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Resumo Expandido

Métodos de filtragem digital em compressed sensing
para reconstrução de imagens de ressonância magética

Introdução

Imageamento por ressonância magnética (RM) permite a visulização de orgão internos e
o diagnóstico de patologias, tratamentos, acompanhamento de procedimentos médicos,
planejamento de cirurgias, etc. Ao contrário de raio-X e tomografia computacional, RM
não emite radiação ionizante e gera imagens com um ótimo contraste para tecidos
moles [1]. Entretanto, um típico exame de RM pode demorar horas, o que aumenta o
custo e diminui a abrangência de seu uso. Além disso, o exame requer que o paciente se
mova o mínimo possível, muitas vezes tendo que prender a respiração por 15 segundos.
Um exame de RM mais rápido pode diminuir esses custos, aumentar a abrangência do
uso, aumentar o conforto do paciente e permitir novos tipos de exame e evitar artefatos
de movimento nas imagens.

Uma das formas de diminuir o tempo do exame é reconstruir as imagens com um
número menor de medidas. Compressed Sensing (CS) [2, 3] é um método de
reconstrução de sinais subamostrados que sejam esparsos em algum domínio conhecido.
Entre os métodos de CS, a minimização da variação total (TV) [4, 2] é um método que
reconstrói imagens com gradiente esparso. Em imagens de RM, estruturas com mesma
propriedade apresentam um nível de cinza muito próximo, o que torna o gradiente da
imagem bastante esparso. Portanto, a minimização TV é popular entre os métodos de
reconstrução de RM por CS [5, 6, 7, 8, 9, 10]. Portanto, melhorar a qualidade gerada
pela minimização TV permite melhorar o resultado de muitas técnicas de reconstrução
de RM. NESTA [11] é um algoritmo rápido e robusto para resolver problemas de
reconstrução por CS. O método usa aproximações convexas e diferenciáveis das funções
a se minimizar e obtém as soluções por um método iterativo de primeira ordem.
Particularmente na solução para a TV, o método aplica o filtro de diferenças finitas
verticais e horizontais na aproximação da função TV.
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Outro método utilizado para o problema de reconstrução subamostrada de RM com
CS é a pré-filtragem [12]. No método, primeiro é aplicado uma série de filtros diretamente
nas medidas. O método então usa as versões filtradas das medidas para reconstrução por
CS. As reconstruções obtidas correspondem as versões filtradas da imagem original. Por
fim, o método recombina os espectros reconstruídos junto com as medidas originais para
obter a reconstrução final. Os filtros testados foram de diferenças finitas na vertical,
horizontal e diagonal, e o resultado obtido apresentou maior qualidade que a minimização
TV.

Portanto, a literatura apresenta dois tipos de métodos de filtragem utilizada com CS, a
filtragem durante a reconstrução e a pré-filtragem. Entretanto, apenas filtros de diferenças
finitas foram testados sistematicamente nestes métodos. Há possibilidade de testar outros
filtros e algoritmos nas reconstruções. A hipótese é que outros filtros podem esparsificar
ainda mais as imagens, e isso proporcionaria uma melhor qualidade ao resultado ao utilizar
esses métodos. O objetivo desta tese é propor, simular e analisar métodos de filtragem
com CS para resolver o problema de reconstrução de RM subamostrado. Para cada
método, o objetivo é projetar os conjuntos de banco de filtros e analisar a qualidade de
reconstrução de cada. É desejado obter imagens com maior qualidade que os métodos
que usam diferenças finitas (TV e pré-filtragem com filtros de diferenças finitas), ou uma
qualidade semelhante a partir de menos medidas. Isso permitiria dimiunir o tempo de
aquisição de medidas nos exames de RM.

Metodologia

Bancos de filtros para a pré-filtragem

Primeiramente, foi feito o teste sitemático do método de pré-filtragem com um conjunto
de banco de filtros projetados com características distintas. O primeiro conjunto de banco
de filtros é baseado no projeto de filtros por janelamento [13]. Os bancos de filtros são
projetados de forma que cada um deles ocupe uma faixa diferente do espectro de igual
tamanho. Eles são aplicados na horizontal e vertical para formar filtros 2D, sendo que o
filtro passa-baixas é descartado. São projetados 20 bancos de filtros, com as combinações
de 2 a 5 divisões de banda e de ordem 2 a 10 (de 2 em 2). Estes bancos de filtros são
designados neste trabalho como WIN(ordem, bandas).

O outro conjunto de bancos de filtros é baseado na decomposição wavelet. Como a
decomposição wavelet é formada por uma sequência de filtragens e decimações, ela foi
adaptada para conter uma sequência de filtragens, usando a propriedade de decimação
da transformada Z. Cada nível de decomposição corresponde a uma posicão diferente do
espectro. Os filtros são aplicados horizontalmente e verticalmente para formar filtros 2D,
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em que o filtro passa-baixas é descartado. São projetados 21 filtros, com combinações
de 7 famílias wavelet e 3 níveis de decomposição. Neste trabalho, refiro a este banco de
filtros como WAV.

O primeiro experimento usa o método de pré-filtragem com o algoritmo de reconstrução
IRLS [14], em que as reconstruções são minimizações `1. O processo de tomada de medidas
pela máquina de RM é simulado a partir de imagens de cortes de cérebros. As medidas
correspondem a 20, 40, 60, 80 e 100 linhas radiais no espaço k. A avaliação de qualidade é
feita com as métricas SNR e SSIM. São calculadas ainda a `1 média das imagens filtradas,
assim como a cobertura do espectro dos bancos de filtros.

Inclusão de medidas de valor zero na pré-filtragem

Para o segundo experimento, é proposta uma modificação no método de pré-filtragem.
Para cada filtro, medidas com valor zero são incluídas nas regiões de banda de rejeição
no espaço de soluções, por um método de limiar. Assim, a minimização força soluções
com que tenham espectro igual a zero na banda de rejeição do filtro (como o esperado
para a solução correta). É considerada como banda de rejeição as regiões do espectro em
que a amplitude é menor que um limiar. As medidas de valor zero são associadas a essas
regiões do espectro.

Para um limiar igual a 1% da amplitude máxima de um filtro, para o banco de filtros
WAV(db4,1), e para 20 linhas radiais, o número de amostras passa de 10.4% para entre
34.4% e 44.4% ao incluir as medidas abaixo do limiar. Para o experimento, foram
utilizadas as mesmas imagens, os mesmos bancos de filtros do experimento anterior. O
algoritmo de reconstrução NESTA ao invés do IRLS. O limiar foi escolhido
empiricamente, com valores 0%, 0.5%, 1% e 5% do valor máximo de amplitude do filtro.

Norma da filtragem

Foi proposta a norma da filtragem. O método consiste em minimizar a norma `1 ou `2

da filtragem do sinal a ser reconstruído. A filtragem é composta pela aplicação de um
conjunto de filtros escolhidos pelo usuário. Os filtros podem deixar o sinal esparso, e
assim favorecer a reconstrução por CS. O método proposto é equivalente à TV quando os
filtros utilizados são os de diferenças finitas.

Três variações do método são propostas, a norma isotrópica da filtragem, a norma
anisotrópica e a norma isotrópica + anisotrópica. A norma isotrópica é baseada na
norma `2, enquanto a anisotrópica se baseia na norma `1. A implementação foi baseada
no algoritmo NESTA, utilizando os filtros para obter a aproximações dos gradientes.
Finalmente, utiliza-se o mesmo algoritmo de reconstrução utilizado no NESTA,
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alterando a função gradiente. Para a isotrópica + anisotrópica, o gradiente é a soma dos
gradientes da isotrópica e anisotrópica.

O terceiro experimento simula reconstrução de RM utilizando a norma da filtragem,
em suas formas isotrópicas, anisotrópicas e isotrópicas + anisotrópicas. São utilizadas
as mesmas imagens e padrões de amostragem dos experimentos anteriores. 8 tipos de
combinações de filtros são testados, que incluem diferenças finitas de primeira e segunda
ordem e filtros WIN. Foram incluídos 4 níveis de ruído gaussiano nas medidas: sem ruído,
60 dB, 40 dB e 20 dB.

Pré-filtragem com decimação

Foi proposta adição de um processo de decimação na reconstrução no método da pré-
filtragem. Ao realizar uma operação de decimação de ordem 2, acontece aliasing, o que
faz com que a parte do espectro acima de π/2 sejam rebatidos, e o espectro fica mais
preenchido. Isso permite diminuir a esparsidade do espectro sem afetar a esparsidade do
sinal do domínio do espaço. O método aplica essa operação no domínio da frequência, pois
as medidas estão neste domínio. Entretanto, para cada medida válida para a reconstrução,
é necessário que as medidas nas posições i e i+N/2 façam parte da amostragem original,
caso contrário, as duas medidas devem ser descartadas. Isso limita a aplicação da técnica
pois geralmente diminui bastante o número de medidas para a reconstrução. Esta parte
é um trabalho em andamento, sem resultados por enquanto.

Resultados

Bancos de filtros para a pré-filtragem

São mostrados banco de filtros que apresentam qualidade de reconstrução maior que os
filtros Haar. Os bancos de filtros WIN de menor ordem correspondem aos melhores
resultados em qualidade de reconstrução. A maior melhora de qualidade é para 20 linhas
radiais, que mostra uma melhora de 2.8 dB/0.106 SNR/SSIM O banco de filtros WIN de
ordem 2 obtiveram entre 1.2 e 2.5 dB maior SNR que os resultados com TV NESTA, e
entre entre 1.4 e 3.6 dB maior SNR que o pré-filtragem com filtros de diferenças finitas.

Foi tomada como hipótese que os filtros que proporcionam a maior esparsidade nas
imagens obteriam as melhores qualidades de reconstrução. Porém, não foi encontrada
uma correlação entre a qualidade da imagem e a métrica `1. Talvez a métrica utilizada
não tenha sido uma boa medida de esparsidade. Há uma correlação entre a cobertura do
espectro e a qualidade apenas quando as medidas originais são incluídas no cálculo da
cobertura do espectro.
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O tempo de reconstrução é influenciado principalmente pelo número de filtros do banco
de filtros usada na reconstrução. O banco de filtros WIN(2,2) obteve uma das melhores
reconstruções e tem apenas 3 filtros, sendo o melhor compromisso entre qualidade e tempo
de reconstrução.

Inclusão de medidas de valor zero na pré-filtragem

No método de pré-filtragem, o algoritmo NESTA não obteve melhor resultado de
reconstrução que o IRLS para os filtros WIN, e similar qualidade para os filtros WAV. O
método do limiar deixou a qualidade maior ou igual em relação ao método tradicional.
As maiores melhorias em qualidade ocorreram com um limiar de 5%. Entretanto, a
escolha foi empírica, e parece ser a melhor abordagem para o problema, pois o resultado
parece ser dependente do banco de filtros utilizado e da imagem.

Norma da filtragem

O melhor resultado foi obtido ao utilizar a norma isotrópica + anisotrópica da filtragem,
com uma combinação de 8 diferentes filtros incluindo de diferenças finitas de primeira, e
segunda ordem e o banco de filtros WIN(2,2). Para essa configuração, o SNR da
reconstrução foi significantemente maior que ao do TV NESTA, para todos os níveis de
ruído. Um teste estatístico ANOVA foi aplicado para isolar a influência da função de
norma e do conjunto de filtros, e o teste apontou que ambos a função de norma
isotrópica + anisotrópica e os filtros apresentaram ganhos significativos em relação aos
outras funções de norma e filtros, respectivamente.

Conclusão

Neste trabalho, técnicas de filtragem em CS métodos e bancos de filtros foram propostas
e avaliadas para a reconstrução de imagens de RM a partir de medidas subamostradas.
Houve melhora da qualidade de reconstrução em relação a minimização TV e ao método
de pré-filtragem com filtros de diferenças finitas. Todos os experimentos apresentados
mostram algum tipo de melhora nos resultados. A partir do primeiro experimento, se
obteve a melhor qualidade de reconstrução para poucas linhas radiais. A partir do segundo
experimento, se obteve um método que melhora quase sempre a qualidade de reconstrução
para a pré-filtragem. E no terceiro experimento é proposta uma nova técnica, e ela
obtém melhores resultados comparado às outras para uma maior amostragem. O trabalho
apresentado nesta tese abre a oportunidade para que os métodos sejam aplicados nas
máquinas de RM e possam melhorar a qualidade nos problemas reais de reconstrução por
RM.
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Abstract

Magnetic Resonance Imaging (MRI) exams usually take a long time to be performed
because they require a great amount of measurements to reconstruct an image with
good quality. Decreasing the acquisition time of MRI can prevent motion artifacts,
make possible to perform new types of exams, and also reduce MRI costs.

Compressed Sensing (CS) techniques are able to reconstruct MRI images at a sub-
Nyquist rate, provided that the signals are sparse in a known domain. A CS method known
as total variation (TV) minimization, minimizes the finite differences to reconstruct the
signal. This operation can be interpreted as a filtering operation that is performed in the
reconstruction steps. On the other hand, the pre-filtering method reconstructs filtered
versions of the image with CS and recombine their spectrum to obtain a better image
quality. This method relies on the fact that (high-pass) filtered versions of the images are
sparse in the pixel domain and can be reconstructed with CS using fewer measurements.

