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Abstract. We report the results of a set of psychophysical experiments that measure the perceptual strengths of videos
with different combinations of blockiness, blurriness, and packet-loss artifacts. Participants were instructed to search
each video for impairments and rate the strength of their individual features (artifacts). A repeated-measure ANOVA
(RM-ANOVA) performed on the data showed that artifact physical strengths have a significant effect on annoyance
judgments. We tested a weighted Minkowski model, a support vector regression model, and a linear model on the
experimental data. We found that all these models give a good description of the relation between individual artifact
perceptual strengths and the overall annoyance. In the other words, all models presented a very good correlation
with the experimental data, showing that annoyance can be modeled as a multidimensional function of the individual
artifact perceptual strengths. Additionally, results show that there are interactions among artifact signals.
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1 Introduction

A video impairment is any change in a video signal that can be introduced during capture, trans-

mission, storage, as well as by any signal processing algorithm (e.g. compression) that may be

applied to the content and, if sufficiently strong, reduce its perceived quality. Impairments can be

very complex in their physical and perceptual descriptions.1 Most impairments have more than

one perceptual feature, but it is possible to produce impairments that are relatively pure. The per-

ceptual features of impairments are known as “artifacts”, while the physical signals that produce

the artifacts are known as artifact signals. Many types of artifacts can be introduced by digital

video systems, but, in this work, we limit ourselves to three artifacts (blockiness, blurriness, and

packet-loss), which are among the most relevant artifacts in digital transmission scenarios.2

Designing a video quality metric that can detect impairments and estimate their annoyance (as

perceived by human viewers) is not an easy task.2 In the past decade, a big effort in the scientific
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community has been devoted to the development of video quality metrics that correlate well with

the human perception of quality.3–6 But, although a great number of video quality metrics has been

proposed in the literature, most of these metrics estimate impairment annoyance by comparing

original and impaired videos, i.e. most available metrics are full-reference (FR).7, 8

When a video is degraded by the presence of several types of artifacts, the perceived quality

is affected.5, 9–13 Therefore, alternatives to regular quality metrics include artifact metrics14, 15 that

measure the strength of individual artifacts. Given that the overall video quality can be estimated

by combining the individual artifact perceptual strengths, the output of these metrics can be com-

bined to obtain an overall annoyance score.1 There is a considerable number of no-reference (NR)

metrics that uses this ‘multidimensional’ approach for measuring the overall quality of a video.16–18

Naturally, the performance of an artifact-based metric depends on the performance of the indi-

vidual artifact metrics. Therefore, the design good artifact metrics requires a good understanding

of the perceptual characteristics of each artifact, as well as a knowledge of how the strength of

each artifact contributes to the overall quality.16, 19 For example, Farias et al.2, 20 performed experi-

ments that measured the perceived artifact strengths and the overall annoyance of combinations of

artifacts. Their results showed that, when presented in combination and, at a low strength, artifacts

that otherwise would be clearly recognized are mistaken by others. Also, the presence of noise in

videos seems to decrease the perceived strength of other artifacts, while the presence of blurriness

has the opposite effect. In their study, no temporal artifacts were considered and no relationship

could be established between video content and quality. Up to our knowledge, besides the work

by Farias et al., little work has been performed to study and characterize the appearance and per-

ception of combined artifacts.7 As a consequence, currently there is no clear knowledge on how

different artifacts combine perceptually and how their impact depends on the physical properties
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of the video.

In this work, we study the characteristics of two spatial artifacts (blockiness and blurriness)

and one temporal artifact (packet-loss), which are among the most commonly found artifacts in

digital transmission scenarios. More specifically, we analyze the relationship between the “per-

ceptual strengths” of these artifacts and the overall annoyance. We also analyze the relationship

between physical and perceptual artifact strengths and study masking effects between artifacts.

With this goal, we perform a set of three psychophysical experiments in which subjects estimated

the strength of blockiness, blurriness, and packet-loss artifacts, either in isolation or in combina-

tions. Then, we performed an analysis of the subjective data obtained from these experiments and

tested a set of combination models with the goal of predicting overall annoyance from the percep-

tual strengths of these three artifacts. This work is a follow-up on a previous work,21, 22 in which we

investigated the impact of physical strength parameters of blockiness, blurriness, and packet-loss

on overall annoyance.

In summary, in this work we are interested in understanding how the perceptual strengths of

spatial and temporal artifacts combine to produce the overall annoyance, whilst in our previous

work we were interested in studying the visibility and annoyance of these artifacts. More specifi-

cally, while in the previous work we collected and studied the overall annoyance data correspond-

ing to sequences with combinations of three artifacts, in this work we collected perceptual strength

data for each of these three artifacts for the same degraded sequences. With this strength data, we

study the contribution of each artifact for the overall quality. First, we test the effect on the overall

annoyance of the presence of each artifact and analyze possible facilitation and masking effects

among artifacts. Second, we fit several annoyance models, which combine the individual artifact

perceptual strengths to predict overall annoyance, to understand the contribution of each artifact to
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the overall annoyance. We compare all models in terms of their performance and complexity.

The paper is divided as follows: Sec. 2 presents the experimental methodology, which includes

the stimuli generation, the type of equipment, the subjective method, and the statistical analysis.

Sec. 3 introduces the experimental results and the annoyance models. Conclusions are detailed in

Sec. 4.

2 Experimental Methodology

To understand the relationship between the perceptual strengths of blockiness, blurriness, and

packet-loss artifacts and how they can be combined to estimate the overall annoyance, we per-

formed a set of three psychophysical experiments using test sequences with combinations of these

artifacts at different strengths.22

2.1 Stimuli

We used seven high definition original videos, chosen with the goal of generating a diverse content,

with spatial resolution of 1280 × 720, temporal resolution of 50 frames per second (fps), and

duration of 10 seconds. We followed the recommendations detailed in the Final Report of VQEG

on the validation of objective models multimedia quality assessment (Phase I),23 which suggest

using a set of video sequences with a good distribution of spatial and temporal properties.24

To add artifacts to the originals, we used a system for generating artifacts20 that allowed a

control of the artifact combination, visibility, and strength, which would be impossible when using,

for example, a H.264 codec. To add blockiness to each video frame in our dataset, we calculated

the average value of each 8×8 block of the frame and of the 24×24 surrounding block, then added

the difference between these two averages to the block. To generate blurriness, we used a simple
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low-pass filter, as suggested by Recommendation P.930.25 Although we can vary the filter sizes

and the cut-off frequencies to control the amount of blurriness, we used a simple 5×5 moving

average filter.

