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Abstract

In this paper, we propose a new video quality metric based on a set of multiple features that incorporate
texture, saliency, spatial activity, and temporal attributes. A random forest regression algorithm is used
to combine these features and obtain a video quality score. Experimental results show that the proposed
metric has a good performance when tested on several benchmark video quality databases, outperforming
current state-of-the-art full-reference video quality metrics.
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1. Introduction

Due the wide popularity of services that acquire,
store, transmit, and display visual content, digi-
tal videos are progressively becoming part of the
day-to-day lives of people. According to CISCO™,
in 2021, 60 percent of all consumer Internet traffic
will be from video applications [1]. Because of this,
service providers concentrate a lot of effort trying
to improve the quality of their service. This ef-
fort involves controlling the quality of the delivered
videos, what requires the use of methods for evalu-
ating the perceptual quality of digital videos.

There are two approaches for assessing the qual-
ity of videos. The first approach uses subjec-
tive video quality assessment (SVQA) methods.
SVQA methods collect quality judgments from hu-
man viewers by performing psychophysical experi-
ments in controlled laboratory environments. Al-
though reliable, these experiments are typically
ponderous, time-consuming, and expensive. Un-
fortunately, most multimedia applications require
feasible quality assessment methodologies that do
not require the presence of human viewers.

The second approach for assessing video quality
consists of using objective video quality assessment
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(OVQA) methods. OVQA methods use computer
algorithms to automatically estimate video quality.
Nevertheless, the design of OVQA methods gen-
erally includes tests on a video quality database.
These databases include a set of unimpaired video
content or source sequences (SRC) and a set of im-
paired videos or processed video sequences (PVS),
which are generated by individually processing each
SRC and may contain different types of distortions.
In quality databases, all sequences have an associ-
ated subjective quality score - the mean opinion
score (MOS), which is produced by using a SVQA
method [2].

According to Shahid et al. [3], OVQA methods
can be classified into three categories, depending
on the degree of information that is used from SRC.
Full reference (FR) methods are based on compar-
isons of PVS and SRC, when the entire SRC is avail-
able as reference. Reduced reference (RR) methods
are also based on comparisons of PVS and SRC
videos, but in this case only representative features
of the SRC (instead of the complete reference infor-
mation) are used. No-reference (NR) methods do
not require access any information about the SRC
to assess quality of the PVS. In this paper, we pro-
pose a FR OVQA method.

FR OVQA methods use some chosen criteria to
measure the quality difference between the PVSs
and their corresponding SRCs. Ideally, the qual-
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ity estimated by an OVQA must be in well corre-
lated with the subjective scores available in reliable
quality databases. To achieve this, most success-
ful OVQA methods take into consideration models
of the human visual system (HVS), which describe
how the spatial and temporal properties of the con-
tent affect quality [4].

Spatial-based OVQA methods usually compare
the PVS and its corresponding SRC to estimate
the presence and strengths of typical spatial dis-
tortions [5]. Examples of spatial distortions that
are frequently introduced along the communication
chain and are, therefore, visible to users in most
multimedia applications include ringing, additive
noise, blurring, blocking, mosaic patterns, among
others. For example, blocking, mosaic patterns,
and blurring distortions are introduced by several
compression algorithms, such as MPEG-1, MPEG-
2, MPEG-4, and H.264 [6]. Ringing, on the other
hand, is mostly introduced by compression algo-
rithms that do not use a block-based decompo-
sition, such as Motion JPEG-2000 [7]. Additive
noise, which is a grainy perturbation on frame tex-
tures, may be introduced during image acquisition
and transmission stages.

To assess spatial degradations, a common ap-
proach consists of using an image quality assess-
ment (IQA) method to compute a quality score for
each PVS frame. Then, a temporal strategy is used
to pool these (frame) IQA scores into an overall
quality score. For example, Seshadrinathan and
Bovik [8] proposed a temporal hysteresis model to
pool scores obtained with PSNR and SSIM [9] met-
rics into an overall video quality score. Using this
temporal model provides a better prediction accu-
racy than taking a simple average of the quality
scores of the video frames, an approach which has
been shown to be inadequate to video quality [10].