In this work, I use filtering methods with CS to improve the quality of the
undersampled MRI image reconstructions. The filters provide sparsity to the images,
and generate better CS reconstructions. In the pre-filtering methods, I proposed a
systematical test to evaluate a large number of filter banks, which were still not tested
in the pre-filtering literature. I also proposed a threshold method to include
measurements in the solution space, based on the stop-band of the filters. Finally, I
proposed the filtering norms, a method that uses filters in the reconstruction algorithm.
This method generalizes the TV minimization for any type of filter. I simulated the
methods extensively for different sampling density and on a large set of images, and use
objective metrics to evaluate the reconstruction quality. The pre-filtering, for low order
filters designed with windowing method obtained SNR values between 1 and 2.9 dB
higher than the TV minimization. Filtering norms with a combination of filters resulted
in SNR values between 1.2 and 1.5 dB higher than values obtained with the TV. In
most cases, the threshold method improved the image quality results. However, the
highest quality improvements were observed for poor reconstructions.

Keywords: compressed sensing, Magnetic resonance imaging, filtering
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Chapter 1

Introduction

1.1 Context and problem definition

Medical imaging make it possible to obtain a visual representation of internal organs,
revealing structures that are not accessible or even hidden by other structures. These
visual representations allow the specialist (e. g. the radiologist) to observe abnormalities
in organs and tissues, as well as diagnose pathologies and follow-up medical treatments.
Among the non-invasive medical imaging modalities, the most generally applicable for
internal organs visualization are X-ray radiography, Computational Tomography (CT),
and Magnetic Resonance Imaging (MRI) [1]. However, X-ray radiography and CT submit
patients to ionizing radiation. Also, X-ray is more suitable for hard tissues such as bones,
while CT allows the visualization of soft tissues. But in CT, the patient is submitted to
higher radiation doses, that are often linked to cancer incidence [21].

MRI, on the other hand, does not emit ionizing radiation. Instead, MRI uses strong
magnetic fields and radio frequency pulses to generate images of internal organs [22].
This allows performing imaging exams in cases for which the other imaging modalities
are not recommended due to the radiation, like for example exams in pregnant women
and children or a repeated series of exams. Another advantage of MRI is the high contrast
of the reconstructed images. Different works [23, 24, 25], which compare the use of MRI
and CT images for diagnosing diseases and injuries, showed that the levels of contrast
of MRI allows a better anatomical identification of internal tissues, leading to better
diagnose [26]. Moreover, the importance of MRI as diagnosis tool has been demonstrated
for a large amount of diseases and conditions. Considering only the brain diseases [27],
MRI has been used for diagnosis and treatment of Alzheimer’s [28], psychopathy [29],
multiple sclerosis [30], depression [31], vertigo and imbalance [32] research, to name a
few. MRI is also widely used for presurgical planning, which often requires a high image
quality of the area for planning more effective and less invasive surgical procedures [33].
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In fact, MRI has been used for surgery of the brain, [34, 35, 36], breasts [37, 38], urological
system [39], among others.

Nevertheless, the time required to perform an MRI exam has always been a concern.
For each image, the technology relies on getting thousands of k-space measurements from
the scanners, which are spaced by programmable radio-frequency pulses. A complete
MRI exam can last up to hours. Also, the machine’s magnet is very loud and the exam
is generally performed in a cold room, which can be uncomfortable for patients. The
exams also require the patient to stay still and some exams require that the patient hold
his/her breath for several seconds. Movements may compromise the accuracy of the MRI
measurements and, as consequence, the quality of the reconstructed images, generating
images with undesired motion and blur artifacts [40].

A faster MRI acquisition can help to avoid the motion and blur artifacts, allowing for
new types of exams. For instance, it would make possible to exam patients with tremors.
Exams on claustrophobic patients can also became easier to perform. Finally, some exams
that are performed by CT due to its faster nature could be substituted by an MRI exam
and spare the patient from the unnecessary. Additionally, a faster acquisition time would
also reduce the time required by an exam, and, therefore, reduce costs, since more exams
can be performed per day. A faster exam also increases the patients comfort, since they
would spend less time in uncomfortable environment. Faster MRI exams could also be
more frequently used in emergencies, giving more detailed images to doctors in cases when
the patient condition is critical.

Undersampling the signal in the k-space is a common approach to decrease the time
required by an MRI exam. This reduces the number measurements and, therefore, the
image quality can be compromised, leading to less details and artifacts in the image.
One of the ways to surpass this problem is using Compressed Sensing (CS)
techniques [2, 3, 41, 42]. CS takes advantage of the sparse structures of the images for
an undersampled reconstruction [43]. One of the most popular CS algorithms for MRI is
the Total Variation (TV) minimization [4, 2]. TV is suitable to reconstruct gradient
sparse images, a common type of image in MRI. Since similar human body tissues have
the same spin relaxation times and, therefore, are represented in the same gray level in
MRI images [44]. As consequence, the acquired image is sparse to the gradient operator
and, thus, easier to reconstruct with CS TV minimization. Several MRI reconstruction
systems use TV minimization, at least as part of the CS reconstruction problem
[5, 6, 7, 8, 9, 10]. Therefore, improving the TV minimization may improve the CS MRI
reconstruction techniques.

Among the advances made in CS reconstruction algorithms, one of the most notable
is the development of NESTA [11]. NESTA is a fast and reliable algorithm for solving
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CS optimization problems. NESTA is based on the Nesterov’s method [45], which solves
general convex function minimization, allowing to solve different analysis and synthesis
CS problems. For instance, the NESTA algorithm implements the TV minimization
using a convex approximation of the finite differences operator. Although the method
presents fast and accurate results, there is space for improvement and new applications.
For example, the finite differences operator can be seen as a filtering operation, and
therefore, other filtering operations can be implement and test. In other words, different
filtering operations used with NESTA can improve the reconstruction quality in different
situations.

One of the CS methods for MRI reconstruction that improves the reconstruction
quality of undersampled MRI is the pre-filtering method, proposed by Miosso et al. [12].
The method consists in first applying a set of high-pass filters transformations directly
to the measurements obtained from MRI machine (in the k-space domain). The filter
banks are designed in such way that they cover all the spectrum, except for the low
frequencies (that can be recovered from the original measurements). The next step of
the method is to use CS to reconstruct the filtered versions of the images from the
filtered measurements. Finally, the last step consists of recombining all filtered image
reconstructions, along with original measurements, to reconstruct a single image. The
method is based on the fact that the sparsity plays a major role in the CS
reconstruction. Therefore, it is worth using high-pass filtered versions of the images
because these high-frequency images are generally sparse. The method originally used
the finite differences operator as a high-pass filter. The results show an improvement in
the image quality when compared to the TV minimization.

Recently, two works used pre-filtering method for MRI image reconstruction [46, 47].
Costa [46] used a GPU parallel implementation of pre-filtering, reducing the
reconstruction time. This was possible because the internal reconstructions of
pre-filtering are independent. This work also compared the effect of approximating the
MRI trajectories to a Cartesian grid. The results show that the approximated and non
approximated trajectories present very reconstruction quality, suggesting that the
Cartesian approximation can be used in simulations without compromising the
reconstruction quality. A second work by Almeida [47] proposed using prior
information with the pre-filtering method. The inclusion of the prior information
allowed to reconstruct MRI images with less measurements while keeping the quality of
the image. These works also show that the pre-filtering method is a very important tool
and has potential to be explored and improved.

However, in the pre-filtering literature, a systematical experiment to test the filters
that lead to the better reconstruction quality is still missing. The original implementation
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use simple finite difference filters. Also, the known implementations of the pre-filtering
methods use the Iterative Re-weighted Least Squares (IRLS) algorithm. Therefore, other
algorithms could lead to improvements in the reconstruction quality. The ideas of the
pre-filtering can also be used for other CS reconstruction algorithms. Instead of using
the filters before the reconstruction, the filters can be used in the internal steps of the
reconstruction algorithm.

1.2 Objectives

An important question in MRI reconstruction is which type of filters can lead to better
reconstruction quality when using CS with filtering methods. My hypothesis is that filters
which promote the sparsity to a signal or image generate images with a better quality
when using the CS reconstruction. Therefore, it is possible to obtain images with higher
quality than the images generated by CS filtering methods that use the finite difference
filters.

That said, the main objectives of this thesis are: 1) to propose, simulate and analyze
digital filtering methods in CS for undersampled MRI reconstruction; and 2) for each
method, to design filter banks and analyze the quality of the reconstructed image. The
overall goal is to improve the reconstruction quality when compared to the filtering
methods that use finite difference filters, such as the original pre-filtering and the TV
minimization. It is desirable to obtain a higher image quality with a fixed measurement
rate, or a similar image quality with a lower number of measurements, which incurs in a
decrease in the acquisition time of the exams.

The filtering methods in CS can be divided in two classes: 1) the pre-filtering methods,
which the filtering operations occur before the CS reconstruction; and 2) methods which
the filtering operations occur during the CS reconstruction. Another objective of this
thesis is to evaluate separately these two classes of filtering methods and compare their
results. It is also an objective to evaluate the filter parameters that could better explain
the results.

1.3 Summary of the thesis contributions

To summarize the thesis contributions, Table 1.1 shows the combinations of methods and
filters already tested in the literature (state-of-the-art) and the combinations of methods
and filters the thesis contributes. Next, I describe in more details each of the contributions
of this thesis.
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Table 1.1: The two types of filtering methods used with CS. It is detailed the combination of methods
and type of filters, as well the chapter that the combination is presented.

Filter banks
Pre-filtering methods: Finite differences Windowing

method
Wavelet
decomposition

Pre-filtering IRLS State-of-the-art Chapter 3 Chapter 3
Pre-filtering NESTA Chapter 4 Chapter 4 Chapter 4
Pre-filtering NESTA + zero
measurements

Chapter 4 Chapter 4 Chapter 4

Filter banks
Filtering on reconstruction: Finite differences Windowing

method
Combinations

TV NESTA State-of-the-art
Filtering Norms Chapter 5 Chapter 5 Chapter 5

Systematic pre-filtering evaluation

I designed and tested a very large set of filter banks in the pre-filtering CS method.
These filter banks are divided in 2 classes. The first class consists of filters designed using
the windowing method, formed by band-pass filters divided in equal parts. The second
class of filters is based on the wavelet decomposition. In my simulations, filter banks
designed with the windowing method and a low order obtained statistically significant
better reconstruction quality than what was obtained by the filters tested by Miosso et
al.[12].

Using NESTA with pre-filtering

I evaluated the pre-filtering method with the NESTA algorithm for `1 minimization. I
tested using a large variety of filters in the pre-filtering with IRLS, and computed the
image quality of both algorithms for the different types of filters. The NESTA algorithm
did not achieve the image quality of the best results of IRLS.

Inclusion of zero-valued measurements in pre-filtering

I also proposed improvements to the pre-filtering method. I used the knowledge about
the filters spectrum to include measurements in the solution space of the reconstruction
problem. In the spectrum positions where the amplitude of the filter is below a given
threshold, the method includes zero-valued measurements. I tested the method with the
filters presented. The method improves the reconstruction quality for most of the filters.
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Filtering norms

I proposed a method, called filtering norm, that uses (user specific) filtering operations as
cost functions in the CS reconstruction. Just as the pre-filtering method, in the filtering
norm, the filters also sparsify the signals, improving the reconstruction quality. The
filtering norm generalizes the TV minimization, i.e. the TV is a specific case of filtering
norm when the filter is the finite differences. I also implemented isotropic and anisotropic
versions of the filtering norm. Results show that this proposed method is able to better
reconstruct smooth images (a difficult task for TV minimization) using second order finite
differences filters. They also show that using combinations of different types of filters
can significantly improve the reconstruction quality for MRI images, when compared to
standard TV minimization.

Decimation applied to pre-filtering

I performed a set of preliminary studies that includes a decimation in the pre-filtering
methodologies. The decimation operation allows to cover more of the spectrum of the filter
used in pre-filtering, while not changing significantly the sparsity in the space domain, that
affects the reconstruction quality. I developed the mathematical theory of the method and
proved that the decimation operation applied in the space domain has some restrictions in
the frequency domain (where the measurements are taken and the pre-processing occurs).
This is a work in progress and so far have not surpassed this issue.

1.4 Thesis organization

The thesis organization are given as follows.
In Chapter 2, I present the theoretical foundation and the state-of-the-art of this work.

I explore the basic concepts of MRI, including the basic physics, the frequency encoding
and the types of possible trajectories in the k-space. I also present the basic concepts of
compressed sensing minimization problems, explaining the linear system and the different
norms used in the problem. Next, I present the stages of the pre-filtering method, detailing
the algorithm and the filters used by the authors, as well as the non-uniform pre-filtering.
Next, I present the Nesterov’s method for function minimization and its application on
the NESTA algorithm, detailing the cost functions used in the algorithm, including the
TV minimization.

In Chapter 3, I perform a systematic test of 43 filter banks, using the pre-filtering
method with IRLS reconstruction algorithm. I describe the design of two types of filter
banks: WIN, based on the windowing method with equally spaced bands; and the WAV,
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based on wavelet decomposition filters. Finally, I describe the experiment, and analyze
and discuss their results.

In Chapter 4, I describe the proposal of a technique that allows the use of filter
features to improve the reconstruction results. I first change the representation of the
original pre-filtering diagram to incorporate the proposed modifications, then I describe
the method. Finally, I describe, analyze and discuss the experimental results of the
simulations, comparing it with the results of chapter 3.

