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ABSTRACT

In  this  paper,  we  present  a  no-reference  video
quality metric based on individual measurements
of the blockiness artifact. The proposed metric is a
modification of the work by Vlachos that measures
the  strength  of  blockiness  artifacts  in  video
sequences.  Vlachos’  algorithm  estimates  the
blockiness signal strength by comparing the cross-
correlation  of  pixels  inside  (intra)  and  outside
(inter) the borders of the coding blocking structure
of a frame. The proposed algorithm estimates the
amount of spatial activity of each frame and uses
this measure to modify the blockiness estimates
according  to  its  visibility.  Contrary  to  what  has
been  done  by  Vlachos,  we  used  a  Minkowski
metric to combine the blockiness estimates for all
frames of the video. The proposed algorithm was
tested using a set  of  standard  resolution videos
compressed with an MPEG-2 enconder.

INTRODUCTION

In the past few years, considerable attention has
been  paid  to  the  development  of  better  video
quality metrics that correlate well with the human
perception of quality [1, 2]. Although many metrics
have  been  proposed,  most  of  them  are  very
complex  and  require  the  original  video  for
estimating  the  quality  –  Full  Reference  (FR)
metrics.  As  a  result,  their  use  in  real-time
transmission applications is very difficult. For these
applications,  the  solution  is  to  use  no-reference
(NR)  quality  metrics,  i.e.,  metrics  that  do  not
require the original (reference) to estimate quality.

Although human observers can usually assess the
quality  of  a  video  without  using  the  reference,
designing  a  NR  metric  is  a  difficult  task.
Nevertheless, previous works have shown that it is
possible  to  predict  the  overall  annoyance  of  an
impaired video using a combination of perceptual
strengths of individual artifacts [3]. This means that
we can estimate the quality of a degraded video by
combining  physical  measurements  (artifact
metrics) of the most relevant artifacts. Among the
currently  available  no-reference  video  quality
metrics  that  use  this  approach,  we can  cite  the
works  of  Farias  and  Mitra  [4]  and  Tan  and
Ghanbari [5].

Blockiness  is  one  of  the  most  relevant  artifacts
present in video applications. It is characterized by
the  visibility  of  the  underlying  block  encoding
structure  and  is  often  caused  by  a  coarse
quantization of the spatial frequency components
during  the  encoding  process  [6].  A  number  of
blockiness  metrics  have  been  proposed  in  the

literature.  Most  of  these  metrics  try  to  estimate
blockiness  spatially  by  detecting  the  edges   in
the 

Fig. 1: Frame sampling structure for correlation-
based blockiness metric in both horizontal and 
vertical directions.

frame corresponding to blockiness [7, 8].

In  this  work,  we  propose  a  no-reference
blockiness metric for estimating the strength of the
video impairments caused by digital compression.
The proposed metric is a modification of the metric
proposed  by  Vlachos  [9],  which  uses  a  pixel-
correlation approach.  The algorithm proposed in
this paper exploits the texture information present
in the video frames to add a perceptual layer to
the  Vlachos’  metric,  in  a  way  that  it  correlates
better with the quality perception.

VLACHOS’ BLOCKINESS METRIC

Vlachos’ algorithm estimates the blockiness signal
strength  by  comparing  the  cross-correlation  of
pixels inside (intra) and outside (inter) the borders
of the coding blocking structure of a frame [9]. The
algorithm considers that the size of the enconding
blocks is bs x bs, with bs = 8.

In Vlachos’ work, the frame Y(i,j) is partitioned into
blocks and sampled to yield sub-images, given by:

s(m,n)={ Y( i, j): m = i mod bs , n = j mod bs},    (1)

where (i, j) are frame pixel co-ordinates and x mod
y denotes  congruence  (remainder  of  integer
division x/y).