To generate packet-loss artifacts, we first compressed the videos at high compression rates,

what avoids inserting additional artifacts. Then, packets from the coded video bitstream were ran-

domly deleted using different loss percentages (the higher the percentage, the lower the quality).22

To vary the time interval between consecutive artifacts, we changed the number of frames (M)

between I-frames. We generated test sequences with combinations of blockiness, blurriness, and

packet-loss, we first linearly combined the original video with blockiness and blurriness artifact

signals in different proportions (i.e. 0.4, 0.6, and 0.8).26 Then, we added packet-loss artifacts using

the same procedure used to generate these artifacts in original content.

2.2 Methodology and Equipment

The experiments were performed using a PC computer with test sequences displayed on a Samsung

LCD monitor of 23 inches (Sync Master XL2370HD) with resolution 1920×1080 @60hz (FullHD

1080p). The dynamic contrast of the monitor was turned off, the contrast was set at 100, and the

brightness at 50. The monitor measured gamma values for luminance, red, green, and blue were

1.937, 1.566, 1.908, and 1.172, respectively. We set a constant illumination of approximately 70

lux. Participants were kept at a fixed distance of 0.70 meters from the monitor using a chin-rest.

The experimental methodology was the single-stimulus with hidden reference, with a 100-point

continuous-scale.22, 27

The participants were mostly graduate students. They were considered naive of most kinds of

digital video defects and the associated terminology. No vision test was performed, but participants
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were asked to wear glasses or contact lenses if they needed them to watch TV. The experiment

started after a brief oral introduction. Then, participants performed a training stage that consisted

of watching highly impaired and pristine sequences to get acquainted with the typical artifact

combinations and strengths. The sequences presented during the training were not scored and

were meant to be visual anchors (references) for the annoyance scoring.

After the training, the actual scoring session started. After each test sequence was played,

participants were asked to give a strength score to each individual type of artifact. Artifacts as

strong as those seen in the training session should be given a 100 strength score, artifacts half as

strong a 50 strength score, and so on. In each experiment, the number of artifacts present in the test

sequences varied. To avoid fatigue, experimental sessions were broken into sub-sessions, between

which participants could take a break for as long as they wanted to. All experimental sessions

lasted between 45 and 60 minutes.

It is worth pointing out that in a previous set of experiments,21, 22 instead of rating the strengths

of individual artifacts, subjects were asked to give an overall annoyance score to each of the test se-

quence. More specifically, to estimate the annoyance caused by the artifacts in the test sequences,

subjects were asked to give a score between 0 and 100. Artifacts as annoying as the worst artifacts

shown in the training session should have be given a 100 annoyance score, artifacts half as annoy-

ing a 50 annoyance score, and so on. The same set of test sequences used in this previous set of

experiments is used in this work, what makes it possible to compare the data collected in both sets

of experiments.
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2.3 Statistical Analysis

Data gathered from the three experiments provided up to three Mean Strength Values (MSV) for

each test sequence: MSVbloc, MSVblur, and MSVpck, which correspond to MSVs for blockiness,

blurriness, and packet-loss, respectively. For each video and artifact type, we computed the MSVs

by averaging the strength values over all subjects:

MSVa =
1

T

T∑
i=1

Sa(i), (1)

where Sa(i) is the strength value reported by the ith subject, T is the number of subjects, and a

refers to the type of artifact, i.e. bloc, blur, or pck.

As mentioned earlier, in a previous experiment,21, 22 for each test sequence we obtained a Mean

Annoyance Value (MAV ), given by:

MAV =
1

T

T∑
i=1

A(i), (2)

where A(i) is the annoyance value reported by the ith subject. To study how the artifact strengths

combine to predict the perceived annoyance of videos impaired by overlapping artifacts, we fit a

set of linear and non-linear models to the MSV and MAV data collected.21, 22

To estimate the performance of the models, we calculate the Pearson correlation coefficient

(PCC) and the Spearman Rank Order Correlation Coefficient (SCC) between the subjective and

predicted scores. Also, we use the Akaike Information Criterion (AIC)28 to analyze the trade-off

between accuracy of fitting and the number of degrees of freedom in the model, thereby controlling

the bias/variance trade-off and overfitting. To test the effect of the artifact parameters on models,
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we perform a repeated-measure ANOVA (RM-ANOVA) with a significance level of 95%.

We also use a Support vector regression (SVR) technique to predict annoyance from the sub-

jective data. To train the SVR, we use a k-fold cross-validation setup. First, we split the dataset in

k equally sized non-overlapping sets. Then, we run the training k times. Each time, we use a differ-

ent fold as a test set, while using the remaining (k− 1) folds for training.29 In our experiments, we

set k equal to 10. We use a radial kernel for SVR, since it maps samples into a higher dimensional

space, handling well cases in which the relationship between the class labels and the attributes is

nonlinear.30 SVR has the following parameters: C, ε, γ. The parameter C determines the trade-off

between the training error and the model complexity, while the parameter ε determines the level

of accuracy of the approximated function. Finally, γ is a parameter of the Gaussian radial basis

function, with a small γ corresponding to a low bias/high variance and a large γ corresponding to

a higher bias/low variance.

2.4 Experiments

The three experiments shared identical experimental methodology, interface, protocol, and viewing

conditions. The stimuli were different per experiment but derived from a common set of 7 original

contents. Next, we describe briefly each experiment.