In Chapter 5, I describe the filtering norm minimization, a generalization of the
NESTA TV minimization. I briefly review the NESTA method for direct reference. I
describe the method, emphasizing the changes from the original NESTA algorithm, and
detail the isotropic and anisotropic forms. I prepared experiments using synthetic and
real data.

Chapter 6 describes a method that modifies the pre-filtering to include a decimation
operator. The inclusion of decimation allows to de-sparsify the frequency domain, while
not changing significantly the sparsity in the space domain. We present the
mathematical formulation of the presented method, and the limitations. The chapter
shows some directions for future works.

Chapter 7 presents the conclusions of this thesis, as well as the future works.
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Chapter 2

Theoretical foundations and
state-of-the-art

This chapter present the basic concepts for this thesis. First, the basic concepts of MRI are
presented. These concepts help to understand the k-space trajectories used as sampling
pattern for the undersampled MRI reconstruction problem.

The chapter also presents the concepts of CS minimization problems, a set of
techniques for reconstruct undersampled data given that the signal can be represented in
a sparse domain. CS is used for solving the undersampled MRI reconstruction problem
in this work. A special case of CS is the TV minimization, which can be interpreted as a
filtering operation in the internal steps of the CS reconstruction algorithm.

The chapter details the pre-filtering method for CS reconstruction, showing the filters
used in the original work [12]. This method is used in Chapters 3, 4 and 6, with different
filters. Next, the NESTA algorithm is presented, which is a robust and fast algorithm
for solving the CS problem, especially the TV minimization. The algorithm is used in
Chapter 4, and adapted in Chapter 5 for the filtering norms.

2.1 Magnetic resonance imaging

2.1.1 MRI Basic concepts

The human body is composed by, approximately, 70% of water (H2O). MRI machines
use the hydrogen atoms of water composition in the body tissues to obtain the images.
Different tissues and organs have different concentrations of H2O and that is how the
MRI process can differentiate the tissues. A hydrogen nucleus is a single proton, which
is a spinning charged particle, which has its own magnetic momentum. The magnetic
momentum of a particle is called ‘spin’. Normally, the spin of protons in a body are
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orientated randomly. Therefore, the total net magnetization vector (M(t)) of all protons
(the macroscopic nuclear polarization) is close to zero, since the different protons spin are
canceled. When these protons are in a magnetic field B, they act like a rotating pendulum,
in a movement called precession. The protons precess in the Lamour frequency, which is
proportional to the gyromagnetic constant (γ) and the applied field B (ω = γB). For the
hydrogen atom, γ is 42.6 MHz/tesla [48].

Figure 2.1: MRI scanner, showing also the coils that generates the magnetic fields and scans the output
signal. Image source: [20].

An MRI machine scanner for human patients is illustrated in Figure 2.1. It contains
a tube where the participant is placed during the exam. During the process, image
shots of slices of participant’s body are generated by taking samples from the protons
reaction to the machine magnetic fields and radio frequency pulses. The machine has 3
classes of magnets. The first is a constant strong magnetic field B0, which has generally
1.5 to 7 tesla (by comparison, the earth magnetic field is about 0.5 · 10−4 tesla). B0 is
parallel to the participant’s table (z-axis, or longitudinal orientation) and is generated
by a superconducting electromagnet. Therefore, when the machine is turned on, the
participant body receives a 〈0, 0,M0〉 magnetic field. As a result, the spin of protons align
with the z axis and precess at frequency ω0 = γB0. When they reach the equilibrium,
the net magnetization vector M has a predominant component: a fixed value 〈0, 0, B0〉
aligned with the longitudinal axis. The longitudinal (Mz) and the transversal (Mxy)
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net magnetization, at a given time, can be obtained by solving the following differential
equation [49]:

dM

dt
= γMxB − iMx

T2 − j
My

T2 − k
Mz −M0

T1 , (2.1)

whose solutions are |Mz(t)| = M0(1−e−
t
T1 ) and |Mxy(t)| = M0(e−

t
T2 ). T1 is the relaxation

decay time that dictates how the spin orientation goes back to equilibrium. Over time, the
protons start to precess out of synchrony, so the combined magnetization (in transversal
plane) contribution decays exponentially in time. T2 is the relaxation time related to this
decay. When the equilibrium is achieved, Mxy converges to 0 andMz converges toM0, so,
the net magnetization vector comes back to 〈0, 0,M0〉. The T1 and T2 relaxation time
curves vary with the tissue’s composition and structure. For example, hydrogen protons
from fat tissues achieve the equilibrium faster (T1 and T2 are smaller) than hydrogen
protons from water. Using the T1 decay curve (sensing the signal in the Mz axis), water
appears close to black in the images, while fat appears close to white. Using the T2 decay
curve, water appears close to white and fat tissues appears gray. In the database of images
used in this work, the images are acquired by sensing in the Mxy plane, in other words,
using a T2 decay curve.

Another set of magnets in the MRI machine are the gradient magnets. They are
orientated in 3 axis, allowing to change the orientation and slice localization of acquired
images. The gradient field (G) alters the strength of the primary magnetic field at each
〈x, y, z〉 position. As a result, the precession frequency of protons varies with position.
The precession frequency is given by ω(x, y, z) = γ(B0 +G(x, y, z)). We use the Gradient
field to perform a slice selection and the spatial-frequency coding, as explained in the next
section.

The third set of magnets in an MRI machine are radio frequency (RF) coils. They
are used for transmitting the radio frequency pulses and for receiving the signals in
MRI. The frequency of magnetic pulse generated by the RF coils should be in resonance
with the protons spin frequency. This generates a constructive wave interference and, as
consequence, amplifies the magnitude of the net magnetization vector, generating a
signal that is distinguishable from noise. When the RF magnetic pulses are taken off,
the protons start to relax, and the net magnetization converges to 〈0, 0,M0〉, following
the exponential curves |Mz| and |Mxy|. The variation of the net magnetization vector
induces an electrical signal on the RF receiver coils. As consequence, a signal
proportional to the net magnetization can be acquired and an image can be formed.
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2.1.2 Frequency encoding and trajectories

In order to obtain an axial image from a participant, the slice z0 (of the z-axis) is chosen
by tunning the G field accordingly. For example, we can choose G varying linearly in
z-axis in such way that ω0 is equal to γ(B0 + G(x, y, z0)) when z = z0, and different for
z 6= z0. Thus, when a RF pulse in a narrow range around frequency ω0 is emitted, only
the protons on the selected slice resonate with the pulse.

After selecting the plane (z0), to form an image we have to differentiate the net
magnetization Mxy of each spatial position in this plane. Since it is not possible to do
this directly, we use a frequency encoding of spatial positions. The frequency domain of
an MRI is known as k-space. For a given point (kx, ky) in the k-space, the signal read in
the transversal receivers is given by the following expression:

M̂xy(kx, ky) =
∫
z0 plane

Mxye
−2πj(kxx+kyy))dxdy. (2.2)

These are Fourier coefficients at frequency points (kx, ky). However is not possible to
obtain the image from a single Fourier coefficient. To get more k-space points, we have
to vary the transversal gradient fields Gx and Gy over time and read the signal over time
to get several k-space measurements. The variation of the (kx, ky) over time is related to
the gradient fields in the following way:

kx(t) = γ/2π
∫ t

0 Gx(τ)dτ,
ky(t) = γ/2π

∫ t
0 Gy(τ)dτ.

(2.3)

Thus, the k-space coefficients must be taken by following a curve in the z0 plane,
known in MRI as trajectories. To set the trajectory (kx(t), ky(t)) over time we have to
set Gx(t) and Gy(t) accordingly. Figure 2.2 shows examples of Gx(t) and Gy(t) and the
generated trajectories in k-space.

The most commonly used trajectory in MRI is the rectangular trajectory, also known
as the Cartesian trajectory, which is shown in Figure 2.2 (a). The k-space points are
sampled equally spaced and chosen to match the frequencies of a discrete Fourier
transform. Thus, the image is reconstructed with an inverse fast Fourier transform
(iFFT) if all lines have been sampled. However, undersampling some lines for faster
acquisition generates aliasing. Also, natural images generally have most energy
concentrated in low frequencies. Therefore, an equally spaced sampling like the
rectangular trajectory is not the ideal spreading of sampling points in the k-space.
Rectangular sampling also presents abrupt changes of the gradient fields in the
transition between lines. The MRI machines have restrictions on the maximum variation
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of the gradient fields. Therefore, there are hardware constraints for the implementation
of the rectangular sampling.

a)

b)

c)

Figure 2.2: Rectangular (a), spiral (b) and radial (c) samplings. Magnitude of gradient field is shown in
left, and the corresponding sampling trajectories scheme in right. Equal color points represent the same
time.

Figure 2.2 (b) shows a non-Cartesian trajectory, the spiral trajectory with 1 branch.
Each branch of the spiral trajectory is acquired from a single excitation/echo time and
covers all regions of the spectrum. In comparison, the other sampling schemes require the
time of one excitation/echo for sampling only a single line of the spectrum. If we want
a denser sampling, there are also implementations of the spiral with several branches.
Other variations include changing the radius of the spiral with non-linear functions. Also,
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notice that the gradients Gx(t) and Gy(t) of the spiral sampling are smooth, therefore
this sampling is more flexible in terms of hardware constraints.

Radial sampling is the third trajectory shown in Figure 2.2 (c). This trajectory was
commonly used in the initial stages of the MRI technology, when the reconstruction was
similar to CT reconstructions, which are based on the central slice theorem [50]. In the
radial trajectory, every line passes though the center of the k-space. Therefore, it is
always updated, which helps to reduce motion artifacts. Also, each radial line has equal
contribution to the image reconstruction, since each line passes through all frequencies in a
given angle, containing high and low frequencies. The central part (the low frequencies) of
the spectrum is oversampled. Therefore, the region of the spectrum where natural images
concentrate the major part of its energy is the most sampled region. These features allow
real time MRI reconstruction [51, 52, 53, 54]. Additional strategies allow to increase the
incoherence (defined in the next section) in a compressed sensing reconstruction. In fact,
the radial sampling has been recently incorporated into commercial MRI systems [55, 56].

2.2 Compressed sensing

Nyquist-Shannon sampling theorem states that, if a signal is captured at a rate at least
2 times faster (Nyquist rate) than its bandwidth, it can be reconstructed without
losses [57]. In many cases, the required Nyquist rate is too high, requiring sensors that
are too expensive or demanding a long time to acquire enough measurements.
Compressed Sensing (CS) [58, 59, 60, 41, 42] is a technique for acquiring and
representing signals at a rate significantly lower than the Nyquist rate. The technique
allows, with high probability, to reconstruct a signal from fewer measurements than the
Nyquist rate, by using optimization techniques.

To correctly reconstruct the signal, CS theory states that the signal should be sparse
when represented in a certain domain. A signal is sparse in a domain if it is represented
by a few non-zero coefficients. By definition, a k-sparse signal has exactly k non-zero
coefficients in this domain.

Let n be the length of a sparse signal x to be acquired. Suppose that the signal is
k-sparse in the space domain, where k � n. Let b be a linear projection of x in a set of
m (m < n) vectors of a sampling matrix M, which defines how the signal is sampled. We
can represent b as:

b = Mx, (2.4)
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where b is a vector of size m. The goal of the reconstruction stage is to find the solution
x that matches with the samples b = Mx. This is an undetermined problem [61] and,
therefore, there is an infinite number of solutions.

The solution of this problem relies on sparsity, i.e. among all the possible solutions,
the sparsest solution is assumed to be the correct solution. The sparsity can be directly
measured by the metric `0, which is a metric that counts the number of non-zero elements
of a vector. So, the reconstruction problem can be described by the following equation:

argminx||x||0
subject to Mx = b

. (2.5)

This problem can be solved reliably for m = 3k, given that x is k-sparse. However,
Equation 2.5 describes an unstable NP-complete problem [62], which requires the
enumeration of all

(
N
K

)
possible positions of non-zero entries of x.

A second solution is based on the `1 metric minimization. The `1 computes the sum
of the magnitude of each vector element. It was proven [60] that for sparse signals, the
minimum `0 occurs in the same points as the minimum `1, so that minimizing `1 leads to
the same solution as minimizing `0. The metric `1 can be expressed as:

argminx||x||1
subject to Mx = b

. (2.6)

Alternatively, we can use other metrics on the CS minimization, which lead to the same
solutions as `0 and `1. We can use the metric `p (0 < p < 1), which is defined by:

||x||p = (
N∑
i=1
|xi|p)

1
p . (2.7)

Despite the faster reconstruction, `1 minimization generally requires more measurements
than the `0 minimization. In the `p minimization, by selecting the p value accordingly,
we can choose a balance between the number of required measurements and the
reconstruction time. For lower p values, less measurements are required and the
reconstruction time is higher [14]. Naturally, as the p value is increased (making it closer
to 1), more measurements are needed, and the reconstruction time is shorter. A
common reconstruction algorithm that solves problem in Equation 2.6 is the Iterative
Re-weighted Least Squares (IRLS) [14, 63].

A more generic CS problem is the quadratic constraints problem, where the goal is to
search for the sparsest solution in the range ||b −Mx|| < ε for a small value ε. The `1
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quadratic constraints problem is given by:

argminx||x||1
subject to ||b−Mx|| < ε

. (2.8)

This problem is more suitable for real world signals, which are frequently
quasi-sparse. These signals have a few large coefficients, with the majority of coefficients
below a small threshold. The quadratic constraints problem in Equation 2.8 allow to
find sparse approximations of these signals even for noisy measurements1. Notice that,
when ε is zero, the exact CS problem is a special case of the quadratic constraints
problem.