The  sub-image  s(m,n)  contains  the  subset  of
pixels which are congruent with respect to block
size.  We  can  think  of  s(m,n)  as  a  sub-image
obtained from sub-sampling the frame Y by  pixels
in both horizontal and vertical directions. Clearly, if
before downsampling a shift is given to the frame
Y, i.e., Ys = Y(i+m, j+n), different sub-images will
be generated. This shift can be understood as a
sampling phase. We represent a sub-image with
sampling phase (m,n) by sm,n.
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To  estimate  blockiness,  seven  sub-images  with
different sampling phases are considered. Figure 1
displays a zoom of this sampling structure where
the  different  symbols  represent  a  pixel  of  each
different  sub-image.  The  set  composed  of  the

pixels in sub-images s0,0, s0,7, s7,0, and s7,7 make
out  the  set  of  inter-block  pixels,  while  the  set
composed of pixels in s0,0, s0,1, s1,0, and s1,1 make
out the set of intra-block pixels.

The correlation between a pair of images provides
a  measure  of  their  similarity.  To  measure  the
correlation between two given images, x and y, we
first calculate the correlation surface [10] using the
following expression:

C x , y=F
−1 F* x ⋅F  y 

∣F* x ⋅F  y ∣ , (2)

where  F and  F* denote the forward and inverse
two  dimensional  discrete  Fourier  transform,
respectively, and * denotes the complex conjugate.

For identical images, the correlation surface has a
unique peak, which is the two dimensional Dirac
delta function. For non-identical images, which is
usually  the  case,  several  peaks  can  be
simultaneously  present.  The  magnitude  of  the
highest peak is used as a measure of correlation
between x and y [10] :

      p  x , y =ma x
i , j

{C x ,y  i , j } ,  (3)

where  (i, j)  are  the  horizontal  and  vertical  co-
ordinates.

One problem with the above equation is that the
periodic nature of the Fourier transform introduces
sharp transitions at the borders [11]. So, before the

maximum is  taken, it  is  necessary to  filter  C x , y
using a Hamming window to force the elements to
a constant value around the borders.

To  estimate  the  blockiness  signal  strength,  we
measure  the  correlation  between  the  intra-  and
inter-block sub-images. In other words, we find the
highest  peaks  of  the  phase  correlation  surfaces
computed  between  the  pairs  of  subimages.
Considering the following subimages s0 = s(0,0), s1

= s(0,1), s2  = s(1,0), s3  = s(1,1), s4  = s(0,1), s5  =
s(7,7),  s6  =  s(0,7),  s7  =  s(7,0),  s8  =  (7,7),  the
blockiness measure is given by the ratio between
a measure of intra-block similarity and a measure
of inter-block similarity:

B=
Pi n tr a
P in t er

,   (4)

where

Pin t ra=∑i=1

3
p0 , i  and  Pin t e r=∑i=6

8
p5 , i .   

As blockiness is introduced, the values of  become
smaller  and,  consequently,  the  value  of  B
increases. In Vlachos’ original work, the blockiness
measure for the set of  all  frames is obtained by
averaging the measures over all frames:

B= 1
K∑

k=0

K

B k  ,  (5)

where the index k refers to the frame number and
K is the total number of frames.

PROPOSED ALGORITHM

If placed in a region of high texture, the blockiness
artifact  may  be  perceptually  masked.  In  other
words,  the  annoyance  caused  by  a  blockiness
artifact in a high texture region is smaller than the
annoyance  caused  by  the  same  artifact  on  a
region  of  low  texture.  Therefore,  we can use  a
texture measure to give perceptual weights to the
blockiness measure obtained in each frame.

We quantify the amount of texture in a region by
measuring  the  spatial  variation  of  the  pixel
intensities  in  this  region.  Then,  we  classify  a
region  with  a  high  spatial  variation  (possible
texture) as ‘rough’ and a region with low spatial
variation  as  ‘smooth’.  A good  way  to  estimate
spatial variation of the pixel intensities in a single
region is to use the standard deviation of the pixel
intensities in this region. But,  in order  to assure
that the blockiness of the frame does not interfere
with the measure of the texture, we calculate the
standard deviation of  8x8 pixels  regions aligned
with the encoding structure, what garantees that
the block borders are not included.

