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Abstract— This paper investigates the quality evaluation of
H.264-encoded digital videos when transmitted over IEEE 82.11
wireless networks. To accomplish this task, we use a no-refnce
video quality metric based on a data hiding technique. The
impact of IEEE 802.11 DCF parameters on the quality of H.264-
encoded videos is studied through a detailed analytical mad for
saturated single-hop networks under perfect channel contibns.
The numerical results obtained indicate that, in spite of tre
fact that the minimum contention window size has a significah
impact on other network performance metrics (e.g., througiput,
delay, and jitter), it is not as relevant as the retransmissin limit
parameter as far as perceptual video quality is concerned. &h
observation leads to the fact that, depending on the numberfo
nodes in the network, one must trade faster video streamingof
buffering space by using the retransmission limit paramete as
a key parameter control in the design of adaptive multimedia
oriented IEEE 802.11 wireless networks.

1. INTRODUCTION

Because the outputs of these metrics do not always corrdspon
well with human judgements of quality, there is an ongoing
effort to develop video quality metrics that are able to dete
impairments and estimate their annoyance as perceived by
human viewers. Most of the quality metrics proposed in
the literature ardull-reference (FR) metrics [2, 3, 4], i.e.,
metrics that need the original video to compute an estimate
of the quality. Requiring the reference video or even lighite
information about it becomes a serious impediment in real-
time video transmission applications. To measure videdityua
in such applications, it is essential to usa@referencNR)
video quality metric, i.e., a metric that blindly estimatbe
quality of the video. To date, most of the proposed NR metrics
estimate annoyance by detecting and estimating the strengt
of commonly found artifact signals [5, 6].

Recently, we have proposed an unconventional approach to

As high-speed Internet access has become significartthndly estimate the quality of a video by making use of data
more affordable to a larger number of users worldwide, ariding techniques [7]. In this approach, a digital waterknar

with the ever-increasing interest for on-demand web applids embedded into the original video at the transmitter side.
tions, in particular, video streaming applications, thechéor At the receiver side, an estimate of the quality of the ‘host’
guarantees on the quality of service provided to end uséreceived) video is obtained by measuring the degradation o
has become a vital concern among network designers dhe extracted mark. This degradation is computed by simply
administrators alike. In particular, compared to their eslir taking thetotal squared error(TSE) between the extracted
counterparts, the provisioning of quality of service gmaeas and inserted marks. The less degraded the received video,
for video streaming over wireless networks poses significaihe smaller the value of the computed TSE. In this case, the
challenges due to the intrinsic random nature of wirelegsoposed system is based on the assumption that both the
channels and the intricate mechanisms of medium accessbedded image mark and the host video degrade at similar
control among users. rates.

In the specific case of digital video streaming, a critical In this paper, we use our NR video quality metric to study
aspect is the feasibility of real-time quality evaluatioh othe impact of IEEE 802.11 [8] parameters on the quality of
the streamed video at the receiver side. Unfortunately, thie264-encoded digital videos. For this purpose, we comside
most accurate way to determine the quality of a video is lay detailed analytical model of the ditributed coordination
measuring it using psychophysical experiments with humdumnction of the IEEE 802.11 standard to assess the impact of
subjects [1]. Such experiments are very expensive, tim@me the MAC parameters on the quality of H.264-encoded
consuming and hard to incorporate into a design processyor aideo transmissions. In particular, we investigate thedotp
automatic quality of service mechanism. With this in mirdg t of the minimum contention window size, the retransmission
development of fast algorithms that give a physical measummit, and the network size on video quality degradatiorr, fo
of the video quality (objective quality metrics) has becoame the case of saturated single-hop IEEE 802.11 ad hoc networks
active area of research in the past few ye&is [ The paper is organized as follows. In Section 2, we present

Customarily, quality measurements have been largely lirthe no-reference video quality metric based on data hiding
ited to a few objective measures, such as pleak signal- techniques. In Section 3, we describe the analytical model
to-noise ratio (PSNR) and thetotal squared error(TSE). for the IEEE 802.11 DCF MAC we use for performance



evaluation, and in Section 4 we present the numerical esudind video format. The design of an embedding system requires
regarding the impact of IEEE 802.11 DCF parameters on theat appropriate values af be chosen for each video or set
quality of H.264-encoded transmitted videos. of frames.
In Table I, column 5, we present the ‘best empiricalval-

2. VIDEO QUALITY METRIC BASED ONDATA HIDING ues according to the results of a psychophysical experahent
A. The Embedding Algorithm that took into consideration both the visibility and degition