2.2.1 General domain of sparsity

Until the previous section, x was considered sparse in the space domain. However, a more
general formulation can be applied to represent and reconstruct a signal x that is sparse
in any domain.

Let us suppose that x is sparse in the domain W, i.e. the signal α = Wx has only a
few coefficients different from zero. The coefficients α with the minimum `1 norm in the
solution space are obtained by solving the problem:

argminα||α||1
subject to ||b−MWHα|| < ε

. (2.9)

The signal x can be obtained by applying the inverse transformation W to α. This
problem is known as the synthesis problem [11].

However, CS requires some conditions to be satisfied in order to solve the above
problem. One of these conditions is the Restricted Isometry Property (RIP) [42, 2],
which states that, for any v that is 3k-sparse, Θ = MWH must be such as:

1− ε ≤ ||Θv||
||v||

≤ 1 + ε, (2.10)

for a small values of ε (ε > 0). In other words, Θ must preserve the sizes of any k-sparse
vectors [58]. In practice, we cannot test this property for every v vector, because this
would require to test every combination of sparse signals. So, we choose a pre-defined
matrix M, which is proven to satisfy RIP [60].

Other necessary condition that the CS theory requires to correctly solve the problem
is the incoherence property [43], which requires that the correlation between M and W

1In fact, this approach is commonly used in denoising algorithms, even in fully sampled signals, where
CS is not applicable.
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has a low value. To satisfy the incoherence, we can choose M in such a way that the
representation of the lines of W are not sparse. The MRI acquisition can be performed
in such a way that it satisfies both RIP and incoherence properties, depending on the
sampling trajectory on the k-space [9].

A different approach is known as the analysis problem [11], given by:

argminx||Wx||1
subject to ||b−Mx|| < ε

. (2.11)

In this problem, x is obtained directly. When W is an invertible basis (W−1 = WT ), the
problems in Equations 2.9 and 2.11 are equivalent and an `1 minimization in the form of
the problem in Equation 2.9 correctly solves the analysis problem. However, when W is
not an invertible basis, we cannot use the `1 reconstruction. Therefore, specific algorithms
have to be designed to solve the problem. The analysis problem is usually more useful
than the synthesis one because it allows the use sparsifying functions not restricted to the
invertible basis, like, for instance, overcomplete dictionaries. In fact, Elad et al. [64] have
shown that solving an analysis problem have advantages over solving a synthesis problem.

2.2.2 Total Variation minimization

One of the analysis CS problems is the Total Variation (TV) minimization. MRI images
are generally gradient sparse, i.e. the finite differences in the x and y axis are close to
zero for most pixels. This happens because the human organs have similar properties,
which leads to the same level of gray. For this reason, a popular sparsity metric is the
total variation (TV) [2]. The TV reconstruction problem becomes the problem of finding
an image (x) that fits the measurements (b) with the lowest TV metric.

The TV metric has been widely used in two different models, the isotropic TV [4, 2]
and the anisotropic TV [65, 66, 67]. Let us first define the discrete finite differences
operator:

Dx =
Dh(x)
Dv(x)

 , (2.12)

where
Dh(x) = x(i+ 1, j)− x(i, j)
Dv(x) = x(i, j + 1)− x(i, j)

. (2.13)

The isotropic TV can be defined as the `2 of the finite differences ||Dx||2, while the
anisotropic is the ||Dx||1. Each metric has its advantages over the other [68]. Once
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chosen the type of TV metric, the minimization problem can then be defined as:

argminx||x||TV
subject to ||b−Mx||2 ≤ ε

. (2.14)

In this thesis, if not explicitly mentioned otherwise, TV refers to the isotropic TV.

2.3 The pre-filtering method

Miosso et.al [12] proposed another CS method for reconstructing gradient sparse MRI
images, which provides better results than TV minimization. In the method, the
authors proposed processing the measurements before the reconstruction. The
pre-processing is performed by performing finite differences filtering operations on the
measurements. The method reconstructs the pre-filtered versions of the measurements,
resulting in filtered versions of the original image, and recomposes the original image
with the filtered reconstructions and the original measurements. The idea is that sparse
versions of the signal generate good quality reconstruction.

Let hk be a list of 2D finite difference filters. These filters are meant to sparsify a
gradient sparse image in the image domain. Figure 2.3 shows the effect of filtering an
image with finite difference filters. Note that the filtered versions are sparse and, therefore,
can be reconstructed with an `p minimization.

Let b be the measurements of the original image, taken in the sample positions τ . The
coefficients bk of each filter hk are obtained by:

bk = (Hk∈τ ) ◦ b, (2.15)

where Hk is Fourier transform of hk, ◦ is an element-wise multiplication, and Hk∈τ is
composed of the elements of Hk corresponding to the sampled positions τ . For each bk,
the reconstructed image x̂k can be obtained by minimizing the following optimization
problem:

x̂k = argminxk ||xk||
p
p

subject to bk = Mxk.
(2.16)

Supposing that each xk (the filtered version of the signal x, when filtered by hk) is sparse,
an `p reconstruction in the image domain can correctly reconstruct the images x̂k.

The last step is the final image composition. This step is formed by combining the
reconstructed images and the original measurements. The original image can be
reconstructed by completing the spectrum of x̂ with either b or with the coefficients
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from x̂k, as described in Algorithm 1. Notice that the algorithm divides the spectrum of
Xk by the filter spectrum, normalizing the amplitude of the filtered solution and
correcting any time shift generated by the filtering operation on measurements. As the
finite differences are high-pass filters, the high frequency components are filled by xk.
The low frequency components are completed by b. Therefore, sampling patterns that
have sampling concentration at low frequencies favor this method (for example, the
radial lines sampling).

In the original work [12] tests two filters banks. First, the horizontal and vertical finite
differences (TV filters):

h1 =
[
1 −1

]
and h2 =

 1
−1

 , (2.17)

corresponding to the diagram shown in Figure 2.4.

*

Figure 2.3: High-pass filtered versions of the original image. First row shows the original image, second
row shows the spectrum of the filters and third row shows the filtered versions of the original image,
filtered by the filter shown in the second row. Note that each one of the filtered images are sparser in
pixel domain than the original image.
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Algorithm 1 Final image composition algorithm.
Input: b, X̂1, X̂2, · · · , X̂n, Ĥ1, Ĥ2, · · · , Ĥn

Output: X̂
1: for each u, v position do
2: if u, v are sampled points then
3: X̂(u, v) = b(u, v)
4: else
5: k = max_idx(||X̂1(u, v)||, ||X̂2(u, v)||, · · · , ||X̂n(u, v)||)
6: Y = X̂k(u, v)
7: X̂(u, v) = Y (u, v)/Hk(u, v)
8: end if
9: end for

b x̂◦H2 ∈ τ

◦H1 ∈ τ
argminx1||x1||pp

subject to b1 = Mx1

argminx2||x2||pp
subject to b2 = Mx2
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Figure 2.4: Reconstruction using pre-filtering procedure using vertical and horizontal finite differences
filters.

The other tested model is a high-pass filter bank from the Haar 2D wavelet family
(Haar filters):

h1 =
 1 1
−1 −1

 , h2 =
1 −1
1 −1

 and h3 =
 1 −1
−1 1

 . (2.18)

The example shown in Figure 2.3 illustrates the filtering step used by the Haar filters and
Figure 2.5 shows their pre-filtering model.

Miosso et al.’s [12] compared the pre-filtering method using the two mentioned filter
banks and the standard TV minimization (given by Equation 2.12) with the `1-MAGIC
implementation [69]. Pre-filtering with both filter banks produced better image
reconstruction qualities (measured in SNR) than what was produced by the `1-MAGIC
TV minimization. More specifically, the Haar filter bank presented the best results.
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◦H3 ∈ τ

argminx1||x1||pp
subject to b1 = Mx1

argminx2||x2||pp
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argminx3||x3||pp
subject to b3 = Mx3
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Figure 2.5: Reconstruction using pre-filtering procedure using Haar filters.

2.3.1 Non-uniform Pre-filtering

Costa [46] used a feature that was not commonly explored in the literature. He managed
to reconstruct MRI images with the pre-filtering approach using a non-uniform fast Fourier
transform (NUFFT) [70]. For most trajectories used in MRI, the samples taken by the
MRI machines are collected in a non-uniform 2D k-space, therefore, they usually do not
fit a rectangular grid. In simulated CS MRI reconstructions, spiral and radial trajectories
are calculated as approximations to match the rectangular grid. This grid approximation
is very popular in the CS MRI literature [71, 72, 73, 74, 5].

Costa used a non-Cartesian grid to reconstruct MRI images with the pre-filtering
method. He used the NUFFT instead of the discrete Fourier transform in the CS models.
Because his approach is not limited to a rectangular grid, Costa used the measurements in
the original locations of the spiral trajectories and compared the results to measurements
approximated by a grid. He expected better results using measurements in the original
trajectory. For some images, the approximated grid present a slightly better quality, for
others, the original locations. The difference between the qualities in SNR (dB) are less
than 1 dB. Therefore, he concluded that reconstructions using an approximated grid are
consistent with results of original locations and can be used instead.

Since Costa’s results showed that the quality of reconstructions did not change
drastically when using grid approximations measurements, in this work, I use only
Rectangular grid approximated locations for the measurements. This approach is faster
because the FFT is faster than the NUFFT.
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2.4 The NESTA Algorithm

Among the advances made in CS problems in the last ten years, one of the most notable
is the development of NESTA [11]. NESTA is a fast and reliable algorithm for solving
CS optimization problems. When compared to other methods, the main advantage of
NESTA is its flexibility. Since NESTA is based on the Nesterov’s method [45] for general
convex function minimization, it can solve both synthesis and analysis problems. The
algorithm implements a solution to the isotropic TV minimization problem using a convex
approximation of the finite differences as a cost function and a 2-overcomplete sparse
matrix D.

NESTA is the main algorithm I use for CS reconstruction in this thesis. In Chapter 5
I also present a CS reconstruction method based on NESTA. Therefore, it is important to
describe this method in details. NESTA [11] aims to solve the `1 basis pursuit compressed
sensing optimization problem, defined as:

argminx||x||1
subject to ||b−Mx||2 ≤ ε,

(2.19)

where M is the measurement matrix, which generates b from x, and ε is proportional to
the estimated measurement noise. The `1 norm solves the CS optimization problem in
polynomial time.

2.4.1 The Nesterov’s method for function minimization

NESTA is based on Nesterov’s method [45], which is a fast convex minimization solver.
More specifically, Nesterov’s optimization method is a first-order method for finding the
minimum of a smooth convex differentiable function f in a convex set Qp, with the
assumption that f is L-Lipschitz2. The general minimization problem is given by:

argminxf(x).
x ∈ Qp

(2.20)

The method iteratively calculates solutions xk using a first-order method solution (i.e.
based on ∇f(xk)) and weighted averages of the previous calculated gradients. When a
selected number of k-dependent weights is used, the convergence rate goes from O(1/k)
to O(1/k2) [75, 76].

2f(x) is Lipschitz with constant L, or L-Lipschitz, when ||∇f(x)−∇f(y)||`2 ≤ L||x− y||`2 for any x
and y
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Later, the Nesterov method was extended to handle non-smooth functions [76]. In
this case, the function f(x) must be written in the following form:

f(x) = max〈u,Wx〉,
u ∈ Qd,

(2.21)

where Qd is a convex set. To make this function smooth, a term is added to f , as follows:

fµ(x) = max〈u,Wx〉 − µpd(u),
u ∈ Qd,

(2.22)

where pd(u) is a strongly convex function in Qd, with a convexity parameter σd [11].
The modified function fµ(x) is continuously differentiable and is Lipschitz with constant
Lµ = ||W||/µσd. That said, the minimization problem can be solved for an approximation
of the non-smooth f(x) function for a given parameter µ with a fast convergence rate.

2.4.2 NESTA

Becker et. al [11] used Nesterov’s method to solve compressed sensing basis-pursuit
problems (refer to Equation 2.19), which is known as the NESTA algorithm. The
authors re-wrote the `1 function as:

||x||1 = max〈u, x〉
u ∈ Qd = {u : ||u||∞ ≤ 1}.

(2.23)

After adding the smooth term, the minimization function becomes:

fµ(x) = max〈u, x〉 − µpd(u)
u ∈ Qd = {u : ||u||∞ ≤ 1}.

(2.24)

In the NESTA formulation, pd(u) = 1
2 ||u||

2
2 is chosen because this function is strongly

convex with a convexity parameter σd = 1 and a minimum value at u = 0 ∈ Qd. With this
choice, Equation 2.24 becomes the Huber function [77], that is Lipschitz with constant
Lµ/µ, and its gradient is given by:

∇fµ(x(i)) =

 µ−1x(i), if |x(i)| < µ

sgn(x(i)), otherwise
. (2.25)

To solve the problem in Equation 2.24, we have to find the minimum solutions of
fµ that match the quadratic constraints of the measurements. In other words, the CS
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problem becomes:
argminxfµ(x),

x ∈ Qp = {x : ||b−Mx||2 ≤ ε}.
(2.26)

Using Nesterov’s method, this problem is solved iteratively in 4 steps. Starting from a
initial value x0, every iteration generates the next solution xk by calculating ∇f(xk) and
3 sequences: yk, zk and xk. The first step is to calculate ∇f(xk). The second step is to
find the solution yk using a first-order method, given by:

yk = argminx
x∈Qp

Lµ
2 ||xk − x||

2
2 + 〈∇fµ(xk), x− xk〉. (2.27)

The term 〈∇fµ(xk), x − xk〉 assumes lower values when the vector x − xk points in the
opposite direction of the gradient ∇fµ(xk) (so, yk tends to point to −∇f(xk)). The
minimization of the term ||xk − x||22 ensures that the steps are not too large, so that the
value ∇fµ(xk) is accurate enough for the current iteration of the algorithm.