Although it is possible to evaluate video qual-
ity using an IQA method to estimate the quality of
each individual frame, this approach fails to identify
the presence of temporal distortions [10]. Temporal
distortions are impairments that change over time
and, often, alter the intensity and movement trajec-
tories of the pixels in a video sequence. These dis-
tortions may introduce a false perception of move-
ment because of the introduction of additional tem-
poral frequencies [11]. Examples of temporal distor-
tions that are common in multimedia applications
include motion compensation mismatch, mosquito
noise, ghosting, smearing, and jerkiness, among
others [5].

Some OVQA methods [12, 13] measure the
amount of temporal distortions using optical flow
algorithms [14, 15]. For instance, Manasa and
Channappayya [16] proposed an OVQA method
that compares optical flow statistics of SRC and
PVS videos, assuming that these statistical differ-
ences are proportional to the severity of the tem-
poral distortions. Similarly, Seshadrinathan and
Bovik [11] proposed a VQA algorithm that uses an
optical flow motion estimation algorithm to capture
the severity of temporal artifacts in videos.

Digital videos are composed by a sequence of
temporally redundant images (frames). Therefore,
a natural assumption is that video quality should
be modeled using a combination of spatial and tem-
poral information, i.e. the design of OVQA meth-
ods should incorporate spatio-temporal HVS mod-
els. Seshadrinathan and Bovik [17] proposed the
MOVIE index, which is an OVQA method that
uses 3-D Gabor filters to assess quality in both spa-
tial and temporal domains. Vu and Chandler [18]
proposed an OVQA algorithm that splits the video
into spatio-temporal slices to capture both spatial
and temporal distortions. Finally, Peng et al. [19]
proposed a motion-tuning scheme, which captures
temporal distortions along motion trajectories by
exploiting the space-time texture.

Although the methods cited above are state-of-
the-art methods, they are not sensitive to a wide
range of video distortions. To overcome this issue,
in this paper we propose an OVQA method based
on a combination of spatio-temporal features, such
as multiscale local binary patterns [20], structural
similarity [9], gradient magnitude similarity devia-
tion [21], Riesz pyramids phase-based features [22],
and spatial and temporal distortion measures [23].
To predict the overall video quality, these features
are used as input to a regression algorithm. The
proposed model achieves a good prediction perfor-
mance when compared with other state-of-the-art
methods.

The rest of this paper is organized as follows. Sec-
tion 2 describes the the proposed OVQA method.
Sections 3 and 4 present the experimental setup and
results, respectively. Finally, Section 5 presents the
conclusions.

2. Proposed Method

In the proposed OQVA method, separate feature
sets are computed independently from each other.
These features sets are the following:
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Figure 1: Block diagram of proposed method.
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Each of these feature sets are computed for the ref-
erence (SRC) and the test (PVS) videos. For each
feature component, a pooling strategy is adopted
and the pooled values are concatenated to gener-
ate a feature vector. Finally, the feature vector is
used as input in a random forest regressor (RFR) to
predict the quality score. Fig. 1 depicts a block dia-
gram of the proposed method. In the next sections,
we describe each feature set used in the proposed
method.

2.1. Spatial Activity

The Spatial Activity (SA) of a pair of frames
(SRC and PVS) is computed by taking the root
mean square (RMS) difference between the Sobel
maps of each of the frames. More specifically, let S
be the Sobel operator [24] defined as:

8(z) = \/(Gr#2) + (G = 2)?, (1)

where z is the frame picture, * denotes the 2-
dimensional convolution operation, G is the ver-
tical Sobel filter, given by:

10 —1
Gi=1[2 0 -2, (2)
10 —1

and G| is the transpose of Gy (horizontal Sobel
filter).

Fig. 2 illustrates how the Sobel operator cap-
tures spatial distortions. Fig. 2-(a) and (b) show
the frames with and without distortions, respec-
tively. Their corresponding Sobel maps are shown
in Fig. 2-(c) and (d).

Notice that the small dif-
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Figure 2: Effect of the spatial activity captured by the Sobel
filter: (a) reference frame, (b) distorted frame, (c) Sobel map
of the reference frame, and (d) Sobel map of the distorted
frame.



ferences between distorted and original frames are
emphasized by the Sobel operator.