Experiment 1: Fourteen participants performed strength tasks on test sequences containing

only packet-loss artifacts. The artifact strength varied by changing the percentages of deleted

packets (PDP = 0.7%, 2.6%, 4.3%, and 8.1%) and the number of M frames between the I-frames

(M = 4, 8, and 12). A total of 7 originals and 12 combinations were used, resulting in 12×7+7 = 91

test sequences.31, 32
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Experiment 2: Fifteen participants performed strength tasks on test sequences containing dif-

ferent strengths of blockiness and blurriness artifacts, presented at isolation or in combination. We

represent the artifact strength combinations as a vector (bloc;blur), where bloc corresponds to the

blockiness strength and blur to the blurriness strength. Three strengths (0.0, 0.4, and 0.6) were used

in the experiment, which consisted of a full factorial experimental design (32 = 9 combinations)

and included unimpaired videos (0.0;0.0). Two further combinations, pure blockiness (0.8;0) and

pure blurriness (0.8;0) at a high strength of 0.8 were also added to the set. In total, 11 × 7 = 77

test sequences were evaluated by the participants.22

Experiment 3: Fifteen participants performed strength tasks on test sequences containing dif-

ferent strengths of blockiness, blurriness, and packet-loss artifacts, presented in combinations. We

represent the strength combinations as a vector (PDP;bloc;blur), where PDP corresponds to the

packet-loss strength, bloc to the blockiness strength, and blur to the blurriness strength. These

artifacts were combined at 3 different strengths: bloc ∈ [0.0, 0.4, 0.6], blur ∈ [0.0, 0.4, 0.6], and

PDP ∈ [0.0, 0.7%, 8.1%], resulting in 20× 7 = 140 test sequences.1, 22

3 Experimental Results

In this section, we present the statistical analysis of the experimental data collected from experi-

ments 1-3.

3.1 Experiment 1: Packet-Loss

As mentioned earlier, in Experiment 1 we used test sequences with only packet-loss. Fig. 1 shows

a graph of the average MSVpck versus PDP, grouped according to the M value. In this graph, we

also show the average MSVpck calculated only for the original videos (blue point in the left side of
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Table 1 Exp. 1: Pairwise comparisons between average MSVpck, with M = 12 and different PDP values. (* Significant
at 0.05 level.)
Pairs of PDP values Diff. Mean Std. Error

(0.7, 2.6) -21.541* 2.434
(0.7, 4.3) -29.684* 2.280
(0.7, 8.1) -35.918* 3.077
(2.6, 4.3) -08.143* 2.357
(2.6, 8.1) -14.378* 2.584
(4.3, 8.1) -06.235 2.492

the graph). Notice that the MSVpck values are not equal to zero for the original (pristine) videos,

indicating that subjects perceived impairments in unimpaired videos. For M = 4, 8, and 12, the

highest MSVpck always correspond to the strongest artifact (i.e. PDP = 8.1%). Although MSVpck

increases with both PDP and M, PDP seems to have a bigger effect on MSVpck than M. Visually,

packet-loss artifacts in videos with large smooth regions (e.g. skies) were easier to detect, while in

videos with a high spatial and/or temporal activity they are harder to detect.

We perform an RM-ANOVA to check the influence of the M and PDP parameters on MSVpck.

Results show that the differences between the MSVpck average values obtained for any pair of M

values are statistically significant. When we analyze the influence of PDP on MSVpck, we notice

that there are significant statistical differences between the MSVpck values for most PDP pairs,

with the exception of the pair PDP = 4.3% and PDP = 8.1% for M = 12, as showed in Table 1.

With the goal of studying if MSV can be used to predict the annoyance, we test the following

simple linear model without any interaction term:

PAE1,L1 = α ·MSVpck, (3)
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Fig 1 Exp. 1: MSVpck plots for clustered error for M = 4, 8, and 12.

Table 2 Exp. 1: Fitting parameters for linear model without intercept (PAE1,L1) (* Significant at 0.05 level.)

Coefficient Estimate Std. Error t-value Pr (> |t|) PCC SCC
α 0.904 0.016 56.150 < 2e− 16∗ 0.953 0.949

Table 3 Exp. 1: Fitting parameters for linear model with intercept (PAE1,L2). (* Significant at 0.05 level.)

Coefficient Estimate Std. Error t-value Pr (> |t|) PCC SCC
δ -4.396 1.607 -2.736 0.007*

0.953 0.950
α 0.983 0.033 29.816 < 2e− 16∗

and the following linear model with an intercept term δ:

PAE1,L2 = δ + α ·MSVpck. (4)

Tables 2 and 3 show the fitting results for both models. All coefficients are statistically significant.

We also use the Support vector regression (SVR) technique to predict annoyance from the

strength data using MSVpck. We refer to this model as PAE1,SV R. The second line of Table 4

summarizes the SVR results, with columns 2-5 showing the estimated parameters and columns 6-7

showing the PCC and SCC values for the fit. For best results, we use a radial kernel for the SVR,

obtaining PCC and SCC values equal to 0.953 and 0.927, respectively.
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Table 4 Exp. 3: Fitting parameters for SVR model by Experiment.

Experiment K C γ ε PCC SCC

Exp. 1: PAE1,SV R radial 64 1 0.0 0.953 0.927

Exp. 2: PAE2,SV R radial 8 0.5000 0.0 0.982 0.948

Exp. 3: PAE3,SV R radial 4 0.3333 0.1 0.963 0.957

(a) (b)
Fig 2 Exp. 2: MSV plots for clustered error for combinations (bloc;blur): (a) only -blockiness and -blurriness, and (b)
blockiness and blurriness.

3.2 Experiment 2: Blockiness and Blurriness

As mentioned earlier, test sequences used in Experiment 2 had two different types of artifacts:

blockiness and blurriness. These artifacts were presented in different strengths, either in isolation

or in combination. Fig. 2 shows a graph of the average MSVblur (green) and the average MSVbloc

(blue) for test sequences containing combinations of only-blurriness and only-blockiness. The

first combination of the graph corresponds to the original (pristine) videos. Notice that, again, the

MSVs for pristine videos are not equal to zero, indicating that participants perceived impairments

in these unimpaired videos (MSV blur = 1.95 and MSV bloc = 1.09). But, in general, highest

MSVs are obtained for the combinations with higher artifact strengths.