The next step consists of finding a solution that considers weighted averages of the
previous calculated gradients ∑k

i=1 αi∇fµ(xi). This solution avoids the typical zig-zag
that occurs in blind gradient decent methods, speeding-up the convergence. This step,
calculated on the sequence zk, consists of solving the following problem:

zk = argminx
x∈Qp

L

σp
pp(x) + 〈

k∑
i=0

αi∇f(xi), x− xk〉. (2.28)

For a faster convergence rate (O(1/k2)), the weighting factors αi = k+1
2 were chosen

by a theoretical analysis of the problem [75, 76]. The function pp(x) is called the prox-
function of Qp, which is chosen to be smooth and strongly convex on Qp, with convergence
rate σp. In NESTA, Qp = {x : ||b −Mx||2 ≤ ε} and, therefore, a quadratic choice for
pp(x) is chosen as:

pp(x) = 1
2 ||x− x0||22, (2.29)

where x0 is the initial solution. This factor guarantees that the solution does not move too
far away from the initial central solution. Also, with this choice of pp(x), the convergence
parameter σp is equal to 1.

Finally, NESTA finds xk by averaging the value of yk and zk, as given by the following
equation:

xk = τkyk + (1− τk)zk. (2.30)

If MHM is an isometry, yk and zk do not require an iterative process and can be calculated
in a single step at each inner loop. NESTA also uses a method named continuation, where
it first calculates iterations with different values of µ in order to refine and speed the
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process. These features make NESTA a very efficient algorithm that converges fast and
can handle large data sizes.

Although it was originally designed to solve the `1 minimization (with the
approximation given by Equation 2.24), by changing its cost function, NESTA can solve
different problems. For example, by evaluating ∇fµ on the point Wx (using Wx(i) in
Equation 2.25 instead of x(i)), NESTA can solve the following analysis CS problem:

argminx||Wx||1,
subject to ||b−Mx||2 ≤ ε.

(2.31)

2.4.3 NESTA for Total Variation minimization

Another problem that can be solved using NESTA, simply by changing the cost function, is
the Total Variation (TV) minimization problem. The TV minimization problem included
in NESTA is the isotropic TV.

The approximation to the isotropic TV norm used in NESTA is expressed in the
following form:

||x||TV = max〈u,Dx〉
u ∈ Qd

, (2.32)

where Qd is {u =
[
u1
u2

]
: u2

1 + u2
2 ≤ 1}. As Nesterov’s method assumes the function is

smooth, the authors added the smoothing term pd(u) = 1
2 ||u||

2
2. Therefore, the TV norm

approximation that NESTA minimizes is the following:

||x||TV ≈ fµ = max〈u,Dx〉 − µ
2 ||u||

2
2,

u ∈ Qd,
(2.33)

and its gradient is given by:

∇fµ =

 µ−1DHDx, if ||Dx|| < µ

||Dx||−1
2 DHDx, otherwise

. (2.34)

The algorithm to solve this problem is the same used for the `1 problem. The only change
is the calculation of ∇fµ in the first inner step. The calculations of yk, zk, and xk are
performed in the same way, but using Equation 2.34 instead of Equation 2.25.
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Chapter 3

Filter banks for pre-filtering

In this chapter, I propose a methodology to test a large number of filter banks using the
pre-filtering method. In particular, I want to analyze filter parameters that lead to a
better (or worse) quality of the reconstructed images, considering a constant number of
measurements.

Furthermore, this chapter presents the set of 2D filter banks used in our tests, which
consists of filters designed with the windowing method and walevet decomposition filters.
Part of the results corresponding to the wavelet filters were published in [78], while part
of the results for both types of filters were published in [19].

Additionally, I propose an experimental methodology to systematically evaluate these
filter banks for the pre-filtering method. I present the parameters of analysis related to
the quality of reconstructed images, the spectrum coverage of the filter banks and the
average sparsity of the filtered images. Finally, I present the results obtained following
the proposed experimental methodology.

3.1 Filter banks

The pre-filtering model presented in Figures 2.4 and 2.5 are specific for a limited number
of filters. Let us first generalize the model for any filter bank. Figure 3.1 shows a generic
pre-filtering model that will be used in this chapter. The filter banks presented are labeled
as H1 to Hn in this figure. In particular, a filter Hk affects the original measurements
only in the sampling positions, i.e.

bk = (Hk ∈ τ) ◦ b, (3.1)

as seen in the Section 2.3.
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Figure 3.1: Reconstruction using pre-filtering procedure for any filter bank.

The filters used in the pre-filtering are usually a set of complementary band-pass filters
with different bands. In this thesis, we refer as a set of filters with this property as ‘filter
bank’. In the following sections, I present the filter banks designed for this work. First,
I present the filter design based on the windowing method, which I refer as WIN and,
next, I present the filter design based on the wavelet decomposition, which is referred as
WAV.

3.1.1 Filters banks based on windowing method (WIN)

High frequency components of natural images are generally sparse in the image domain. I
use this information to guide the filter design, preserving the high frequency components
and dividing it among several bands. The goal is to design filters that increase the sparsity
of the images. First, I designed a set of filters banks using the windowing method, using
a Hamming window [13]. In this work, I refer to them as WIN.

First, I design n 1D WIN filters, for which I divide the spectrum in equally spaced
bands. For each of the n spectrum bands, only one is selected as a passing band for
each filter. More specifically, for 0 to n-1 filters, the selected band for the i-th filter is
[iπ/n, (i + 1)π/n]. Next, I create the 2D FIR filters by combining the designed 1D WIN
filters in the vertical and horizontal axis, generating n2 2D filters. Finally, I discard the
low-pass band (in the two dimensions) filters (only n2 − 1 filters remain), because of the
hypothesis that the image filtered with a low-pass component is not sparse for a proper CS
reconstruction. Figure 3.2 shows an example of a WIN filter bank for n = 3, showing the
spectrum magnitude of each filter. Notice that the spectrum bands have complementary
magnitudes.
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Figure 3.2: Example: The magnitude of a WIN filter bank formed by 8 different 2D filters, with different
band divisions, with order 6.

The filter design allows the variation of the order of the 1D filters, which can be used
to check the effect of the filter order on the quality of the image reconstructions. Filters
designed with less coefficients have a smoother response decay, which could disfavor the
sparsity of the filtered images. Meanwhile, filters with more coefficients usually present
more rapid transitions, which may cause ringing artifacts due to the uncertainty principle
[2]. In this work, I refer to a WIN filter bank of order o and n band divisions as WIN(o, n).

3.1.2 Wavelet decomposition filters banks (WAV)

Other class of filter banks that are tested in this work are based on the Wavelet [79]
decomposition filters (referred as WAV filter banks). I design filters that simulate the
process of a 1D wavelet decomposition and, then, combine the 1D filters to form 2D
filters. The pre-filtering method requires using filters, therefore, I rewrite the wavelet
decomposition levels as a single filtering step by using the Z-transform decimation
property [57].

Let H0(z) be a 1D low-pass filter and H1(z) the high-pass. In a wavelet decomposition,
as depicted in Figure 3.3a, the signal is filtered byH0(z) andH1(z) and then it is decimated
by 2 (keeping only the even samples). I use the Z-transform decimation property to express
the whole wavelet decomposition into a single filtering step. This property states that if
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the Z-transform of a signal x is X(z), the Z-transform of this signal decimated by 2 is
X(z2), as shown in Figure 3.3b. When applied to a cascade of decimation and filtering
operations, the decimation operation can be swapped with the H(z) filtering operation,
if H(z) is substituted by H(z2). This process is illustrated in Figure 3.3b.

By repeating iteratively the decimation swaps, the wavelet decomposition process can
be represented by a single filtering step followed by a single higher order decimation, as
seen in Figure 3.3c. In this work, I implement the H(z2k) by introducing zeros between
samples of the coefficients of H(z) in the space domain (using the Z-transform time
expansion property [57]). Notice that the number of coefficients grows exponentially with
number of levels.

The 1D filter bank is obtained by the filtering steps of the described wavelet
decomposition (Figure 3.3d). The 2D filter bank is generated by composing vertical and
horizontal implementations of the 1D filter bank. Finally, the low-pass filter is
disconsidered.

Figure 3.4 shows an example of the spectrum of a 2D wavelet filter bank. The filter
bank corresponding to a wavelet family fam and with l number of levels is referred as
WAV(fam, l).

3.2 Experimental methodology

Using a database composed by MRI images, I simulate the process of reconstructing the
images using each filter bank. First, I simulate the process of taking measurements from
an MRI generated image. In this work, I choose a rectangular grid approximation of
the radial trajectory, varying the number of radial lines taken. The reconstruction is
performed using pre-filtering reconstruction model, as illustrated in Figure 3.1. This is
the basic procedure of our experimental methodology, which is repeated for each image,
filter bank, and for different numbers of radial lines.

3.2.1 Simulations settings

In the simulation tests, I use 55 images generated from T2 weighted brain images, from
11 axial slices of the brain of 5 participants. These images were taken from the BIRN
database [80], which were generated by an MRI machine. For a faster reconstruction, I
scaled these images to 256× 256 pixels. Figure 3.5 shows a small subset of these images,
which are slices of different positions of a brain scan.

The sets of filter banks used in the simulation include the state-of-the-art TV and
Haar filters (described in Section 2.3), the WIN filter banks (Section 3.1.1), and the
Wavelet filter banks (Section 3.1.2). Due to the high reconstruction times and the
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Table 3.1: Pre-filtering total reconstruction time (s) for TV filter.

Value of p in the `p metric
sampling 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
20 lines 1786.3 1939.8 1552.9 1523.4 1999.9 1479.3 221.7 101.3 52.9 23.7
40 lines 3372.6 3046.5 2865.1 2935.1 3168.9 1217.7 221.4 105.4 54.2 24.7
60 lines 4808.5 4761.1 4170.5 4045.8 4350.1 740.2 235.7 114.3 54.7 25.5
80 lines 6815.5 6053.4 5959.7 5150.3 6458.8 1001.4 280.4 116.6 58.1 28.5
100 lines 8026.7 8133.2 7998.4 6597.8 9592.5 2017.8 323.7 135.4 61.8 28.0

massive generated data, I restricted the number of filter banks to the most
representative configurations. I choose to use the WIN filters with the following
configurations: 2 to 5 band divisions and orders 2 to 10. Preliminary test showed that
using filters with more band divisions and higher order did not affect the results
considerably. The Wavelet filters configurations considered are: Daubechies 1 and 4,
Coiflets 1, Symlets 2, and reverse biorthogonal 2.2, 2.8 and 6.8 [81], some of the wavelet
families implemeted in MATLAB. The number of levels are from 1 to 3, considering that
using more levels created very long filters. I choose 20, 40, 60, 80, and radial 100 lines
for simulating the radial trajectory sampling. The chosen numbers of radial lines are
fewer smaller than what is commonly used in an actual MRI machine, leading to a faster
reconstruction time than what is possible real MRI systems.

The reconstruction step is to solve the minimization problem given by:

argminxn||xn||pp
subject to bn = Mxn.

(3.2)

The same IRLS algorithm used by Miosso et al. [12] is used here. However, the value of
p used in the original work was 0.1, which requires a long time to reconstruct the images.
Table 3.1 shows the total reconstruction time for one image, using pre-filtering with TV
filters, for different values of p (from 0.1 to 1). To test several filter banks in a feasible
amount of time, the value of p = 1 was selected.

The simulation was performed for each of the input parameters, 5 different sampling
schemes, 55 images, 43 filter banks composed of 437 filters, which result in a total of
120,175 reconstructions. The experiment was ran on a computer cluster in which the
reconstructions were distributed among several nodes. Each node of the cluster has two
Intel Xeon E5430 2.7 GHz CPU and the implementation is performed in MATLAB, based
on IRLS implementation of the original pre-filtering work [12].
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3.2.2 Analysis Parameters

To analyze the reconstruction quality, two full reference objective quality metrics are used.
The first is the Signal-to-Noise Ratio (SNR) [82], which gives measures in decibels (dB).
The SNR is calculated between the ground truth image x and the reconstructed image y,
using the following equation:

SNR(dB) = 10 log10


∑
i,j
x(i, j)2

∑
i,j

(x(i, j)− y(i, j))2

 . (3.3)

The range of SNR values normally varies between zero and infinity. The higher the SNR
value, the lower the error between the reconstructed and reference image and the quality
of the reconstructed image is higher.