Considering that v is a frame from SRC and u
is the same frame from PVS, we first compute the
Sobel map of both frames and take the difference
between these two maps:

s=38(u) —S). (3)

Then, we compute S A using the following equation:

SA@) = [ Sl @

where ¢ and j correspond to the horizontal and ver-
tical indices of s, respectively, and M and N are
the height and width of the frames, respectively.

2.2. Multiscale Salient Local Binary Patterns

To estimate degradations, the Multiscale Salient
Local Binary Patterns (MSLBP) operator makes
two main assumptions. The first assumption is that
visual distortions alter frame textures and their
statistics. So, frames with similar distortions and
similar distortion strengths have textures with sim-
ilar statistical properties [20, 25, 26, 27, 28]. The
second assumption is that salient visual areas are
more perceptually relevant to users than non-salient
areas. Therefore, visual attention models have been
shown to improve the performance of OVQA meth-
ods [29, 30]. These two assumptions can be com-
bined to design a feature descriptor that can be used
to predict quality. We propose a texture descriptor
that combines a visual attention model and a mul-
tiscale local binary pattern (MLBP) operator [20].

The MLBP operator was proposed by Freitas et
al. [20] and consists of a combination of several LBP
operators with different characteristics. A single
LBP is computed as follows:

P-1
Sty — tc)7 T < 2a
LBPg plz,yl = { =0 (tr

P+1, otherwise,

where t. is the value of the pixel at position (z,y),
t, is the value of its neighbor, P is the total num-
ber of considered neighbors, R is the radius of this
neighborhood, Y is given by:

T =[s(tp_1 —tc) —s(to — tc)]

P—-1
+ Z |§(tp - tc) - ((tp,1 - tc)|7
p=1

and the step function ¢(t) is given by:

“(t) = {1 - (©

0 otherwise.

The basic LBP described in the above equations is
used in several computer vision applications. How-
ever, for each application, the parameters R and P
that provide the best performance must be found.
Freitas et al. [20] proposed a new operator, which
is computed by varying the parameters R and P of
a single LBP and combining the results. This new
operator, called Multiscale Local Binary Patterns
(MLBP), has been used with success to estimate
image quality.

(c) BMS (d) SLBP

Figure 3: (a) Original frame, (b) a sample LBP, (c) corre-
sponding BMS map, and (d) resulting SLBP map.

In this work, we propose a modification to the
MLBP operator, which consists of incorporating
visual saliency. The proposed operator, the Mul-
tiscale Salient Local Binary Patterns (MSLBP), is
computed as follows. First, we estimate the saliency
of the different areas of a frame using a computa-
tional visual attention model. To keep the com-
putational complexity low, we chose the Boolean
map-based saliency (BMS) model [31]. When com-
pared with other state-of-the-art visual attention
models, BMS is noticeably faster, while still pro-
viding a good performance.

Next, we compute the M LBP, which gives the
local texture associated to each frame pixel, for a set
of parameters R and P. Fig. 3-(a), (b), and (c) de-
pict the original frame, one sample LB P image, and
the corresponding BM S map, respectively. The
BMS map is used to give a weight to each pixel
of the LBP maps, what is achieved by multiply-
ing each pixel of the LBP maps by the correspond-



HR=1,p=4

Hr=1,p=8

Hr=3,p=16

Figure 4: Multiple histogram generation from SLBP.

ing value of the BMS map. This weighting process
generates the salient local binary patterns (SLBP)
maps. Fig. 3-(d) shows a sample SLBP map for
Fig. 3-(a).

Then, we generate the histogram of the LBP
maps weighted by the BM S maps. The histogram
H = {h[0],R[1],--- ,h[P + 1]} is given by the fol-

lowing expression:

Aol =D > BMSi,j]- A(LBPLi, jl, @), (7)

? J

where

1 v=u,

Alv,u) = {0 otherwise. ®
As mentioned earlier, the MLBP operator generates
different LBP maps at different scales. We multi-
ply each of the generated LBP maps by the BMS
map in order to generate multiple SLBP at differ-
ent scales. Therefore, we acquire a set of MSLBP
maps and, then, compute the histograms for each
of these maps.