An RM-ANOVA test shows that there are significant statistical differences between theMSVblur
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Table 5 Exp. 2: Pairwise comparisons between average MSVblur for sequences with only-blurriness (*. Significant
at 0.05 level.)

Combinations Diff. Mean Std. Error

(0.0;0.4) (0.0;0.6) -39.990* 2.631

(0.0;0.4) (0.0;0.8) -75.905* 2.125

(0.0;0.6) (0.0;0.8) -35.914* 2.641

Table 6 Exp. 2: Pairwise comparisons between average MSVbloc for sequences with only-blockiness (*. Significant
at 0.05 level.)

Combinations Diff. Mean Std. Error
(bloc,blur)

(0.4;0.0) (0.6;0.0) -20.390* 2.597
(0.4;0.0) (0.8;0.0) -39.552* 2.440
(0.6;0.0) (0.8;0.0) -19.162* 1.888

Table 7 Exp. 2: Pairwise comparisons between average MSVbloc and MSVblur for any pair of blurriness and blocki-
ness (*. Significant at 0.05 level.)

Combinations MSVbloc MSVblur

(bloc,blur) Diff. Mean Std. Error Diff. Mean Std. Error
(0.4;0.4) (0.4;0.6) -12.629* 2.915 -14.133* 3.068
(0.4;0.4) (0.6;0.4) -22.638* 2.414 0.248 2.709
(0.4;0.4) (0.6;0.6) -34.267* 2.330 -7.590* 3.307
(0.4;0.6) (0.6;0.4) -10.010* 2.220 14.381* 2.713
(0.4;0.6) (0.6;0.6) -21.638* 2.108 6.543* 2.881
(0.6;0.4) (0.6;0.6) -11.629* 1.525 -7.838* 2.906

corresponding to any pair of videos with only-blurriness (see Table 5) and theMSVbloc correspond-

ing to any pair of videos with only-blockiness (see Table 6). These results indicate that participants

correctly perceived the different artifact strengths introduced in the videos.

For all combinations of blockiness and blurriness ((0.4;0.4), (0.4;0.6), (0.6;0.4), and (0.6;0.6)),

MSVbloc were higher than MSVblur. Fig. 2 (b) shows a plot of MSVblur and MSVbloc for all

videos. Again, an RM-ANOVA test shows that differences between MSVs obtained for any two

combinations of blockiness and blurriness are statistically significant. The only exception is the

combination pair (0.4;0.4) and (0.6;0.4), for which MSVblur differences are not statistically signif-

icant. Results of this RM-ANOVA are reported in Table 7.
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Table 8 Exp. 2: Fitting parameters for linear model without intercept (PAE2,L1) (* Significant at 0.05 level.)

Coefficient Estimate Std. Error t-value Pr (> |t|) PCC SCC
α 0.797 0.016 49.220 < 2e− 16∗

0.971 0.958
β 0.721 0.023 30.840 < 2e− 16∗

Table 9 Exp. 2: Fitting parameters for linear model with intercept (PAE2,L2). (* Significant at 0.05 level.)

Coefficient Estimate Std. Error t-value Pr (> |t|) PCC SCC
δ 0.386 1.725 0.224 0.824

0.971 0.958α 0.793 0.025 32.302 < 2e− 16∗
β 0.716 0.032 22.103 < 2e− 16∗

To verify if we can predict annoyance using the MSVs of blockiness and blurriness, we test a

set of linear and non-linear models using MSVbloc, MSVblur, and MAV data. The first model is a

simple linear model, as given by:

PAE2,L1 = α ·MSVbloc + β ·MSVblur, (5)

and the second model is a linear model with an intercept term δ, as given by:

PAE2,L2 = δ + α ·MSVbloc + β ·MSVblur. (6)

For both models, fitting results returned coefficients, α and β, that are statistically significant

(Column 5 in Tables 8 and 9). However, the intercept term (δ) in Eq. 6 is not statistically significant.

In fact, adding an intercept does not change the values of the correlation coefficients. An ANOVA

test showed that differences between PAE2,L1 and PAE2,L2 models are not statistically significant.

To understand how perceptual artifact strengths interact with one another, we also test a linear
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Table 10 Exp. 2: Fitting parameters for the linear metric with interactions (PAE2,L3) (* Significant at 0.05 level.)

Coefficient Estimate Std. Error t-value Pr (> |t|) PCC SCC
α 0.874 0.029 30.059 < 2e− 16∗

0.975 0.966β 0.747 0.024 31.551 < 2e− 16∗
γ -0.004 0.001 -3.105 0.004∗

Table 11 Exp. 2: Fitting parameters for the linear metric with interactions and intercept term (PAE2,L4). (* Significant
at 0.05 level.)
Coefficient Estimate Std. Error t-value Pr (> |t|) PCC SCC

δ -1.553 1.733 -0.896 0.373

0.975 0.966
α 0.899 0.040 22.396 < 2e− 16∗
β 0.770 0.035 22.116 < 2e− 16∗
γ -0.005 0.001 -3.219 0.002∗

model with interactions, as given by:

PAE2,L3 = (α ·MSVbloc + β ·MSVblur + γ ·MSVbloc ·MSVblur), (7)

and, the same model with an intercept coefficient (δ), given by:

PAE2,L4 = (δ + α ·MSVbloc + β ·MSVblur + γ ·MSVbloc ·MSVblur). (8)

Tables 10 and 11 show results for both fittings. For both models, the coefficients (α, β, and γ) are

all statistically significant (Column 5 in Tables 10 and 11). Also, for both models, the correlation

coefficients are slightly higher than those for the linear models with no interactions (see Eq. 5).

However, the interaction term (γ) is negative. These results seem to indicate that there are masking

effects among artifacts.

We also test the following Minkowski metric model:

PAE2,M1 = (α ·MSV m
blo + β ·MSV m

blu)
1
m , (9)
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Table 12 Exp. 2: Fitting parameters for Minkowski model (PAE2,M1) (* Significant at 0.05 level.)