The other image quality metric is the Structural SIMilarity index (SSIM) [82]. SSIM
uses the fact that natural images pixels are highly correlated to the nearby pixels. This
dependency carries important information about the structures that the human visual
system is trained to identify [83, 84]. Given a reference image x and the reconstructed
image y, SSIM estimates the luminance l(x, y), the contrast c(x, y), and the structure
s(x, y) between two images using the following equations:

l(x, y) =
(

2µxµy+C1
µ2
xµ

2
y+C1

)
,

c(x, y) =
(

2σxσy+C2
σ2
xσ

2
y+C2

)
,

and s(x, y) =
(
σxyµy+C3
σ2
xσ

2
y+C3

)
,

(3.4)

where µx and µy are the local means of x and y; σx and σx are the standard deviations
of x and y; σxy is the cross-covariance between x and y; and C1, C2 and C3 are small
constants that are meant to keep the denominators different from zero. The SSIM index
is obtained by combining l, c, and s, using the following equation:

SSIM(x, y) = l(x, y)αc(x, y)βs(x, y)γ. (3.5)

In this thesis, the most common implementation of SSIM index metric is used, which is
the popular Matlab implementation provided by the authors [82], with α = β = γ = 1
and C3 = C2/2. SSIM generates as output a value between ‘0’ and ‘1’, with higher values
corresponding to a better quality. In other words, since SSIM has maximum and minimum
values, it can be more useful in the analysis than SNR.

Other features I want to analyze and correlate to the image quality are related to
the filter banks. One of them is the sparsity of the filtered images. The used sparsity
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metric was calculated by taking an average of the `1 value of all the filtered versions of
the original image. In other words, the `1 based sparsity metric for the filter bank H1 to
Hn and the image x can be defined as:

n∑
k=1

r∑
i=1

c∑
j=1
|xk(i, j)|)/(n), (3.6)

where xk is the r × c filtered version of x, when filtered by the k-th filter Hk; r is the
number of rows and c is the number of columns of the images. Finally, I calculate the
metric for every image in the database and take the average value.

The other feature of the filter banks I considered is the spectrum coverage. I defined
the spectrum coverage of a filter bank as the union of the passing band of all filters of
the filter bank. In order to separate the regions of the Fourier spectrum between pass
and stop bands, I use Otsu’s threshold technique [85] on the amplitude of the frequency
spectrum of each filter. Then, I apply the ‘or’ morphological operation to the thresholded
spectrum of all filters for obtaining the total coverage of this filter bank (the process works
as a union of the passing bands regions). Optionally, I also complement the spectrum
coverage with the position of where radial lines were sampled. Figure 3.7 depicts the
spectrum coverage for different filter banks. The black values represent the uncovered
spectrum.

3.3 Results

The average SNR and SSIM values for the reconstructions obtained in all simulations are
presented, respectively, in Figures 3.8 and 3.9. The figures show some horizontal lines
that correspond to the SNR and SSIM corresponding to the NESTA TV minimization
(Section 2.4.3). Table 3.2 shows the average SNR and SSIM values, but also shows the
number of filters in the filter banks, the average `1 of the filter banks and the spectrum
coverage.

In our results, the TV and Haar filter banks produce lower image quality than NESTA
TV. However, Miosso’s work [12] produced a higher quality than what is produced by the
`1-MAGIC TV. The two possible explanation is or due to the different value of p or is
due to the reconstruction algorithm.

Some of the proposed filter banks present statistically significant (with p=0.05) higher
image quality than the NESTA TV. Figures 3.8 and 3.9 and Table 3.2 show that, for 20
radial lines WIN filters with order 2, 4 and 6 produce a significantly higher quality (around
0.1 SSIM and 2.5 dB SNR difference) than what is obtained with NESTA TV. However,
for 40 or more radial lines, only WIN filters with order 2 show a systematically higher
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Table 3.2: Average reconstruction SNR(dB), SSIM, and time using pre-filtering with IRLS reconstruction
algorithm, classified by radial lines. It is also shown the number of filters filter bank, the average `1 of the
images and the spectrum coverage. The bolded face cells correspond to the filter banks with the highest
SNR or SSIM.

20 radial lines 40 radial lines 60 radial lines 80 radial lines 100 radial lines num avg spec.
SNR SSIM time SNR SSIM time SNR SSIM time SNR SSIM time SNR SSIM time fils `1 cov.

TV 14.2 0.756 19.2 20.1 0.920 21.8 24.2 0.964 24.1 27.4 0.980 25.9 30.2 0.988 27.4 2 31.6 95.7
Haar 14.2 0.757 27.7 20.2 0.922 32.4 24.5 0.966 36.3 27.9 0.982 39.0 30.8 0.989 41.8 3 32.4 99.0
WIN(2,2) 17.8 0.900 24.9 22.8 0.957 35.1 26.2 0.976 37.3 29.1 0.986 33.9 31.6 0.991 34.1 3 78.2 90.9
WIN(2,3) 17.8 0.900 68.4 22.8 0.957 97.2 26.3 0.976 94.9 29.3 0.986 94.1 32.2 0.992 93.1 8 79.3 100.0
WIN(2,4) 17.8 0.900 128.5 22.8 0.957 179.4 26.3 0.976 178.1 29.2 0.986 176.6 31.9 0.992 177.5 15 79.8 100.0
WIN(2,5) 17.8 0.900 207.1 22.8 0.957 288.6 26.3 0.976 289.1 29.2 0.986 280.8 31.8 0.991 282.6 24 80.1 100.0
WIN(4,2) 17.4 0.891 25.9 110.0 0.919 32.2 19.7 0.904 34.9 20.6 0.920 37.3 23.5 0.954 39.0 3 64.6 78.6
WIN(4,3) 17.7 0.898 69.0 21.6 0.945 86.9 23.8 0.961 91.9 25.7 0.972 97.2 27.9 0.981 104.4 8 79.9 100.0
WIN(4,4) 17.7 0.898 130.5 21.6 0.947 165.2 21.6 0.939 177.1 20.8 0.922 187.9 21.5 0.932 200.7 15 84.0 100.0
WIN(4,5) 17.6 0.898 208.1 21.3 0.944 263.0 21.3 0.936 282.2 21.6 0.938 298.1 24.0 0.960 320.8 24 85.5 100.0
WIN(6,2) 13.6 0.740 25.9 19.4 0.905 30.2 23.7 0.958 34.3 27.4 0.979 37.1 30.6 0.988 39.8 3 35.6 75.7
WIN(6,3) 16.6 0.869 68.3 17.0 0.849 83.0 17.9 0.870 91.9 21.5 0.930 100.2 26.6 0.973 106.3 8 66.3 99.1
WIN(6,4) 16.9 0.875 127.5 19.9 0.918 153.5 22.2 0.941 170.8 25.5 0.967 185.3 29.5 0.984 200.5 15 79.7 100.0
WIN(6,5) 17.0 0.879 204.9 18.0 0.882 243.5 20.6 0.922 270.1 25.9 0.971 293.1 30.5 0.988 316.5 24 85.5 100.0
WIN(8,2) 8.2 0.325 25.7 17.8 0.803 30.9 23.6 0.948 35.0 27.6 0.978 37.6 30.7 0.988 40.0 3 32.6 74.8
WIN(8,3) 13.2 0.725 67.3 18.4 0.886 79.8 22.8 0.950 90.1 27.1 0.978 98.5 30.8 0.989 105.2 8 42.6 95.4
WIN(8,4) 15.5 0.821 128.2 16.7 0.833 152.9 22.1 0.934 171.6 27.8 0.978 186.3 31.3 0.989 198.5 15 66.2 100.0
WIN(8,5) 16.7 0.866 200.9 19.4 0.898 241.3 23.4 0.946 271.9 27.6 0.977 296.4 30.9 0.988 315.3 24 79.5 100.0
WIN(10,2) 3.7 0.111 25.6 12.0 0.480 30.4 21.4 0.892 34.8 26.7 0.971 37.5 30.3 0.987 39.9 3 33.3 74.5
WIN(10,3) 14.2 0.735 67.0 20.5 0.915 80.4 25.0 0.965 90.8 28.4 0.982 98.5 31.3 0.989 104.5 8 33.0 93.6
WIN(10,4) 13.3 0.731 125.7 19.1 0.897 147.8 24.4 0.963 167.3 28.4 0.983 182.1 31.4 0.990 195.4 15 47.9 98.2
WIN(10,5) 14.3 0.767 203.9 18.0 0.860 243.1 24.4 0.959 273.5 28.3 0.982 295.2 31.2 0.989 314.7 24 67.0 100.0
WAV(db1,1) 14.1 0.753 27.4 19.9 0.919 32.5 24.1 0.964 36.0 27.6 0.981 38.7 30.5 0.988 41.1 3 33.0 98.3
WAV(db1,2) 13.5 0.728 75.2 19.4 0.911 89.2 23.9 0.962 99.4 27.6 0.981 106.4 30.7 0.989 113.6 8 39.1 99.9
WAV(db1,3) 13.5 0.723 144.3 19.7 0.914 170.6 24.2 0.964 190.8 27.7 0.981 205.7 30.7 0.989 221.0 15 50.9 100.0
WAV(db4,1) 5.1 0.233 27.4 17.8 0.793 32.6 23.6 0.947 36.6 27.5 0.978 38.8 30.6 0.988 41.5 3 32.1 91.4
WAV(db4,2) 12.6 0.600 75.5 20.1 0.910 88.7 24.8 0.965 99.4 28.3 0.982 105.8 31.2 0.989 111.8 8 38.6 98.5
WAV(db4,3) 14.0 0.725 143.5 20.6 0.923 169.4 24.9 0.967 188.5 28.2 0.982 201.1 31.1 0.989 213.2 15 51.8 99.7
WAV(coif1,1) 13.8 0.713 27.1 20.1 0.907 32.5 24.7 0.963 36.3 28.2 0.981 38.6 31.0 0.989 41.6 3 31.6 95.0
WAV(coif1,2) 14.1 0.741 74.9 20.7 0.923 88.9 25.2 0.968 100.1 28.7 0.983 106.4 31.5 0.990 113.3 8 37.6 99.4
WAV(coif1,3) 14.4 0.757 143.2 21.0 0.931 170.8 25.4 0.970 189.9 28.7 0.983 204.3 31.5 0.990 218.1 15 50.7 99.9
WAV(sym2,1) 13.8 0.714 27.0 20.1 0.908 32.5 24.7 0.963 36.3 28.2 0.981 38.7 31.0 0.989 41.6 3 31.7 95.3
WAV(sym2,2) 14.1 0.742 75.1 20.6 0.923 88.7 25.2 0.968 99.9 28.6 0.983 106.1 31.5 0.990 113.0 8 37.9 99.4
WAV(sym2,3) 14.4 0.759 143.3 21.0 0.930 170.0 25.3 0.969 189.8 28.6 0.983 203.1 31.4 0.990 216.7 15 50.9 99.9
WAV(rbio2.2,1) 13.9 0.725 28.1 20.1 0.912 33.1 24.5 0.964 37.4 27.9 0.981 39.8 30.7 0.988 42.4 3 32.7 97.2
WAV(rbio2.2,2) 14.2 0.749 76.3 20.8 0.928 90.6 25.0 0.968 101.0 28.3 0.982 108.6 31.0 0.989 114.8 8 42.0 99.7
WAV(rbio2.2,3) 14.6 0.771 145.4 21.0 0.931 172.9 25.1 0.969 193.3 28.3 0.982 207.3 31.0 0.989 220.6 15 57.1 100.0
WAV(rbio2.8,1) 0.0 0.000 27.9 1.2 0.044 33.1 15.9 0.663 37.4 25.6 0.958 39.6 29.9 0.985 42.0 3 33.3 88.3
WAV(rbio2.8,2) 0.4 0.016 75.5 19.4 0.869 89.1 24.5 0.962 98.2 28.0 0.981 104.0 30.8 0.989 109.1 8 40.7 97.8
WAV(rbio2.8,3) 12.8 0.610 137.9 20.3 0.918 163.1 24.5 0.964 181.2 27.8 0.980 191.8 30.6 0.988 202.7 15 55.3 99.6
WAV(rbio6.8,1) 0.0 0.000 25.8 1.2 0.045 30.4 16.0 0.667 34.1 26.0 0.962 36.6 30.2 0.986 39.1 3 32.6 88.9
WAV(rbio6.8,2) 0.2 0.008 70.4 19.3 0.861 82.9 24.8 0.964 92.7 28.3 0.982 98.7 31.2 0.989 103.8 8 38.7 97.9
WAV(rbio6.8,3) 12.5 0.583 129.7 20.6 0.923 153.3 24.9 0.967 169.1 28.2 0.982 180.4 31.1 0.989 189.7 15 52.7 99.6

image quality than NESTA TV. The best performing wavelet filters performed slightly
better than the Haar filters.

A possible explanation for these results is the spectrum of the individual filters of the
filter banks. Filters with low order have a smooth spectrum decay response and can cover
large areas of the spectrum, while high order filters have a sharp spectrum decay response.
A sharp filter could have a small spectrum, depending on the number of band divisions
and, therefore, the filtered image would be sparse in both space and frequency domains,
leading to a poor CS reconstruction.

Figure 3.10 shows the pre-filtering reconstructions images for a single image, for several
filter banks and different numbers of radial lines. Notice that filter banks WIN(2,2) and
WIN(2,3) present a higher quality than the other filters, including the state-of-the-art
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Haar filter. In fact, WIN(2,2) presents images with visually less noise, and WIN(2,3)
presents images with more details. The filter bank WIN(4,2) shows high quality results
for 20 radial lines, however, the quality does not increase significantly when increasing
the number of radial lines.

Some wavelet filter banks also produce higher image quality than what is obtained with
Haar filters, specially for a higher number of radial lines. Examples are WAV(coif1,2) (that
shows less noise than Haar) andWAV(coif1,3) (that shows more details than Haar). Albeit
these filter banks do not produce results as good as what is obtained with WIN(2,2) and
WIN(2,3). However, there are also wavelet filter banks that produce low quality results,
such as WAV(db4,1).