The algorithm used to measure the  texture index
(T) follows:

1. Initialize the texture index of the k-th frame
with 0, i.e., T(k)=0.

2. Calculate  the  standard  deviation  of  each
block of the k-th frame σ i ,   1≤i≤N  .

3. Calculate  the  mean  of  the  standard
deviation of all N blocks of the k-th frame:

                     σ  k = 1
N∑

i=0

N

σ i .

4. Compare  the  standard  deviation  of  each
block  σ ik   with  σ k  .  If  the  standard
deviation of  the block is greater than the
mean standard deviation of the frame by a
constant value α α≥1 , then the texture
index is incremented by 1 (T(k)=T(k)+1). In
our simulations we used α = 2.

Figures 2, 3, and 4 show representative frames of
the three videos (bike, football, and cargate) used
in  simulations.  The  values  of  the  texture  index
obtained for these frames are 1355, 1118 and 958,
respectively. This result is in agreement with our
perception  of  the  amount  of  spatial  activity  in
these  frames.  For  example,  the  video  bike has
more regions with greater spatial differences than
the  video  football,  which  has  a  uniform  football
field, and the video cargate, which has a ‘smooth’
road.

To  perceptually  improve  Vlachos’  blockiness
metric, we use the texture index described above
to  model  the effect of the video content   masking
the blocking artifact. The proposed algorithm gives
a ‘texture-aware’ blockiness measure. 



Fig. 2: Sample frame of ‘bike’ video

Fig. 3: Sample frame of ‘cargate’ video

Fig. 4: Sample frame of ‘football’ video

 For each  (PB) of the k-th frame of the video using
the  following equation:

      PB k =B k 
S

Nb l ock s
T  k 

,  (6)

where  Nblocks is the total number of 8x8 blocks of
the video  and  S is  a  scale  factor.  In  the  above
equation, the factor  is used to map the minimum
value  of  the  perceptual  blockiness  (PB)  to  the
minimum value of Vlachos’ blockiness metric (B).
We also set the scale factor S=10 in order to make
the  range  of  the  proposed  metric  approximately
the same as the range of Vlachos’ metric.

To  combine  the  perceptual  blockiness
measurements for all  K frames of  the video, we
use the weighted Minkowski metric of order 3:

 PB=
3∑
k=1

K

PB  k  3 . (7)

SIMULATION AND RESULTS

In  this  section,  we  present  the  results  of  the
proposed perceptual blockiness metric. We tested
the algorithm on a set of 3 videos (bike,  cargate,
and  football) with standard definition (SD), spatial
resolution 720x480, and progressive format.  The
bike and football videos are in 4:2:0 format and the
cargate video is in 4:2:2 format. Figures 2, 3, and 4
show representative frames of the videos used in
this work.

To test the metric, we compressed the original test
sequences with an MPEG-2 encoder at 6 bitrates:
0.5, 1, 2, 4, 8, and 10 Mbits/s. Table 1  presents
the  PSNR values  for  the  sequences  coded  at
these bitrates.  The  PSNR values for each video
were  calculated  by  taking  the  average  of  the
PSNR values computed for all frames of the video.

To  compare  Vlachos’  original  metric  and  the
perceptual blockiness metric, we plot the outputs
of  both  metrics  for  each  frame  of  the  test
sequences  bike  and  cargate.  Figures  5,  and  6
correspond to Vlachos’ blockiness, while Figures 7
and  8 correspond  to  the  perceptual  blockiness
metric. We can notice from these graphs that, as
expected,  the  curves  corresponding  to  higher
bitrates  have  smaller  values  than  the  curves
corresponding  to  smaller  bitrates  (more
compression). It is also possible to notice that, in
general,  the  blockiness  values  have  a  certain
degree variation with the frame number and the
same  bitrate,  with  two  or  more  peaks  as  the
videos  progresses.  Nevertheless,  the  curves
maintain the same correspondence among them. 