Coefficient Estimate Std. Error t-value Pr (> |t|) PCC SCC
m 1.341 0.132 10.190 9.99e-16*

0.975 0.965α 0.870 0.029 29.590 < 2e− 16∗
β 0.693 0.030 22.820 < 2e− 16∗

where PAE2,M1 is the predicted annoyance value and m is the Minkowski power obtained from

the fit. Table 12 shows the fitting results for this model. Notice that the coefficients m, α and β are

statistically significant (Column 5 in Table 12).

We also tested a Minkowski model with an intercept term (PAE2,M2), but we found that the

intercept term was not statistically significant. In other words, adding an intercept term to the

Minkowski model did not change the values of the coefficients or the correlation coefficients.

Since an ANOVA test showed that the differences between PAE2,M1 and PAE2,M2 models are not

statistically significant, we decided not to show the results of this second model.

We also use an SVR algorithm (PAE2,SV R) to predict annoyance from MSVbloc and MSVblur.

The SVR fitting parameters and results are summarized in the third row of Table 4. Again, our

tests show that using a radial kernel for the SVR provides the best performance. PCC and SCC

values obtained from the trained SVR are 0.982 and 0.948, respectively.

3.3 Experiment 3: Packet-loss, Blockiness and Blurriness

In Experiment 3, we used test sequences with up to three different types of artifacts: packet-

loss, blockiness, and blurriness. Again, results show that MSVs for the combination (0.0;0.0;0.0)

(original video) are not equal to zero, indicating that subjects perceived impairments in unimpaired

videos. Also, in general, participants correctly identified artifacts, giving highest MSVs to the

corresponding strongest artifact and smaller MSVs to the other two artifacts (see Fig. 3).

For combinations with only one artifact, the highest MSVs correspond to the only artifact in
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Fig 3 Exp. 3: MSV plot for clustered error for combinations (PDP;bloc;blur) for (0.0;0.0;0.0), (8.1;0.0;0.0),
(0.0;0.6;0.0), and (0.0;0.0;0.6).

Table 13 Exp. 3: Pairwise comparisons between average MSVs for sequences with only -packet-loss, -blockiness, and
-blurriness (*. Significant at 0.05 level.)

Combinations (PDP;bloc;blur) Diff. Mean Std. Error

(8.1;0.0;0.0) (0.0;0.0;0.6) 6.029* 2.401

(8.1;0.0;0.0) (0.0;0.6;0.0) -3.118 1.801

(0.0;0.6;0.0) (0.0;0.0;0.6) 9.147* 2.206

the video (see Table 13). An RM-ANOVA shows that there are significant statistical differences

in MSV, for any pair of combinations, with exception of the combination pair (8.1;0.0;0.0) and

(0.0;0.6;0.0). The average MSV is slightly higher for blockiness, followed by packet-loss, and

blurriness.

For combinations with two types of artifacts ((PDP;bloc;0.0), (PDP;0.0;blur), or (0.0;bloc;blur)),

in most cases, the artifact signal corresponding to the highest signal strength receives the highest

MSV. Nevertheless, an increase in the strength of a particular artifact signal does not always result

in a proportional increase in this artifact perceived strength. For example, for (PDP;0.0;blur) com-

binations, an increase in the strength of blurriness causes a decrease in the perceived strength of

the packet-loss (see Fig. 4 (a)).
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(a) (b)
Fig 4 Exp. 3: MSV plots for clustered error for combinations (PDP;bloc;blur) for (a) (PDP;0;blur), and (b)
(PDP;bloc;0).

Table 14 Exp. 3: Pairwise comparisons between average MSVs for (PDP;blur) sequences (*. Significant at 0.05 level.)

Combinations
MSVpck MSVblur

Diff. Mean Std. Error Diff. Mean Std. Error

(0.7;0.0;0.4) (8.1;0.0;0.4) -35.351* 1.645 0.400 1.741

(0.7;0.0;0.4) (0.7;0.0;0.6) 4.371* 1.636 -41.800* 2.097

(0.7;0.0;0.4) (8.1;0.0;0.6) -29.914* 1.753 -39.159* 2.193

(8.1;0.0;0.4) (0.7;0.0;0.6) 39.722* 1.637 -42.200* 2.137

(8.1;0.0;0.4) (8.1;0.0;0.6) 5.437* 1.614 -39.559* 2.116

(0.7;0.0;0.6) (8.1;0.0;0.6) -34.286* 1.685 2.641 1.843

An RM-ANOVA test shows that there are significant statistical MSV differences between all

combinations of (PDP;0.0; blur). The only exceptions are the combination pairs ((0.7;0.0;0.4),

(8.1;0.0;0.4)) and ((0.7;0.0;0.6), (8.1;0.0;0.6)), whose MSVblur differences are not statistically

significant (see Table 14). Notice that, for these two combinations, only the packet-loss strength

changes while the blurriness strength is kept constant. This result suggests that blurriness may be

masking the perceived strength of packet-loss.

The presence of packet-loss in the (PDP;bloc;0.0) combinations changes the perceived strength

of the blockiness artifact (see Fig. 4 (b)). This indicates that increasing the packet-loss strength
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Table 15 Exp. 3: Pairwise comparisons between average MSVs for (PDP;0;bloc) sequences (*. Significant at 0.05
level.)