The MSLBP histograms describe the textures of
the videos, but not the differences in quality be-
tween the sequences u (SRC) and v (PVS). Since
the size of these histograms can be an issue, espe-
cially when we take into account the several frames
of a video, we compute the similarity between the
histograms of u, Hg,P, and v, Hg’P, using the fol-
lowing metric:

I§D(p,q) = PEPLIITREP@T) g

where

KLD(p0) = Y poyiox (55). (10
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Figure 5: Generation of the MSLBP feature set.

and

S GETC] )

In the above equations, p(x) and ¢(z) are the prob-
ability mass functions (PMF) representing the bins
of H g’ pand H X’ p, respectively. JSD is the Jensen-
Shannon divergence [32] and KLD is the Kullback-
Leibler divergence [33]. JSD was chosen because it
is a symmetric version of the mutual information
(KLD) and it is always a finite value [34].

Fig. 5 illustrates the construction of the MSLBP
feature set. After performing the steps depicted in
Fig. 4, for both u and v frames, JSD is used to
compute the divergences between the histograms
of v and v. The divergence values compose the
MSLBP feature vector (FV).

2.8. Multiscale Structural Similarity

The Structural SIMilarity (SSIM) index is a pop-
ular IQA method based on luminance, contrast, and
structure measures [9]. It is calculated using the
following equation:

(2puptn + C1) (2000 + C2)
(13 + p3 + C1)(of + 03 + Ca)’
(12)
where iy, oy are the average and standard devia-
tion of the frame f, o4 is the covariance of frames

SSIM (u,v) =
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Figure 6: Multiscale structural similarity measurement in-
dex. L: low-pass filtering, |: downsampling by factor 2.
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Figure 7: Multi-scale structural similarity index maps.

f and g, and C; and Cy are constants used to sta-
bilize divisions with a weak denominator. In this
work, we use the mean of the SSIM index map to
quantify the quality difference between of v and v,
at different scales [35]. Fig. 6 depicts the feature ex-
traction using the SSIM index for different scales,
while Fig. 7 shows the SSIM maps for four different
scales.

2.4. Gradient Magnitude Similarity Deviation

The Gradient Magnitude Similarity Deviation
(GMSD) is an IQA method based on the stan-
dard deviation of the gradient magnitude similarity
(GMS) map [21]. The GMS map is computed as
follows:

m(v) + ¢

GMS(u,v) = +m(v)2+c’

(13)

2-m(u) -
m(u)?

where u is the SRC frame, v is the PVS frame, cis a
positive constant that garantees numerical stability,

(c) GMS map

(a) Original (b) Distorted

Figure 8: Gradient magnitude similarity map.

and m(z) is defined as:

m(z) = /(2 % Ga)?

In the above equation, * denotes the convolution
operation, G5 represents the Prewitt filter along the
vertical direction, which is defined as:

+ (2% Gy )2 (14)

5o -3
Go= |3 0 —3|, (15)
1 1
3 0 —3

and G is the transpose of G, which corresponds
to the Prewitt filter along the horizontal direction.

Fig. 8-(c) depicts the GMS map, which serves as
a local quality map of the distorted frame. The
GMSD index is computed as follows:

GMSD(u,v) = \/ Y (GMS(u, v) — GMS(u, v))2,

(16)
where GM S(u,v) is the gradient magnitude simi-
larity mean, computed as follows:

GMS(u,v):—MZGMS(u,v). (17)

.9

2.5. Riesz Pyramids Similarity Deviation

Wadhwa et al. proposed a technique technique
to represent images, which is called Riesz pyra-
mids [22]. Their work was inspired by the work
of Simoncelli and Freeman [36]. The Riesz pyra-
mids make use of a highpass filter hy[n] and a low-
pass filter hy[n]. First, the frame is highpassed to
generate the top level of the pyramid. Next, the
frame is lowpassed and downsampled. This process
is recursively applied to the downsampled image to
generate the pyramid representation, as illustrated
in Fig. 9.