Figure 3.11 shows the relation between the `1-based sparsity metric and the SNR of
the image reconstructions for all tested filter banks, separated by the number of radial
lines. SNR is used, instead of SSIM, because SNR is easier to visualize. Higher values of
sparsity corresponds to the lower values of `1 in the x axis of Figure 3.11. Each point in
the plot corresponds to the average SNR and sparsity values for all images, corresponding
to a single filter bank.

Some of the points with the highest `1 values correspond to reconstruction quality
values (SNR) below 10 dB. These points correspond to the filter banks WAV(rbio6.8,1),
WAV(rbio6.8,2), WAV(rbio2.8,1), WAV(rbio2.8,2), WAV(db4,1), WIN(8,2) and
WIN(10,2). Specially for 20 radial lines, we can see two different patterns. Below an
average `1 value of 60, the SNR is always below 15 dB (for 20 radial lines). Above an
average `1 value of 60, all points (except for one) are above 15 dB, i.e. less sparsity
corresponds to higher image quality for 20 radial lines. These results suggests that the
`1-based sparsity metric does not always lead to an increased reconstruction quality.

Other important factor to consider is the spectrum coverage. Figure 3.12 shows the
relation between the spectrum coverage and the reconstruction quality (in SNR) for each
filter bank and each measurement scheme. In the first plot, the radial lines are not included
as part of the spectrum covered (these values are represented in the last column of Table
3.2). Notice that the points for different radial lines are vertically aligned, showing the
same spectrum coverage. We can observe points with poor reconstruction with either a
high or a low spectrum coverage. Also, the highest SNRs corresponds to 90.9% and 100%
spectrum coverage.

Let us look at the points corresponding to filters banks with the worst reconstruction
quality for 20 radial lines: WIN(8,2) and WIN(10,2), WAV(dB4,1), WAV(rbio6.8,1),
WAV(rbio6.8,2), WAV(rbio2.8,1), WAV(rbio2.8,2). WIN(8,2) and WIN(10,2) have only
74.8% and 74.5% spectrum coverage, what is far below the average and could explain
the poor reconstruction. WAV(dB4,1), WAV(rbio2.8,1), and WAV(rbio6.8,1) have
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between 88.3% and 91.4% spectrum coverage, what is still below the average. However,
WAV(rbio2.8,2) and WAV(rbio6.8,2) have 97.8% and 97.9% of the spectrum coverage,
and there are plenty of filter banks with worst spectrum coverage and higher
reconstruction quality. In summary, spectrum coverage can explain some of the results,
but not all of them.

The second plot of Figure 3.12 shows the relation between SNR and the spectrum
coverage percentage, including the measurements. Since the measurements are
concentrated in the lower frequencies of the spectrum, they help to improve the
spectrum coverage, specially for a higher number of radial lines. Notice points following
an increasing curve in the plot, which means that higher spectrum coverage ( including
the measurements) leads to better reconstruction quality. However, we also observe
points (remember, each point represents a filter bank) with full or almost full spectrum
coverage that are not among the best SNR values. Although the data suggests that
spectrum coverage is a good indicative of a good reconstruction, the result also depends
on the amount of measurements.

The average reconstruction time is shown in Table 3.2. The fastest reconstruction time
was for the TV filter banks, because this is the smallest filter bank. The reconstruction
time is largely determined by the number of filters in the bank, because the number of
filters is equal to the number of individual reconstructions needed. Figure 3.13 shows
a boxplot of the average reconstruction times per-image for all filters, grouped by the
number of filters in the bank and by the number of radial lines. We observe that the
total reconstruction time is indeed linearly correlated to the number of filters in the filter
bank. Also, for the chosen experiment settings, although the number of measurements
also increased the reconstruction time, it has a smaller impact on the reconstruction time
than the number of filters.

Notice that the filter bank WIN(2,2) has only 3 filters, resulting in a fast reconstruction
time. This filter bank also produces the overall best image quality for 20 radial lines, and
very close to the best quality for a higher number of radial lines. To obtain a balance
between reconstruction time and reconstruction quality, WIN(2,2) seems to be the best
option. The filter bank WIN(2,3) presents the best reconstruction quality for 40, 60, 80
and 100 radial lines. However, it takes around 8/3 more time to reconstruct it than with
WIN(2,2).

3.4 Conclusions

In this chapter I proposed a systematic evaluation of the pre-filtering method with a
simulation of MRI reconstruction using several filter banks. I presented the model,
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described the filter banks and the simulation details and the analysis parameters.
With our quantitative and qualitative analysis, I found filter banks that provide images

with superior quality than the Haar filters. The filter banks designed with the windowing
method with the lowest order provided images with the best quality. The improvement of
quality is higher for 20 radial lines, showing an improvement of 2.8dB SNR/0.106 SSIM
when compared to NESTA TV minimization and 3.6 dB SNR/0.143 SSIM when compared
to pre-filtering with Haar filter bank. Some wavelet filters produced slightly better image
quality than the Haar filter bank.

Results show an overall positive correlation between the image quality and the
spectrum coverage, when including the measurements. The combination of the spectrum
of the filters and the number of measurements leads to good results. However, when
only the spectrum of the filters is considered, the results are not conclusive. It seems
that we cannot evaluate the spectrum coverage ignoring the measurements.

I hypothesized that a high sparsity would lead to a high image quality. However, the
results using the `1-based sparsity metric do not support this hypothesis. The possible
explanation is that the filters that sparsify the space domain also sparsify the frequency
domain, thus, frequency information is lost.

Finally, the reconstruction time is mostly influenced by the number of filters in the filter
bank. Using a filter bank based on windowing method, with order 2 and 2 band divisions
(WIN(2,2)) provides a good compromise between reconstruction time and reconstruction
quality. This filter bank is among the filters with highest image quality, and it has only
3 filters, resulting in a fast to reconstruction time.
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Figure 3.3: Wavelet decomposition simplification to the Wavelet filter bank.
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Figure 3.4: Example: Magnitude of 2 level Biorthogonal type 2.8 wavelet filters. Only the low-pass filter
is not considered.

20 projections 40 projections 60 projections 80 projections 100 projections

Figure 3.5: Sampling positions for the reconstruction simulations, ranging from 20 to 100 radial lines
projections.

Figure 3.6: Some slices from the first participant brain, taken from an MRI machine.
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Figure 3.7: Spectrum coverage for 3 different filter configurations. First column is WIN filter bank design
with 12 coefficients and 2x2 band divisions, second is TV filter bank and third column is Daubechie’s 3
wavelet filter bank with 2 levels. First row is using 20 radial lines, while second is using 80 lines.
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Figure 3.8: Average SNR (dB) of the reconstruction using the pre-filtering with IRLS with p=1 for
the filter banks tested. It is also shown SNR of reconstruction with the NESTA TV minimization as
horizontal lines.

Figure 3.9: Average SSIM of the reconstruction using the pre-filtering with IRLS with p=1 for the filter
banks tested. The y axis is in a log scale. It is also shown the SSIM of reconstruction with the NESTA
TV minimization as horizontal lines.
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Figure 3.10: MRI reconstructions with pre-filtering. Columns corresponds to respectively 20, 40, 60, 80
and 100 radial lines.
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Figure 3.11: Average SNR(dB) vs average `1 of the filtered images. Each point corresponds to a filter
bank.
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Figure 3.12: Average SNR(dB) vs spectrum coverage of the filter banks. First plot does not include
the measurements in the spectrum coverage. The second includes the measurements of part of covered
spectrum.
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Figure 3.13: Reconstruction times (s) grouped by number of radial lines and number of filters in the filter
banks.
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Chapter 4

Improving pre-filtering by adding
zero-valued measurements

Since the behavior of the filters is known before reconstruction, one can take advantage
of this information to improve the reconstruction step of the pre-filtering method. One
of the possible approaches is to include measurements to the reconstruction step, based
on the spectrum of the filter banks. In this chapter, I redefine the pre-filtering method
using matrices to represent some processes of the method. This allows to introduce the
proposed modification to the pre-filtering method. The modified pre-filtering method
uses different sampling matrices for the original measurements and the reconstruction.
The process consists of including measurements with zero values in spectrum positions
that have amplitude below a threshold. With this, the number of measurements in the
reconstruction is increased.

Additionally, I observed that the pre-filtering method was only presented and tested
in the literature using the IRLS algorithm for reconstruction. In this chapter, I also use
the NESTA algorithm in the reconstruction step. I present an experiment with a setting
similar as in Chapter 3 to evaluate the results of the two reconstruction algorithms, as
well the results of applying the proposed modification on the prefiltering method.

4.1 Proposed pre-filtering modifications

To formally introduce the proposed modification, the original formulation of pre-filtering
is redefined. Let x be a N -length signal to be reconstructed, F denotes the N point
discrete Fourier transform (DFT) operation. Let the m-length vector s represent the
indices of the sampling pattern, i.e. the positions of the measurements in the spectrum.
The operator S selects the s elements of the input. S can be represented by a matrix
formed by a selection rows with index s of the identity matrix I. In a submatrix notation,
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S = Is,∗. Note that ST , when applied to a m-length signal, generates an N -length signal
with the content of the original signal at the sampling pattern, filling with zeros the
non-sampled positions. The original measurements b can be represented by

b = SFx, (4.1)

where SF is the sampling matrix (M in previous chapters). As seen in previous chapters,
the first step of the pre-filtering method consists of filtering the measurements with a list
of filters hk. In this chapter, this process is represented in a slightly different way than
presented in Chapter 2.

Let hk be the coefficient of the k-th filter used in the pre-filtering method. Let Hk be
the N×N matrix that applies the element-wise multiplication in the spectrum domain of
the filter hk, i.e. Hk = diag(Fhk). To filter the measurements b, the non-sampled position
are filled with zeros (i.e., applying ST ) and, then, the matrix Hk is applied. Applying
HkST to b results in an N -length spectrum with zeros in non-sampled positions. To
obtain the filtered measurements bk, as described in pre-filtering method, the samples
in the sampling pattern (applying S) are selected. Therefore, bk is obtained using the
following expression:

bk = SHkST b. (4.2)

The pre-filtering in this representation is shown in Figure 4.1. The reconstructions solve
the problems in the following form:

argminxk ||xk||
p
p

||bk − SFxk||2 < ε.
(4.3)

The solutions have a tolerance of ε. The final composition is the same as the one presented
in Section 2.3.

Adding measurements according to the filters

We can use information about the filters to improve the effective number of
measurements in the reconstruction process. For this, the solution space is changed by
adding measurements to the system.

Let zk be the vector of indices whose magnitudes of Hk are smaller than a threshold
tk, i.e.:

zk = {i|0 < i ≤ N, ||Hk(i, i)||2 < tk} (4.4)
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Figure 4.1: New representation of the pre-filtering method.

Let us define the operator Zk as the new sampling pattern, which selects entries of both
original sampling pattern s and zk, represented by:

Zk = Is∪zk,∗. (4.5)

To obtain the new bk, we have to select the samples using Zk. Therefore, we can
obtain bk with the following the equation:

bk = ZkHkST b. (4.6)

The matrix ST , zero-fills the input in all the non-sampled positions. The matrix Zk re-
samples with both sampled positions and non-sampled positions below a given threshold.
Therefore, the zero-valued measurements are still present in bk.

The new reconstruction model is also modified accordingly:

argminxk ||xk||
p
p

||bk − ZkFxk||2 < ε.
(4.7)

The solution space is modified, forcing a solution that has zeros in the stop-band response
of the filters. For each different filter, there is a different solution space because different
filters have different passing and stopping bands. The modified model is depicted in
Figure 4.2.

Figure 4.3 shows the sampled positions in the k-space for the Haar filters, with a
threshold of 1% of maximum magnitude of the filters. This diagram shows how the
number of measurements can be increased using this process. It also shows that different
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Figure 4.2: Modified pre-filtering method with extra zero-valued measurements.

(a) Original pre-
filtering model
measurements,
10.4%.

(b) Horizontal
Db4 wavelet
decomposition
filter, 44.4%.

(c) Vertical
Db4 wavelet
decomposition
filter, 44.4%.

(d) Diagonal
Db4 wavelet
decomposition
filter, 34.1%.

Figure 4.3: Sampled positions. White lines represent the original sampling pattern. Translucid white
areas represent the extra measurements, i.e., the points for which the magnitude of the filter spectrum
is smaller than 1% of maximum filter magnitude.

filters have zero-valued measurements in different positions, leading to different solution
spaces.

There is a balance on the tolerance of the stop-band filters threshold tk. If tk is
small, the extra measurements may be too few to make a difference. If tk is large, the
reconstruction can be compromised because the extra measurements may increase the
error.
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4.2 Experimental methodology

I use the NESTA algorithm to solve reconstruction problems in the following form:

argminxk ||xk||1
subject to ||ZkFxk − bk|| < ε.

(4.8)

Notice that the `1 metric is used in this equation, as NESTA does not solve the `p norm
for p<1. To compare the reconstruction results to the last chapter results, a ε equal to
zero is used in our simulations.