Combinations
MSVpck MSVbloc

Diff. Mean Std. Error Diff. Mean Std. Error

(0.7;0.4;0.0) (8.1;0.4;0.0) -36.167* 1.652 -0.114 1.885

(0.7;0.4;0.0) (0.7;0.6;0.0) -0.576 1.757 -17.718* 1.613

(0.7;0.4;0.0) (8.1;0.6;0.0) -36.127* 1.795 -18.959* 1.855

(8.1;0.4;0.0) (0.7;0.6;0.0) 35.592* 1.779 -17.604* 1.847

(8.1;0.4;0.0) (8.1;0.6;0.0) 0.041 1.760 -18.845* 1.927

(0.7;0.6;0.0) (8.1;0.6;0.0) -35.551* 1.890 -1.241 1.515

(a) (b)
Fig 5 Exp. 3: MSV plots for clustered error for combinations (PDP;bloc;blur): (a) (PDP;blur) with bloc=0.4, (b)
(PDP;blur) with bloc=0.6.

in a (PDP;bloc;0.0) combination can intensify the perceived strength of blockiness. This may be

caused by the similarity of blockiness and packet-loss artifacts, which are both characterized by

the presence of rectangular areas distributed over the video frames. An RM-ANOVA test (see

Table 15) shows that there are significant statistical differences in MSVpck for all combinations

pairs (PDP;bloc;0.0). The only exceptions are the combination pairs ((0.7;0.4;0.0), (0.7;0.6;0.0))

and ((8.1;0.4;0.0), (8.1;0.6;0.0)). Another RM-ANOVA test shows that there are significant sta-

tistical differences in MSVbloc values for the combination pairs ((0.7;0.4;0.0), (8.1;0.4;0.0)) and

((0.7;0.6;0.0), (8.1;0.6;0.0)).
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Table 16 Exp. 3: Pairwise comparisons between average MSVs for (PDP;0.4;blur) sequences and changing packet-
loss and blurriness strengths (*. Significant at 0.05 level.)

Combinations
MSVpck MSVbloc MSVblur

Diff. Mean Std. Error Diff. Mean Std. Error Diff. Mean Std. Error

(0.7;0.4;0.4) (8.1;0.4;0.4) -36.976* 1.768 -1.788 1.501 -0.351 1.712

(0.7;0.4;0.4) (0.7;0.4;0.6) -2.445 1.781 -9.000* 1.437 -21.478* 2.049

(0.7;0.4;0.4) (8.1;0.4;0.6) -39.608* 1.833 -10.902* 1.664 -20.531* 2.161

(8.1;0.4;0.4) (0.7;0.4;0.6) 34.531* 1.969 -7.212* 1.491 -21.117* 2.028

(8.1;0.4;0.4) (8.1;0.4;0.6) -2.633 1.699 -9.114* 1.767 -20.180* 2.171

(0.7;0.4;0.6) (8.1;0.4;0.6) -37.163* 1.916 -1.902 1.570 0.947 2.198

For combinations that correspond to videos with the three types of artifact signals, the aver-

age MSVbloc is higher than the average MSVpck and MSVblur. Figs. 5 (a) and (b) show plots of

combinations with different values of packet-loss, blockiness, and blurriness strengths. An RM-

ANOVA showed that there are significant statistical differences between MSVs for most combi-

nations of (PDP;bloc;blur). The combination pairs ((0.7;0.4;0.4), (0.7;0.4;0.6)) and ((8.1;0.4;0.4),

(8.1;0.4;0.6)) are not statistically significant in MSVpck, respectively. Although only the strength

of blurriness vary in both combination pairs, MSVbloc also increases as MSVblur increases. This

result suggests that the blockiness is affected by increasing the blurriness. For the combination

pairs ((0.7;0.4;0.4),(8.1;0.4;0.4)) and ((0.7;0.4;0.6), (8.1;0.4;0.6)), the MSVbloc and MSVblur dif-

ferences are not statistically significant. Notice that, for these combinations, the MSV variations

are higher for MSVbloc than for MSVblur (see Table 16 columns 5 and 7). These results support

the assumption that packet-loss artifacts can intensify the perception of blockiness artifacts.

When comparing MSVs for sequences with bloc = 0.6 and different PDP and blur values,

an RM-ANOVA test shows that, for most combination pairs, the differences are statistically sig-

nificant. For MSVpck, only the difference for the pair ((0.7;0.6;0.4), (0.7;0.6;0.6)) is not statis-
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Table 17 Exp. 3: Pairwise comparisons between average MSVs for (PDP;0.6;blur) sequences and changing packet-
loss and blurriness strengths (*. Significant at 0.05 level.)

Combinations
MSVpck MSVbloc MSVblur

Diff. Mean Std. Error Diff. Mean Std. Error Diff. Mean Std. Error

(0.7;0.6;0.4) (8.1;0.6;0.4) -39.710* 1.942 -0.482 1.485 1.714 2.147

(0.7;0.6;0.4) (0.7;0.6;0.6) -0.020 2.085 -9.327* 1.249 -17.029* 2.312

(0.7;0.6;0.4) (8.1;0.6;0.6) -44.616* 1.990 -9.151* 1.310 -19.208* 2.339

(8.1;0.6;0.4) (0.7;0.6;0.6) 39.690* 1.921 -8.845* 1.306 -18.743* 2.327

(8.1;0.6;0.4) (8.1;0.6;0.6) -4.906* 1.605 -8.669* 1.323 -20.922* 2.119

(0.7;0.6;0.6) (8.1;0.6;0.6) -44.596* 1.854 0.176 1.031 -2.180 2.430

tically significant. Again, the MSVbloc and MSVblur differences for combinations ((0.7;0.6;0.4),

(8.1;0.6;0.4)) and ((0.7;0.6;0.6), (8.1;0.6;0.6)) are not statistically significant (see Table 17 columns

5 and 7).

We test a set of linear and non-linear models, fitting them on the MSVpck, MSVbloc, MSVblur,

and MAV data. The first linear model is a simple linear model, without any interaction term:

PAE3,L1 = α ·MSVpck + β ·MSVbloc + γ ·MSVblur. (10)

Next, we adapt Eq. 10 to include an intercept coefficient (δ):

PAE3,L2 = δ + α ·MSVpck + β ·MSVbloc + γ ·MSVblur. (11)

Tables 18 and 19 show the fitting results for both models. Notice that all coefficients (i.e. δ, α, β,

and γ) are statistically significant (see Columns 5 in Tables 18 and 19, respectively).

Since we are also interested in understanding if the perceptual strengths interact with one an-
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Table 18 Exp. 3: Fitting parameters for linear model without intercept (PAE3,L1) (* Significant at 0.05 level.)