Figure 1 depicts the block diagram of the embeddir@f the extracted mark [10, 7]. As can be noticed from Table |,
process used by the proposed quality assessment method. thBex values corresponding to the visibility threshote( in
image mark fn), which is a binary image, is embedded ircolumn 4) and the ‘best empirical values are not correlated.
each frame of the video using a spread-spectrum techniquén columns 2 and 3 of Table |, we also present the data
[9]. A pseudo-random algorithm is used to generate zerbiding capacity and the standard deviatier) f the set of
mean pseudo-noise imaggs) whose individual pixel values videos. The data hiding capacity determines how many bits
p (i, j, k) assume values -1 or 1 (the indicesnd; correspond can be hidden in the host video and is given by the following
to the horizontal and vertical positions, while stands for expression [11]:

the video frame index). A different pseudo-noise image is o2
generated for each frame of the video to avoid temporal C =0.5-1log <1+ ;”—‘”k) 4)
summation. video

_ whereo? . is the variance of the mark embedded arig,
Binary mark m

is the variance of the (host) video.

PN generator

TABLE |

Estimation of
best a

Video y Ly % vy DATA HIDING CAPACITY, STANDARD DEVIATION, oo INTERVALS FOR THE
log(.) " ber ‘ .7 > exp() H IDCT ‘4’ VISIBILITY THRESHOLD, AND ‘BEST EMPIRICAL « VALUES.
Figure 1. Block diagram of the embedding stage of the videalityu Test Seq Capacity oviq ar Interval Besta
assessment system with an automatic estimation ofdest Flower 0.009 1"{ §096 0T <ar <02 0.100
Bus 0.021 7671 0.2 < ar <0.3 0.050
The final markw to be embedded is obtained by multiplying Cheerleader ~ 0.025 7.0190.2 <ar <03  0.050
each elementn(i,j) of the binary mark imagan by the E‘OOtl?a” 8-%% é-ggg 8-(2) <or < 8&)’ 8-8?2
corresponding elemenigi, j, k) of the pseudo-noise image: ockey : - fcar<? :
w(i, k) = m(i j) - pli. 5, k). M
Before being added to the mid-frequency DCT coefficients e
of the frame, the final mark is multiplied by a scaling factor o-or 0,-002°6xp(015%)
«. Then, the logarithm of the luminangeof the video frame o e oraiion
is computed, followed by the DCT transform (denotedx)): o o
0.03}F
LY = DCT(logy). 2)
§0 11F
The logarithm is used for scaling purposes, since this allow 0 0ol
the use of smaller values af, leading to smaller distortions. 007}
The value ofa is chosen by an automated system, described 0,05}
in the next section. After the embedding, the DCT coeffigent 0,03
are given by: 0.0l 5 CR S 12
Py
Ly (27 Js k) - Figure 2. Predicted versus standard deviation of the host video.
[ LY (3,5, k) +a-w (i, 5, k), 120 <i,j < 240, 3)
| LY (i,4,k), elsewhere. Figure 2 depicts the ‘best empirical versus the standard

After the mark is inserted, the exponential of the video geviation for all videos, according to psychophysical daa

taken followed by the inverse DCT (IDCT). The video is therl "€ following exponential curve was fitted to the data:
coded (compressed) and sent over the communication channel ap (o) =a-exp(b- o), (5)

B. Automated System for Estimating whereaq,, is the predicted value fo, ando is the standard
The scaling factory is used to vary the strength of thedeviation of the host videau(= 0.0162 andb = 0.1530). We
mark. An increase on its value increases the robustnesscah notice from columns 3 and 5 of Table | that the standard
the mark, but also decreases the quality of the video. THeviation and the ‘best empiricalk values are correlated.
appropriate value forx depends on the type of applicationTherefore, the automated system for estimating the value of



for each video can be implemented by simply measuring thé@e less the amount of errors introduced by either procgssin
standard deviation of the video frames and using Eq. (5). compression or transmission, the smaller is the valuBgf.
C. The Extraction Algorithm On the other hand, the more degraded the video, the higher

) ) ] the value ofE.. In other wordsE,. gives an estimate of
Figure 3 shows the block diagram of the extraction stagge degradation of the video.

of the video quality assessment system. If no errors are

introduced by compression or transmission, the input to the 3. THEIEEE 802.11 ANALYTICAL MODEL

extraction stageX(”) is equal to the output of the embedding | this paper, we are interested in undertanding how the

stage {'’). On the other hand, if errors are addétl = Y'+1),  qyality of H.264-encoded videos degrade when they are-trans

where) represents the error signal. In order to explain thgjtted over an IEEE 802.11 wireless network. In particular,

mark extraction process, we will assui¢’ = Y. First, the e aim at investigating the impact (and, hence, the relative
importance) that some of the IEEE 802.11 parameters have

wy)(xy) e on the perceived quality of H.264-encoded videos. By doing

p(x.y)

m,(x,y)