Fig. 5: Vlachos’ Blockiness metric results for test 
sequence ‘Bike’ containing only blockiness. 

Fig. 6: Vlachos’ Blockiness metric results for test 
sequence ‘Cargate’ containing only blockiness.

Fig.  7:  Normalized Perceptual  Blockiness metric
results  for  test  sequence  ‘Bike’  containing  only
blockiness.



Fig. 8: Normalized Perceptual Blockiness metric 
results for test sequence ‘Cargate’ containing only 
blockiness.

In  Table  1,  we  also  present  the  results  of  both
metrics for the whole video, for all test sequences.
Again,  as  expected,  the  values  of  both  metrics
increase with the bitrate, indicating a decrease in
blockiness strength. It is also possible to see that,
for  the videos ‘cargate’and ‘bike’ the greater  the
texture  index,  is  the  faster  is  the  decay  of  the
metric  with  the  bitrate  (and  consequently,  the
higher  the  quality  of  the  video).  In  comparison,
Vlachos’ metric doesn’t show this ‘acceleration’ in
decay produced by the effect of texture. In other
words, the proposed metric is more sensitivy to the
effect of masking of the blocking artifact by texture.

Table 1: Values of the PSNR, Vlachos’ metric (B),
and Perceptual blockiness (PB) metric for the test
sequences ‘bike’, ‘cargate’, and ‘football’ coded at
bitrates 0.5, 1, 2, 4, 8 and 10 Mbps.

Bitrate (Mbps)

Bike 0.5 1 2 4 8 10

PSNR 25.87 26.44 29.3 33.52 37.55 38.76

B 2.31 2.28 2.16 2.04 2.01 2.00

PB 3.46 3.43 3.25 3 2.94 2.94

Car 0.5 1 2 4 8 10

PSNR 24.79 24.89 25.11 25.57 27.94 29.55

B 2.61 2.59 2.59 2.58 2.54 2.43

PB 4.34 4.33 4.31 4.29 4.13 4.04

Foot 0.5 1 2 4 8 10

PSNR 26.82 27.59 30.9 33.33 35.68 36.54

B 2.04 2.00 1.9 1.86 1.85 1.85

PB 3.18 3.17 3.18 3.21 3.25 3.28

CONCLUSIONS AND FUTURE WORK

In  this  paper,  we  proposed  a  blind  blockiness
metric.  The proposed metric  is  a  modification of
the work by Vlachos that estimates the blockiness
by comparing the cross-correlation of pixels inside
(intra) and outside (inter) the borders of the coding
blocking  structure.  The  proposed  algorithm
estimates  the  amount  of  spatial  activity  of  each
frame  and  uses  this  measure  to  modify  the
blockiness  estimate  according  to  its  visibility.  A
Minkowski  metric  to  combine  the  blockiness
estimates for all frames of the video. The algorithm
was tested using a set of SR videos compressed
with  an  MPEG-2  enconder.  As  expected,  the
values  of  both  metrics  increase with  the  bitrate,
indicating a decrease in blockiness strength.

The  modifications  added  to  Vlachos’  blockiness
metric  are  based  solely  on  the  effect  of  artifact

masking   produced  by  texture  regions.  These
modifications  can  be  easily  applied  to  other
blockiness metrics or to any artifact metric. Since
the  effect  of  masking  is  not  negligible  in  most
videos, this perception layer will probably increase
the correlation of the quality metric with subjective
quality scores. Nevertheless, further studies need
to  be  completed  in  order  to  confirm  this
hypothesis.  It  is  worth pointing out  that  ‘pattern’
masking is only one of the many aspects of the
human  visual  system  that  can  be  exploited  to
perceptually  improve  the  performance  of  video
quality metrics.
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