To generate the features using the Riesz pyra-
mids, we compare the highpassed v frames with the
highpassed v frames at each pyramid level. More
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Figure 9: Diagram of RPSD pyramid construction of both original and distorted frames. The lowpass and highpass filters can
be recursively used with subsampling to produce a sequence of critically bandpassed frames. The blocks | denote downsampling
by a factor of 2. L and H denote linear shift invariant lowpass and highpass filters, respectively.

specifically, for each level i, we compute the high-
passed version of the u (ul) and v (v}) frames. Us-
ing uf and v, we generate the i-th Riesz pyramid
similarity map (RPSM;), as follows:

2 n(ul) -n(l) +c

RPSM; (u,v) = () (ol o (18)

where
n(z) = \/(z % G3)? + (2% Gq )? (19)
and ) )
2 0 —3
Gi= |} 0 -3 2
bo -

From the the i-th Riesz pyramid similarity map, we
compute the Riesz Pyramids Similarity Deviation
(RPSD), as follows:

RPSD; (u, v) = \/ Yy (RPSMi(u, v) — RPSM; (a, 0) U)){

i

(21)
where RPSM; (u, v) is the mean of i-th RPSM map,
computed as follows:

_— 1

RPSM; (u,v) = +— ZJ RPSM; (u,v).  (22)
Finally, the RPSD feature set is composed by all
i-th RPSD values, given by:

RPSD(u,v) = {RPSD;(u, v), RPSDy(u, v),- - }.

2.6. Temporal Distortion Measures

Temporal distortion measures (TDM) are based
on the spatio-temporal texture representation pro-
posed by Derpanis & Wilders [23]. The texture

representation is computed using a bank of spatio-
temporal 3-rd derivative Gaussian filters, defined as
follows:
_ O @)

gge = %ke y (23)
where 0 is the unit vector that corresponds to the
spatio-temporal direction of the filter and k is a
normalization factor [37].

First, we compute the sum of the pointwise
squared response of the filter output over a space-
time region, €2, producing the following energy mea-
surement:

Eso(@,y,t) = D (Gs, * V(wy,0)?  (24)

z,y,teQ

where V is the input spatio-temporal signal (video).
Let & and & be the energy measurements,
along the direction kg of u and v, respectively. The
temporal distortion (TD) measure at (z,y,t) is ob-
tained by computing the distance between the two
corresponding energy distributions in u and v:

TD(z, y, 1) = \/Zw,;; (2, ,1) — 8 (2,5,1))2.
k

(25)
Finally, the TDM is computed along time:
TDM(t) = Y  TD(,y,1). (26)
z,y

2.7. Feature Pooling and Mapping

The formulation presented in the previous sec-
tions describes the generation of a set of values cor-
responding to each feature. To convert these sets of
values into a single score per feature, we use a fea-
ture pooling strategy based on the Minkowski norm.
The Minkowski norm is computed as follows:

Qr = o> fe(®), (27)



where fi(t) corresponds to the k-th feature at its
t-th value.

Next, the pooled features @Q1,Q2, - -@Q, are
treated as inputs to a random forest regression
(RFR) algorithm, which gives an estimated video
quality score. We choose the RFR method, rather
than the popular support vector regression (SVR),
because RFR does not require the hyper-parameter
tuning. Furthermore, RFR has been successfully
used in several pattern recognition applications [38§].

3. Experimental Setup and Protocol

There are a number of existing databases created
for the evaluation of video quality. In this work, we
use the following databases:

e Computational and Subjective Image Quality
(CSIQ) Video Database [39]: The database
contains 12 high-quality reference videos and
216 distorted videos from 6 different types of
distortion. All videos are in raw YUV420
format with a resolution of 832x480 pixels,
a duration of 10 seconds at 24, 25, 30, 50,
or 60 fps. The distortion types consist of
4 compression-based distortion types includ-
ing H.264 compression (H.264), HEVC/H.265
compression (HEVC), Motion JPEG compres-
sion (MJPEG), and Wavelet-based compres-
sion using the Snow codec (SNOW). The
database also include 2 transmission-based dis-
tortion types, namely wireless transmission
loss (WIRELESS), and additive white noise
(WN).

e Image and Video Processing Laboratory
(IVPL) Database [40]: The database contains
10 reference videos and 128 distorted videos
from 4 different types of distortion. All videos
are in raw YUV420 format with a resolution of
1920x1088 (progressive) at 25 fps. The dis-
tortion types consist of 3 compression-based
distortion types including H.264 compression
(H.264), Dirac coding (DIRAC), and MPEG2.
The database also include 1 transmission-
based distortion (IP).