—[ o) | ocT & sumon}—{ san0 | pone }_E, so, the design and deployment of IEEE 802.11 wireless
‘ netwoks targetted at multimedia content delivery can b&bet
[y mar |22 optimized and fine-tuned. For this work, we focus on satdrate
, _ _ S (i.e., all nodes have a packet to send at any time) single-hop
E)',gslt’éff Block diagram of extraction stage of the video @y@ssessment anyorks under perfect channel conditions, and we consider

the ad hoc mode of operation for the IEEE 802.11 DCF
logarithm of the luminance of the received video (denoted BYAC [8]. This is because we are mainly interested in under-
y") is computed followed by the computation of its DCT (se&tanding the actual impact of specific IEEE 802.11 pararaeter
Eg. (2)). Then, the mid-frequency DCT coefficients (where tHPN the quality of transmitted videos.
mark was inserted) is multiplied by the corresponding pseud A number of analytical models for the IEEE 802.11 DCF

noise image, leading to MAC have been proposed in the past few years [12, 13].
Considering that we are dealing with saturated single-hop
LY" (i,5,k) - p(i,j,k) = networks under perfect channel conditions, we can make use

LY (i,5,k) -p(i,j, k) +o-m(i,5), (B) of a simplified discrete-time Markov_model for the IEEE
) _ . o 802.11 DCF MAC based on our previous work [14]. Based
for 120 < i < 240 and 120< j < 240. Notice thap(i, j, k) - on this Markov model, we develop the probability that a node
p(i, j, k) =1 becausep(i, j, k) is either -1 or +1. drops a data frame after a certain number of retransmission

Synchronization is crucial .at this step because t.he imaﬂﬁempts. This probability is a fundamental figure of mevit f
mark can only be extracted if the same pseudo-noise ma Xy analysis

used in the embedding process is used in Eq. (6). Some bit

o_f synchronization information can be easily embedded & th e counter for a nodgat a timet, ands; () be the stochastic
video to assure recovery. The result of Eq. (6) is then am*agprocess representing nodés backoff stage[0,m] at time

over a chosen number of fram@&. This step is necessary to for which the maximum window size &, = 2W..
eliminate the noise (pseudo-noise signal) introduced ley tt e [0,m]. If we assume that each handshdés with a

spread—spectrum embeinng a_Igorithm. The binary mark dﬁnstant and independent probability, regardless of the
extracted by taking the sign of its average, as follows: number of retransmissions experienced, and that a nodetslete

et b;(t) be the stochastic process representing the backoff

of Ny. When errors are added by the compression or tran
missifon systemsy” = Y’ +n, and the extracted matk,. is {0, k[, 0} = 1/Wo, k€ [0, Wo —1].

an approximation ofn. The first and second equations indicate that the backoff

D. A NR quality metric counter__is decremented if the_ channel is S(_ensed idle (with

_ . probability 1 — g;), and frozen if the channel is sensed busy

A measure of the degradation of the mark is given by th(@'\/ith probability g;). The third equation indicates that, after

total squared erro(TSE) of the extracted maria, : an unsuccessful handshake at stagd, a backoff interval is
Eise = Z Z [m(i, j) —m, (i,j)]? (8) chosen within the intervgl, W; — 1] for stagei. The fourth

P equation indicates that a packet has experienced a sugkessf

my (i, §) = the channel busy with a constant and independent prohabilit
B N gj, then the proces$s;(t),b;(t)} can be modeled with the
B ! LY (i ik - ik discrete-time Markov chain depicted in Fig. 4. In the Markov
= sgn N kZ( (@ 5,k) - p (i, 4, k) +a-m (i, ), k) chain, the only non-null one-step transition probabitere
=1
(7) P{i,kli,k+1}=1—-g;, ke[0,W;—2], iecl0,M]
%ecause the pseudo-noise matrix has zero mean, the s@r%’,’i}l,’k}lz()}gj’ W, ZE E) % B H’ ZE E’%%
fLYk ik h for | | 1, Rkt — 1, =Pj (2 s Wi — 1, 1 )
Dokl (i,4,k) - p(i, 4, k) approaches zero for large values {0, k13, 0} = (1= p;)/Wo, k € [0.Wo— 1], i € [0.M — 1]
[



