in agree-
ment with the ones obtained for the UnB-AVQ Database 1 (see Section 5), but they show a
considerable drop in the correlation values.

The set of NR audio-visual metrics was also tested on the NTIA audio-visual Database.
Table 13 shows the average PCCs and SCCs for this database. A simple analysis suggests
that the BB-RSESQA and BB-SESQA combination metrics performed much better than the
rest of the combination metrics (PCC and SCC above 0.70). As for the combination models,
a small advantage is observed for the Minkowski model. For this particular database, it is
not possible to determine which audio metric has the better performance, but it is clear that
the BB has the best performance among the video metrics. In a more global analysis, these
results are (surprisingly) better than the results obtained for the FR metrics (see Table 10).

Analysing the individual performance of the metrics (Table 14), we observe that there
is no considerable difference between the performance of the audio metrics RSESQA and

Table 14 Pearson and Spearman Correlation Coefficients (PCC and SCC) of the individual NR audio and
video metrics – tested on NTIA audio visual Database [21]

Audio Video

Single Metric RSESQA SESQA BB BRISQUE BIQI NIQE

PCC 0.364 0.357 0.633 0.052 0.172 0.010

SCC 0.360 0.390 0.619 −0.001 0.123 −0.063
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Fig. 7 Box plot of the SCC values for the 24 audio-visual NR combination metrics, tested on the NTIA
Database. Labels: V1 = BB, V2 = BRISQUE, V3 = BIQI, V4 = NIQE, A1 = RSESQA, A2 = SESQA, L
= Linear, M = Minkowski, P = Power

SESQA. Regarding the video metrics, there is a substantial gap between the performance
of the BB metric and the performance of the rest of the video quality metrics. In terms of
integration capacity, all three models presented a similar accuracy performance, with the
Minkowski model performing slightly better.

Table 15 Results of two-tailed t-Test executed on the SCC values obtained from 10 subjective experiments
(NTIA audio-visual Database) among the 24 NR audio-visual metrics

Value “1” denotes row metric is superior to the column metric. Value “−1” denotes row metric worse to the
column metric. Value of “0’ denotes both row and column metrics equivalent
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A two-tailed t-test was carried out in order to verify the significance of the differences
among the correlation values obtained by the NR audio-visual metrics for the 10 subjective
experiments from NTIA audio-visual Database. A box plot of the SCCs scores for all 24 NR
audio-visual metrics is depicted in Fig. 7. Table 15 presents the results of this t-test. Notice
that the BB-RSESQA and BB-SESQA combination metrics have a superior performance
for all three models (linear, Minkowski, and power). Moreover, among the remaining NR
metrics, for most of combination metrics, a better performance is obtained for the linear
model.

8 Conclusions

In this work, we studied the use of combination models to integrate single audio and video
quality estimates with the goal of predicting the overall audio-visual quality. To obtain the
audio and video quality estimates, we used a set of mature and sufficiently tested audio
and video quality metrics, considering both FR and NR approaches. For the FR approach,
we chose 3 video quality metrics (VQM, PSNR, and SSIM) and 2 audio quality metrics
(VISQOL and PEAQ), while for the NR approach, we chose 4 video quality metrics (BB,
BRISQUE, BIQI, NIQE) and 2 audio quality metrics (RSESQA and SESQA). The individ-
ual predictions of audio and video quality metrics were integrated using three combination
models: linear, Minkowski, and power. The audio and video metrics were combined and
this resulted in 18 FR and 24 NR audio-visual quality metrics.

All 18 FR and 24 NR metrics were tested on two different audio-visual databases. For the
FR type of metric, a considerable difference of the correlations is observed between the two
databases under study (above 0.8 for UnB-AVQ Database I and 0.5 for NTIA audio-visual
Database). Nevertheless, the VQM-VISQOL combination metric presented the best results
for both databases. This combination metric performed well for all three combination func-
tions, with a small advantage of the power model. It was also observed that metrics like
PSNR, SSIM (video) and PEAQ (audio) did not perform very well on any of the databases.
Meanwhile, for the NR audio-visual metrics, the BB-RSESQA and BB-SESQA combi-
nations presented a superior performance for both databases. These combination metrics
presented an equivalent performance for the three models (linear, Minkowski, and power).
On the other hand, video quality metrics like BRISQUE and NIQE did not perform well in
any of the databases.

Observing the performance of the individual metrics, we noticed that the three combin-
ing models have a good integration capacity. It is worth pointing out that, out of the three
models, only the linear model was previously used for combining audio and video objective
scores. Therefore, one of the goals of this work was to test different combination mod-
els and study their integration capacity, in terms of accuracy performance. Although the
results are promising, we believe an improvement in performance can be obtained by taking
into account the interaction between the human visual and auditory systems. Also, better
performance can be achieved using more complex combination models (e.g. machine learn-
ing based algorithms). Finally, we need to perform tests using more diverse audio-visual
databases, containing several types of audio and video degradations. Unfortunately, up to
our knowledge, this type of database is not currently available.
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