e MediaCommLab Video (MCL-V)
Database [41]: The database contains 12
uncompressed source video clips with HD
resolution (1080p). The database captures
two typical video distortion types in video
streaming services, including compression

(H.264) and image size scaling (SD H.264).
Four distortion levels are adopted for each
distortion type. There are 96 distorted video
clips in total.

e Laboratory for Image & Video Engineering
(LIVE) Video Database [42]: The database
contains 10 high-quality reference videos with
15 distorted videos per reference in a total of
150 test videos. The videos files have pla-
nar YUV420 format with spatial resolution of
768x432 pixels. The distortion types consist of
2 compression-based distortion types, includ-
ing H.264 compression (H.264) and MPEG2.
The database also include 2 transmission-
based distortion, including simulated transmis-
sion of H.264 compressed bitstreams through
(1) error-prone IP networks and (2) error-
prone wireless networks. These two distor-
tions are grouped into a single category, named
“transmission errors” (TE).

e LIVE Public-Domain Subjective Mobile Video
Quality Database (LIVE-M) [43, 44]: The
database consists of 10 raw HD reference
videos and 200 distorted videos (4 compression
+ 4 wireless packet-loss 4+ 4 frame-freezes + 3
rate-adapted + 5 temporal dynamics per refer-
ence), each of resolution 1280x720 at a frame
rate of 30 fps, and of duration 15 seconds each.
For testing purposes, we excluded the frame-
freezes distortions.

We compared the proposed method with a set of
publicly available standard-of-the-art VQA meth-
ods. The chosen VQA methods are SSTS-
GMSD [45], STRRED [46], and ViS3 [18]. Addi-
tionally, we also compared the proposed algorithm
with three well-established IQA metrics, namely
PSNR, SSIM [9], GMSD [21].

In our test methodology, we adopted a grouped
shuffie split cross-validation approach. This ap-
proach consists of dividing each single database into
two content-independent subsets (training and test-
ing), where videos generated from one reference
(same content) in the testing subset are not present
in the training subset, and vice-versa. This divi-
sion is illustrated in Fig. 10. Each reference video
and its corresponding distorted versions belong to
the same group of scenes. After grouping videos
by content (versions of the same reference), 80% of
groups are randomly selected for training and the
remaining 20% are used for testing. As depicted
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Figure 10: Grouping of images used on testing and training
procedure.

[Testing set [ETraining set
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Figure 11: Visual representation of the k training and tent
simulations (k-fold). The reported result is the average of
the k results.

in Fig. 11, this 80-20 split is repeated for 1,000
rounds of simulation and the average correlation is
reported. For the methods that are not based on
training, we adopted the same strategy of splitting,
but considered only the 20% testing group and dis-
carded the 80% group reserved for training.

To assess the performance of the tested meth-
ods, each simulation consisted of selecting a set
of videos, predicting the quality score using each
tested VQA method, and then comparing the scores
predicted with the VQA method and the subjec-
tive scores provided by the databases. To compare
the predicted and subjective quality scores, we used
Spearman’s rank correlation coefficient (SROCC)
and Pearson’s linear correlation coefficient (LCC).

4. Experimental Results

Fig. 12 depicts the distribution of the correlation
scores over 1,000 rounds of simulations. In order to

evaluate if values are clustered around the median,
we choose the violin plot [47] to illustrate the data.
The violin plot was chosen because it combines the
convenience of a box plot, which summarizes impor-
tant statistics (e.g. median, range and quartiles),
and of a kernel density plot, which shows details of
the data distribution. In Fig. 12, the white dots
represent the median, the wider bars in the cen-
ter represent the interquartile range, and the fine
lines represent the 95% confidence interval. On the
left side of the gray lines is the kernel estimation of
the distribution of SROCC scores. Similarly, on the
right side of the gray lines is the kernel estimation of
the distribution of LCC scores. In both sides, larger
sections of the violin plots depict a higher prob-
ability of achieving these correlation scores, while
narrower sections depict a lower probability.