Figure 4. Markov chain model representing the binary exptiakebackoff
algorithm of the IEEE 802.11 DCF MAC.

and the fact that all nodes are within range of each other,
the probability that a handshake fails is simply the proligbi

that at least one of the — 1 remaining nodes transmit at the
same time as the node under consideration. Following the sam
reasoning, the probability that the channel is perceived busy

by a node during its backoff is the probability that at least
one of then — 1 remaining nodes transmit at a given time
slot. By the independence assumption, and because each node
transmits an RTS frame with probability at any time, we

have that

p=g=1-(1-7)"" (14)

It is important to mention that if physical layer aspects
are considered, the computation of the probabiliieand g
become totally different: detecting that the channel isybus
demands the decision whether the energy level perceived by a
node is above some target threshold. On the other hand, a suc-
cessful handshake demands the ability of a node to correctly

handshake and a new packet starts at backoff stage 0 witHediver a frame to its destination, which relies on a number o
backoff window size chosen ifi), W, — 1]. The last equation PHY-layer aspects, such as modulation/demodulation sehem
describes that a new packet starts at backoff stage 0 atter eireceiver design, etc [14].

a successful handshake or an unsuccessful handshake (tHeguations (13) and (14) form a nonlinear system in the

packet was dropped). Lét , = lim; .o P{s(t) = i,b(t) =

unknownsr, p, andg. Following the approach used in previous

k},i € [0,M],k € [0,W; — 1] be the stationary distribution works [13, 14], we find an approximate solution to this

of the Markov chain. We note that

bio = Pjbi—1,0 => bio =piboo, 1<i< M. (9)
For k € [1,W; — 1], we have
bij = M{ 1o (1= py)bo +baro, i=0
T (L—=g)Wi pjbi-10, i€ 1, M].
(10)

From Eq. (9), and noting th@f\ial(l—pj)bl,o+b1\4,0 = b0,
Eq. (10) can be rewritten as
Wi —k
bik =

, m 1€ [O,M], ke [1,Wi— 1]. (12)

bi.0,

system by linearizing all equations according to a Tayloiese
expansion. Considering= 1 — p, we obtain

2 2Wminq 2(Wmin - 1)9 (15)
TR -
(Wmin + 1)2 (Wmin + 1)2 (Wmin + 1)2 ’
gr1—(n—1)r, (16)
g=1-(1-7""'= -1 a7)

Solving the system in Egs. (15), (16) and (17), we obtain

= 2(n — 1)(Winin + 1)
P (Wmin + 1)2 + 2(n — 1)(2Wmin _ 1) (18)

From Egs. (9) and (11), all values &f;, can be expressed as

functions ofbg o, which can be found from the normalization

condition " STV by, = 1, yielding

_ 2(1 —gj)(1 —py)(1 — 2p;)
boo = (1 =P ) (1 = 2p;)(1 — 29;) + K Wonin (12)

with & = (1 —p;) [1— (2p)M ] if m = M, andx =
1—p {1+ (2p;)™[1 +p}" =" (1 —2p;)]} if m < M. Finally,
by takingr; = M b; 0, we obtain
2(1—g;)(1—p} 1)1 - 2py)
T; = s y (13)
(1 —D; )(1 = 2p;)(1 = 2g;) + £Whin

Because each data frame is going to be either successfully
transmitted or discarded from the output queue, a key infor-
mation to network performance is the probabilfy,,, that

a data frame is discarded. From the independence assumption
regarding the successful handshake across different fiacko
stages, and considering that each data frame is entitled to a
maximum numbel! of retransmissions, the probability that

a data frame is dropped is simply given by

2(n — 1) (Whin + 1)

(Wmin + 1)2+2(n — 1)(2Win — 1) ’
(19)

M+1

Pdrop =

with x assuming the previous values depending on whethghere the power ol 41 stands for thé M/ +1)-th attempt to
m < M. Given that we are dealing with a single-hop networkkansmit the data frame at the end of th&th backoff stage
under perfect channel conditions, we do not need to tredt edthe counting of backoff stages starts at zero, and we need

node individually. Therefore, we can drop the subscfifrom
now on.

to count the first transmission attempt before the nodesstart
making retransmissions (see Figure 4)). The probability,,

To find the probabilityp that a handshake fails, it is suffi-is key for determining the successful delivery of indivitlua
cient to note that, because of the perfect channel assumptiackets of a digital video stream. In the next section, we



investigate the impact of IEEE 802.11 parameters and n&tw@ome performance improvement should be expectédf,
size on the perceptual quality of the H.264-encoded videosncreases from 32 to 64, especially in large networks.