Coefficient Estimate Std. Error t-value Pr (> |t|) PCC SCC

α 0.340 0.022 18.330 < 2e− 16∗
0.937 0.936β 0.470 0.020 23.210 < 2e− 16∗

γ 0.413 0.026 16.04 < 2e− 16∗

Table 19 Exp. 3: Fitting parameters for linear model with intercept (PAE3,L2). (* Significant at 0.05 level.)

Coefficient Estimate Std. Error t-value Pr (> |t|) PCC SCC

δ 3.846 1.870 2.057 0.042*

0.937 0.937
α 0.370 0.026 14.313 < 2e− 16∗

β 0.456 0.021 21.448 < 2e− 16∗

γ 0.371 0.033 11.326 < 2e− 16∗

other, we test a linear model with interactions, as given by:

PAE3,L3 = α ·MSVpck + β ·MSVbloc + γ ·MSVblur + ρ1 ·MSVpckMSVbloc

+ρ2 ·MSVpckMSVblur + ρ3 ·MSVblocMSVblur + ρ4 ·MSVpckMSVblocMSVblur.

(12)

We also adapt Eq. 12 to include an intercept coefficient (δ):

PAE3,L4 = δ + α ·MSVpck + β ·MSVbloc + γ ·MSVblur + ρ1 ·MSVpckMSVbloc

+ρ2 ·MSVpckMSVblur + ρ3 ·MSVblocMSVblur + ρ4 ·MSVpckMSVblocMSVblur.

(13)

Tables 20 and 21 show the fitting results for both models. Notice that most first, second, and

third order coefficients are statistically significant (Columns 5 in Tables 20 and 21, respectively).

The exceptions are ρ3 and ρ4 in PAE3,L3 (see Table 20), which correspond to the interaction of

(bloc;blur) and (PDP;bloc;blur), respectively. Notice also that most second order coefficients are

negative, what may indicate masking effects, i.e. when two artifacts are present, one of them may
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Table 20 Exp. 3: Fitting parameters for the linear metric with interactions PAL3,E3 (* Significant at 0.05 level).

Coefficient Estimate Std. Error t-value Pr (> |t|) PCC SCC

α 5.476e-01 3.572e-02 15.327 < 2e− 16∗

0.956 0.947

β 5.470e-01 4.535e-02 12.062 < 2e− 16∗

γ 4.432e-01 3.530e-02 12.558 < 2e− 16∗

ρ1 -2.918e-03 1.054e-03 -2.768 0.006*

ρ2 -3.414e-03 1.321e-03 -2.585 0.011*

ρ3 -1.855e-04 1.277e-03 -0.145 0.885

ρ4 1.908e-05 2.834e-05 0.673 0.502

Table 21 Exp. 3: Fitting parameters for the linear metric with interactions and an intercept term PAL3,E4 (* Significant
at 0.05 level).

Coefficient Estimate Std. Error t-value Pr (> |t|) PCC SCC

δ -1.857e+01 2.768e+00 -6.710 5.22e-10*

0.965 0.957

α 8.516e-01 5.488e-02 15.516 < 2e− 16∗

β 8.411e-01 5.888e-02 14.286 < 2e− 16∗

γ 7.670e-01 5.713e-02 13.424 < 2e− 16∗

ρ1 -7.729e-03 1.161e-03 -6.654 6.93e-10*

ρ2 -8.740e-03 1.393e-03 -6.274 4.66e-09*

ρ3 -5.488e-03 1.360e-03 -4.036 9.17e-05*

ρ4 1.062e-04 2.778e-05 3.821 0.000*

attenuate the strength of the other artifact(s). The interaction coefficient with highest magnitude

corresponds to the interaction (PDP;blur). This suggests that packet-loss artifacts affect how blur-

riness artifacts are perceived.

Next, we test the weighted Minkowski metric, which includes weights for each individual

artifact strength, as given by the following equation:

PAE3,M1 = (α ·MSV m
pck + β ·MSV m

bloc + γ ·MSV m
blur)

1
m , (14)
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Table 22 Exp. 3: Fitting parameters for the Minkowski model PAL3,M1 (* Significant at 0.05 level).

Coefficient Estimate Std. Error t-value Pr (> |t|) PCC SCC

m 1.993 0.143 13.960 < 2e− 16∗

0.969 0.963
α 0.387 0.023 17.130 < 2e− 16∗

β 0.565 0.021 27.760 < 2e− 16∗

γ 0.321 0.029 11.280 < 2e− 16∗

where α, β, and γ are the weights for MSVpck, MSVbloc, and MSVblur, respectively, and m is the

Minkowski power. Table 22 shows the fitting results. Notice that all coefficients are statistically

significant (Columns 5 in Table 22). Blockiness is the artifact with the highest impact on MAV ,

followed by packet-loss and blurriness.

Finally, we use SVR to predict annoyance (i.e. PAE3,SV R) fromMSVpck,MSVblo andMSVblu.

The fourth line of Table 4 summarizes the SVR results, with columns 2-5 showing the estimated

parameters and columns 6-7 showing the PCC and SCC values for the fit. Once again, our tests

show that using a radial kernel for the SVR provides the best performance. PCC and SCC values

obtained from the trained SVR are 0.963 and 0.957, respectively.

3.4 Discussion

Results show that subjects were able to properly identify the strengths of the individual artifacts in

all experiments. As expected, MSVs were affected by each of the artifact parameters. For example,

in Experiment 1, PDP and M both affected the perceived strength, although PDP (percentage of

packet loss) had a higher impact than M (duration). Also, subjects perceived blockiness as being

stronger than packet-loss and blurriness. Finally, experimental data showed that there are masking

and facilitation effects between the artifacts. For example, blurriness seems to mask packet-loss

and intensify blockiness, while packet-loss seems to intensify blockiness.
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Fig 6 MAV versus MSVpck, MSVbloc, and MSVblur for all three experiments.