Fig. 12-(a) presents the SROCC ans LCC violin
plot for the CSIQ dataset. Notice that the proposed
method shows the highest SROCC value, when
compared to the state-of-the-art metrics, followed
by SSTSGMSD, GMSD, ViS3, and STRRED. Since
CSIQ contains two transmission-based distortions,
it is expected that IQA methods present a worse
performance, which explains the differences be-
tween the PSNR and SSIM results when compared
with other methods. Surprisingly, GMSD presents
a competitive performance, having a performance
similar to its video-based version, SSTSGMSD.

Among the different tested quality metrics, the
proposed approach has the highest SROCC in
the IVPL and LIVE-M datasets, as displayed in
Figs. 12-(b) and (e). Notice that both mean and
median correlation values are higher for the pro-
posed method. Taking a closer look at the in-
terquartile range of the methods, we notice that the
proposed method also presents a smaller dispersion,
what indicates that it is more stable along multiple
simulations. Therefore, the proposed method is sig-
nificantly better than all tested methods on IVPL
and LIVE-M datasets.

Fig. 12-(c) shows the SROCC violin plot for the
MCL-V dataset. Notice that the performance of the
proposed method is among the best performances,
although its SROCC median value overlaps with
the SROCC median value for STRRED and SSTS-
GMSD. However, observing again the interquartile
range, we notice that the proposed method has a
narrow range and, therefore, represents a smaller
dispersion. Taking this into consideration, the per-
formance of the proposed method is slightly better
than the performance of STRRED and SSTSGMSD
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Figure 12: Violin plots of SROCC results of the tested OVQA methods for CSIQ, IVPL, MCL-V, LIVE, and LIVE-M databases.

and significantly better than the performance of
ViS3, GMSD, SSIM, and PSNR.

Fig. 12-(d) shows the SROCC violin plot for
the LIVE dataset. In this case, the proposed
method has one of the highest median SROCC val-
ues. While this performance is not significantly bet-
ter than the performance of ViS3, STRRED, and
SSTSGMSD, it outperforms the other tested state-
of-the-art VQA methods.

Finally, Fig. 12-(e) depicts the SROCC violin
plot for the LIVE-M dataset. Notice that, in this
database, the proposed method represents a sub-
stantial prediction improvement in relation to the
other metrics. In addition to a higher median value,
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the proposed method has a smaller confidence in-
terval. More specifically, the interquartile range in-
dicates that the proposed method has a narrower
spread of the correlation values.

Table 1 depicts the average SROCC results, sep-
arated for the different distortions in each database.
In this table, each row of the first column specifies
the database, while the second column lists the dis-
tortion of the given database. The distortion named
as ‘ALL’ corresponds to the general case that in-
cludes all types of distortions, i.e. it corresponds
to the results presented in Fig. 12. In each line,
the highlighted values (in bold) represent the best
average SROCC values for each distortion.



Notice that the proposed method is among the
top best three metrics. It is worth mentioning that,
among all subsets, the proposed methods is the only
one that has average SROCC values greater than
0.8 for almost all distortions. The only exception is
the ‘Temporal Dynamics’ distortion of the LIVE-M
dataset. These results indicate that the proposed
method is the adequate for most practical multi-
media scenarios, where several types of distortions
are present (besides compression and transmission
distortions). Furthermore, the proposed method
presents the best results for 20 out of the 24 cases
(83.3%), what makes it the method with the highest
prediction accuracy.

5. Conclusions

In this study, we proposed a new full reference
video quality assessment method. The proposed
method is a machine learning based method that
uses multiple spatio-temporal features. A random
forest regression algorithm is used to map the multi-
ple features into subjective scores. Based on the cal-
culated Spearman correlation values, the proposed
approach outperforms state-of-the-art video quality
metrics for most datasets and distortion types. In
cases where the proposed approach does not have
the best performance, it is among the 3 best per-
forming metrics, providing a competitive prediction
performance. In future works, we plan to investi-
gate how to adapt the feature sets to reduced and
no-reference scenarios.
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Table 1: Average LCC and SROCC of 1,000 runs of rounds of simulations on tested databases

Database | Distortion PSNR SSIM GMSD SSTSGMSD STRRED ViS3 VMAF PROPOSED
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