4. NUMERICAL RESULTS E M5

In this Section, we investigate the impact of some of the
IEEE 802.11 parameters on the perceptual quality of H.264-
encoded digital videos according to the data hiding teamiq \
presented in Section 2. y 06 N

Given that we are dealing with single-hop networks under o
perfect channel conditions, packet losses will occur oslyaa 0.5 B
result of packet drops due to the backoff mechanism of the
IEEE 802.11 DCF MAC. Also, we assume that consecutive N
packets are dropped independently of one another (with-prob 30 40 50 60 70 80 90 100 110 120 130
ability Py,..p), and that no packet is discarded if it is received e
beyond a certain time constraint (as some decoders woslglre 7. E. as a function of the minimum contention window Si#éy;,,
do). Instead, packets are buffered long enough before beldg="7).

0.7

displayed.
In simulations, we used 300 frames of 9 publicly-available
videos in YUV 4:2:0 qcif format (176144). The chosen g 0015

videos contain different amounts of motion, color, and efri
content. The results we present next correspond to single
transmissions of the “foreman” video sequence over differe
network scenarios. In Figure 5, we show samples of received

0.01

0.005

Packet drop probability - P,

. . . . 0

video frames when transmitted over different network sizes 128 o
for the scenarios under study. It can be noticed that, as o4 — w7
network size increases, the visual quality of the framesatkg Mimmam conenton window sze W) 3275 *0 e ot nodes o

considerably.

Figure 6 contains the results &f.. as a function of the Figure 8. Packet drop probability as a functionif,;, and the number of
maximum number)M of retransmission attempts. Becausg@odesn whenM = 5.
Pirop decays exponentially with\/, the video quality in- ) )
creases significantly ad/ increases. This improvement is Regarding the impact of the number of nodeson the
particularly significant in larger networks: when= 40, the Values ofEi., Figures 9 and 10 depict the results faf = 3
perceptual quality improves by 160% ag increases from 3 and M = 7, respectively (with the default value 0¥y, =
to 7, whereas it improves by 50% in the case of 20 nodes (f%?-). From the fitted curves, the perceived quality degrades by

same variations in\/). 200% for M = 3, and by 50% forM = 7, asn increases
from 10 to 70. It is interesting to notice that the degradatio
Erse’ W,,732 in quality appears to have an exponential behavio\or= 3,
1.4 X0 =4 whereas it shoyvs an approximate linear behavio_r]\tbt_?.
%o Such degradation is particularly strong whigh= 3, in which
1.2 ‘\\ case the values df.,, saturate forn > 80. In those cases,
g 1 \”x the video cannot simply be played due to significant packet
u” ... A drops.
08 Tl S In Figure 10, we can notice that there is an outlier value
0.6 el i for n = 50. This is an example of the case when packet
“x losses affect key header information that prevents a sigmifi
ST I 5 s o (7_‘3 portion of the video from being correctly decoded. It is

Maxi mum nunber of retransmi ssions

Y important to point out that the appearance of such outliars o

Figure 6. Etse as a function of the maximum numbeéf of retransmissions numerical results is due to the fact that, as mentioned befor
(Wmin = 32). each of the measurdd,;. values corresponds to anstance

of a video transmission over the network (not average values

Figure 7 contains the results for the impact 1df,;, on

the values ofE,, when M = 5. As we can see, the Given the previous results, we observe that, although the
perceptual quality of the video is practically unchanged foninimum contention window sizéV,,;, has a significant
Whin > 64. Such behavior is also expected in larger networkienpact on network throughput, delay, and jitter [13], asdar
as Figure 8 illustratesP,,., does not decrease significantlyperceptual video quality is concerned, its impact is noteks r
when W, > 64 for other network sizes. Neverthelessgvant as the one dictated by the retransmission limit paterme
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Figure 5. Sample frames of “foreman” video showing qualiggihdation wheiV,,,;,, = 32, M = 7 and network sizes: (a) 20 nodes (b) 40 nodes (c) 60

nodes (d) 80 nodes (e) 100 nodes.
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Figure 9.

Etse as a function of number of nodes (Wi, = 32, M = 3).

a significant impact on other network performance metrics
(e.g., throughput, delay, and jitter), it is not as relevast
the retransmission limit parameter as far as perceptuaovid
quality is concerned. Such observation leads to the coiocius
that, depending on the number of nodes in the network, one
must trade faster video streaming for buffering space bygusi
the retransmission limit parameter as a key parameter aontr
in the design of adaptive multimedia-oriented IEEE 802.11
networks.
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