It is worth pointing out that our set of stimuli contains sequences with combinations of up

to three artifacts. For each sequence, we have one MAV (collected in a previous work), which

corresponds to the overall annoyance of the set of artifacts in the sequence, and up to three MSVs

(MSVbloc, MSVblur, and MSVpck), which correspond to the perceptual strength of each type of

artifact. Considering the data from the three experiments, we noticed that there is a correlation

between the MAV and the individual MSVs. This can be observed in Fig. 6 that shows a graph

of MSVs versus MAVs for each type of artifact (MSVbloc, MSVblur, and MSVpck). The Pearson

correlation coefficients between MAV and MSVbloc, MSVblur, and MSVpck are 0.788, 0.337, and

0.536, respectively. The high correlation between the MAV and MSVbloc confirms the importance

of the blockiness artifact when predicting MAV.

In Fig. 6, the concentration of points close to the x-axis correspond to combinations that do

not contain a specific artifact and, therefore, have small MSVs for at least one artifact. Points on

the right side of the graph (higher MAVs) correspond, in general, to combinations with at least two

artifacts. Notice that the MSVbloc points (blue circles) on the top part of the graph (MSVbloc > 40)
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Table 23 Exp. 3: Average correlation across the 10-fold cross-validation runs between model predictions and MAV s

Model PCC SCC Model PCC SCC Model PCC SCC

PAE1,L1 0.955 0.935 PAE2,L1 0.968 0.912 PAE3,L1 0.938 0.917

PAE1,L2 0.955 0.935 PAE2,L2 0.968 0.912 PAE3,L2 0.938 0.918

PAE2,L3 0.975 0.929 PAE3,L3 0.951 0.929

PAE2,L4 0.975 0.926 PAE3,L4 0.975 0.926

PAE2,M1 0.975 0.965 PAE3,M1 0.969 0.963

PAE1,SV R 0.953 0.927 PAE2,SV R 0.982 0.948 PAE3,SV R 0.963 0.957

all have high MAVs, which explain their relatively good correlation with MAV. The data shows

that the highest MAVs always have a high MSVbloc, what is not necessarily true for MSVpdp

and MSVblur. Although, as mentioned earlier, blockiness has a high impact on annoyance, MAV

cannot be modeled as a function of a single artifact. As shown in this work, the annoyance model

is a multidimensional function that must take into account the strengths of the most ‘important’ or

relevant artifacts.

We tested several annoyance models, which combine the individual perceptual strengths of

the artifacts to predict the overall annoyance. Overall, the models (linear models with interaction

terms, SVR, and Minkowski) presented a good fit with the experimental data. Table 23 shows a

summary of the correlation coefficients for all models tested in all three experiments. Notice that

more complex models, i.e. models with interactions terms and the SVR, have the best correlation

values.

As shown in Table 23, the different models achieved different degrees of accuracy, yet in most

cases a higher accuracy came at the expense of an increased complexity. For example, models with

interaction terms have more parameters to be fit than models without them and, although they may

be more accurate, they can be more prone to overfitting. To compare models in terms of the trade-

off between complexity and accuracy, we use the Akaike Information Criterion (AIC). Table 24
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Table 24 Exp. 3: Akaike Information Criterion (AIC) for the linear and Minkowski models. A lower value indicates
a better trade-off between model complexity and accuracy.

Experiment 1 Experiment 2 Experiment 3

Model df AIC Model df AIC Model df AIC

PAE1,L1 2 627.473 PAE2,L1 3 517.883 PAE3,L1 4 984.615

PAE1,L2 3 622.126 PAE2,L2 4 519.831 PAE3,L2 5 982.327

PAE2,L3 4 510.451 PAE3,L3 8 949.302

PAE2,L4 5 511.609 PAE3,L4 9 910.218

PAE2,M1 4 509.032 PAE3,M1 5 907.273

summarizes the AIC values computed for all models, where a model with lower AIC is preferred.

For Experiment 1, PAE1,L2 has the best performance. For Experiments 2 and 3, PAE2,M1 and

PAE3,M1 have the lowest AIC. Nevertheless, it was not possible to use a 10-fold cross-validation

setting to compare these models to the other ones. Therefore, in this work, we compare only the

linear models. Among the linear models in Experiment 2, PAE2,M1 outperforms all models in

terms of AIC, however its performance is very similar to the performance of PAE2,M1, both in

terms of AIC and correlation. Similar results were obtained for Experiment 3, where, among the

linear models, PAE3,L4 has the smallest AIC. Overall, this is a very interesting result, which indi-

cates that interactions need to be taken into consideration when estimating the overall annoyance

(or quality) of video sequences containing different types of distortions.

4 Conclusions

We presented the methodology, statistical analysis, and conclusions of three psychophysical ex-

periments. The goals of these experiments were to measure the perceptual strengths and overall

annoyance of videos with different combinations of blockiness, blurriness, and packet-loss arti-

facts. Mainly, in this work, we wanted to understand how the perceived strengths of these artifacts

combine and interact to produce overall annoyance. The results showed that, when the artifact
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signals were presented alone at a high strength, subjects were able to identify them correctly. At

low strengths, on the other hand, other artifacts were reported. Annoyance increased with both the

number of artifacts and their strength.

Annoyance models were obtained by combining the artifact perceptual strengths using a weighted

Minkowski model, a support vector regression (SVR) model, and a linear model. Performing an

RM-ANOVA test, we found that all types of artifact signal strengths had a significant effect on

MAV . The RM-ANOVA test also indicated that there are interactions among some of the artifact

perceptual strengths. The non-linear SVR model provided greater correlation coefficients than the

other tested models. In summary, results show that annoyance can be modeled as a multidimen-

sional function of the individual artifact signal measurements.2, 19, 33, 34

These results indicate that a blind image quality assessment method, which is based on artifact

measurements, is indeed a valid approach. But, although annoyance cannot be predicted using

only one individual artifact signal measurement, it is not necessary to use all possible artifacts. It

suffices to use the most (perceptually) significant artifacts. For example, blockiness seems to have

the biggest effect on MAV . Finally, results show that there are interactions among artifact signals.

Therefore, while designing quality models, it is important to take this into consideration to avoid

underestimating or overestimating quality.
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