The region of zero-valued measurements included for each reconstruction is determined
by 2 factors: the filter and the threshold. In this chapter, threshold values of 0%, 0.5%,
1%, and 5% of the maximum amplitude of the corresponding filter are used. These
values are chosen empirically. Table 4.1 shows the average percentage of measurements
for all filters of each filter bank of our experiment, including zero-valued measurements in
spectrum positions below the threshold. The original measurements formed by the radial
lines are also included. The number of measurements greatly increases depending on the
features of the filter bank. Notice that the first threshold value is zero, which implies that
only measurements with exact zero value are considered. This allows to compare these
results with results of the previous chapter, i.e. to compare the pre-filtering method with
the IRLS and NESTA algorithms.

In the experiment performed in this chapter, the same images of Chapter 3 are used,
as well as the same sampling schemes (20 to 100 radial lines) and filter banks (TV, Haar,
and all WIN and WAV filters). The simulation is repeated for each input parameter.
Since 4 levels of threshold are included, the total number of reconstructions is 4 times the
number of reconstructions performed in Chapter 3, totaling 480,700 reconstructions. The
experiment was run on a computational cluster, which was described in Chapter 3. The
experiment was implemented in MATLAB, based on an available NESTA implementation.
The quality performance metrics are the SNR and SSIM of the reconstructed image when
compared to the ground truth. The spectrum coverage and the `1 of the filter banks are
also computed.

4.3 Results

Figures 4.4 and 4.5 show the average of the SNR and SSIM of the reconstructions for
all simulations, considering a threshold of 0%. The figures also show horizontal lines
corresponding to the TV minimization using the NESTA TV minimization, without using
pre-filtering (section 2.4.3). Table 4.2 shows all average values. We can compare these
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results directly with the ones presented in Figures 3.7 and 3.8 and Table 3.2. This allow to
evaluate the difference between the average image quality provided by IRLS and NESTA
algorithms in the pre-filtering method.

In this experiment, WIN filters with lower order present the highest image quality
for 20 radial lines, with a gain of more than 2 dB when compared to the state-of-the-
art (Haar filter bank). These results are similar to the results obtained with the IRLS
algorithm. However, the image quality using NESTA for WIN filters is, in general, lower
than the quality using IRLS. The maximum SNR value for 20 radial lines is 18.9 dB for the
filter bank WIN(4,2), while the maximum SNR value for IRLS is 19.5 for the filter bank
WIN(2,2). The pre-filtering with NESTA also did not match the IRLS average image
quality (in SNR) for 40 or more radial lines for these filter banks. However, the maximum
value obtained is very close to IRLS. For 100 radial lines, the filter bankWIN(8,4) obtained
a maximum SNR value of 34.8 dB with NESTA, while for the same settings with IRLS
the maximum SNR was 34.8 dB.

The WAV filter banks present results that are similar to the results obtained with
IRLS, with some of them outperforming NESTA TV in terms of image quality. The
maximum average SNR for a WAV filter using NESTA pre-filtering is 31.5 dB, which is
the same SNR value obtained with IRLS. However, this value is still below the 32.2 dB
obtained with the best performing WIN filter bank with IRLS algorithm.

Figures 4.6 and 4.7 show the average SNR and SSIM values of the reconstructions with
the best image quality, for all thresholds. The reconstruction quality is always equal or
superior to the plots in Figures 4.4 and 4.5. Table 4.3 shows the improvements in image
quality of the results presented in Figures 4.6 and 4.7, when compared to the results in
Figures 4.4 and 4.5.

For most filter banks, the improvement in image quality is small. However, the filter
banks that generated a bad reconstruction with a zero threshold showed the greatest
improvements. For instance, the filter bank WAV(rbio2.8,1) increased the average
SNR/SSIM from 0.0/0.000 to 11.6/0.581 for 20 radial lines; from 1.2/0.045 to 16.5/0.768
for 40 radial lines; 16.0/0.666 to 21.4/0.895 for 60 lines; 25.7/0.959 to 26.2/0.966 for 80
lines and 29.9/0.985 to 30.2/0.986 for 100 radial lines. These values are still not as good
as the best filter banks, but the threshold method improved the reconstruction of filter
banks that performed poorly. Notice also that the method presents the highest
improvement for a small number of radial lines, when the reconstruction is generally
poor. In the mentioned example, the filter bank WAV(rbio2.8,1), with the zero
threshold and 60 radial lines achieved 16.0/0.666 average SNR/SSIM, while the best
threshold at 40 radial lines presented 16.5/0.768 average SNR/SSIM. In other words,
using the proposed method can improve the results more than increasing the number of

49



Ta
bl
e
4.
1:

Av
er
ag
e
nu

m
be

r
of

m
ea
su
re
m
en
ts

of
th
e
fil
te
r
ba

nk
fo
r
a
pe

rc
en
ta
ge

of
th
e
to
ta
ls

iz
e
of

th
e
im

ag
e’
s
sp
ec
tr
um

.

no
m
ea
su
re
m
en
ts

20
ra
di
al

lin
es

40
ra
di
al

lin
es

60
ra
di
al

lin
es

80
ra
di
al

lin
es

10
0
ra
di
al

lin
es

0
0.
5%

1%
5%

0
0.
5%

1%
5%

0
0.
5%

1%
5%

0
0.
5%

1%
5%

0
0.
5%

1%
5%

0
0.
5%

1%
5%

T
V

2.
0

12
.4

22
.4

35
.1

12
.4

22
.7

32
.9

44
.9

20
.8

21
.1

21
.1

23
.1

30
.5

30
.8

30
.8

32
.4

39
.5

39
.8

39
.8

41
.2

48
.0

48
.2

48
.2

49
.4

H
aa
r

3.
7

8.
3

12
.6

23
.9

14
.1

18
.5

22
.5

32
.7

24
.4

28
.2

31
.7

40
.6

30
.5

31
.5

32
.2

37
.5

39
.5

40
.4

41
.1

45
.6

48
.0

48
.8

49
.4

53
.4

W
IN

(2
,2
)

0.
0

3.
5

6.
9

10
.2

10
.4

13
.9

17
.3

20
.6

20
.8

24
.2

27
.7

30
.9

30
.5

30
.5

30
.5

30
.5

39
.5

39
.5

39
.5

39
.5

48
.0

48
.0

48
.0

48
.0

W
IN

(2
,3
)

0.
0

0.
0

0.
0

0.
0

10
.4

10
.4

10
.4

10
.4

20
.8

20
.8

20
.8

20
.8

30
.5

30
.5

30
.5

30
.5

39
.5

39
.5

39
.5

39
.5

48
.0

48
.0

48
.0

48
.0

W
IN

(2
,4
)

0.
0

0.
0

0.
0

0.
0

10
.4

10
.4

10
.4

10
.4

20
.8

20
.8

20
.8

20
.8

30
.5

30
.5

30
.5

30
.5

39
.5

39
.5

39
.5

39
.5

48
.0

48
.0

48
.0

48
.0

W
IN

(2
,5
)

0.
0

0.
0

0.
0

0.
0

10
.4

10
.4

10
.4

10
.4

20
.8

20
.8

20
.8

20
.8

30
.5

30
.5

30
.5

30
.5

39
.5

39
.5

39
.5

39
.5

48
.0

48
.0

48
.0

48
.0

W
IN

(4
,2
)

1.
1

4.
5

7.
9

14
.3

11
.5

14
.9

18
.3

24
.0

21
.8

24
.8

27
.8

33
.0

30
.5

30
.5

30
.5

32
.3

39
.5

39
.5

39
.5

41
.2

48
.0

48
.0

48
.0

49
.5

W
IN

(4
,3
)

0.
0

0.
0

0.
4

6.
5

10
.4

10
.4

10
.7

16
.1

20
.8

20
.8

21
.0

25
.7

30
.5

30
.5

30
.7

34
.7

39
.5

39
.5

39
.7

43
.1

48
.0

48
.0

48
.2

51
.1

W
IN

(4
,4
)

0.
0

0.
2

1.
0

8.
6

10
.4

10
.6

11
.2

18
.0

20
.8

20
.9

21
.4

27
.3

30
.5

30
.6

31
.0

36
.2

39
.5

39
.6

40
.0

44
.5

48
.0

48
.1

48
.4

52
.3

W
IN

(4
,5
)

0.
0

0.
3

0.
9

10
.1

10
.4

10
.7

11
.1

19
.3

20
.8

21
.0

21
.4

28
.6

30
.5

30
.7

31
.0

37
.3

39
.5

39
.7

39
.9

45
.4

48
.0

48
.1

48
.4

53
.1

W
IN

(6
,2
)

10
.9

17
.9

24
.1

50
.6

21
.3

27
.5

33
.2

56
.7

31
.7

36
.6

41
.3

61
.5

30
.5

33
.2

35
.7

51
.7

39
.5

41
.9

44
.0

57
.8

48
.0

50
.2

52
.0

63
.6

W
IN

(6
,3
)

0.
0

18
.9

24
.4

37
.0

10
.4

26
.9

31
.7

43
.0

20
.8

35
.0

39
.2

49
.2

30
.5

42
.9

46
.5

55
.1

39
.5

50
.3

53
.4

60
.8

48
.0

57
.3

60
.1

66
.2

W
IN

(6
,4
)

0.
0

13
.8

21
.0

36
.4

10
.4

22
.6

28
.9

42
.7

20
.8

31
.4

36
.9

49
.1

30
.5

39
.6

44
.5

55
.2

39
.5

47
.4

51
.6

60
.9

48
.0

54
.8

58
.5

66
.4

W
IN

(6
,5
)

0.
0

12
.8

19
.0

39
.7

10
.4

21
.7

27
.2

45
.7

20
.8

30
.6

35
.5

51
.8

30
.5

39
.0

43
.3

57
.6

39
.5

46
.9

50
.6

63
.1

48
.0

54
.4

57
.6

68
.4

W
IN

(8
,2
)

14
.8

42
.1

48
.6

64
.6

25
.3

49
.1

55
.0

69
.4

35
.6

56
.0

60
.9

73
.2

30
.5

46
.9

50
.0

59
.2

39
.5

53
.7

56
.3

64
.2

48
.0

60
.2

62
.4

69
.0

W
IN

(8
,3
)

0.
0

31
.3

37
.2

51
.3

10
.4

38
.0

43
.2

55
.9

20
.8

44
.8

49
.4

60
.6

30
.5

51
.3

55
.3

65
.1

39
.5

57
.4

60
.9

69
.5

48
.0

63
.4

66
.4

73
.7

W
IN

(8
,4
)

0.
0

40
.4

45
.5

56
.9

10
.4

46
.2

50
.8

61
.0

20
.8

52
.2

56
.2

65
.3

30
.5

57
.9

61
.5

69
.4

39
.5

63
.3

66
.5

73
.4

48
.0

68
.5

71
.2

77
.2

W
IN

(8
,5
)

0.
0

33
.0

40
.8

57
.1

10
.4

39
.7

46
.7

61
.4

20
.8

46
.5

52
.7

65
.6

30
.5

53
.0

58
.4

69
.8

39
.5

59
.1

63
.8

73
.7

48
.0

64
.9

68
.9

77
.5

W
IN

(1
0,
2)

16
.9

48
.8

58
.4

72
.3

27
.4

55
.3

63
.8

76
.3

37
.7

61
.7

68
.9

79
.7

30
.5

50
.1

55
.2

63
.4

39
.5

56
.4

60
.8

67
.7

48
.0

62
.4

66
.2

71
.9

W
IN

(1
0,
3)

0.
0

44
.3

50
.3

63
.0

10
.4

49
.6

54
.9

66
.3

20
.8

55
.0

59
.7

69
.9

30
.5

60
.3

64
.4

73
.3

39
.5

65
.4

68
.9

76
.7

48
.0

70
.2

73
.2

79
.9

W
IN

(1
0,
4)

0.
0

47
.8

53
.3

66
.3

10
.4

53
.0

57
.8

69
.5

20
.8

58
.1

62
.4

72
.8

30
.5

63
.1

66
.9

76
.0

39
.5

67
.9

71
.2

79
.1

48
.0

72
.4

75
.2

82
.1

W
IN

(1
0,
5)

0.
0

57
.0

60
.6

69
.4

10
.4

61
.2

64
.4

72
.3

20
.8

65
.5

68
.4

75
.4

30
.5

69
.7

72
.2

78
.4

39
.5

73
.6

75
.8

81
.2

48
.0

77
.4

79
.3

83
.9

W
AV

(d
b1

,1
)

7.
9

16
.2

21
.5

35
.7

18
.3

26
.1

31
.2

43
.9

24
.4

31
.7

36
.3

47
.9

30
.5

34
.8

36
.5

44
.2

39
.5

43
.5

45
.0

51
.8

48
.0

51
.6

53
.0

59
.0

W
AV

(d
b1

,2
)

0.
0

9.
2

12
.9

29
.0

10
.4

18
.8

22
.1

36
.5

20
.8

28
.4

31
.4

44
.1

30
.5

37
.4

40
.1

51
.4

39
.5

45
.7

48
.1

58
.2

48
.0

53
.5

55
.6

64
.4

W
AV

(d
b1

,3
)

0.
0

14
.6

19
.9

41
.6

10
.4

23
.8

28
.6

48
.0

20
.8

32
.9

37
.3

54
.6

30
.5

41
.4

45
.3

60
.7

39
.5

49
.3

52
.8

66
.3

48
.0

56
.6

59
.7

71
.5

W
AV

(d
b4

,1
)

16
.1

49
.2

54
.3

66
.8

26
.6

55
.7

60
.5

71
.7

34
.0

59
.5

63
.7

73
.4

30
.5

51
.5

53
.7

60
.5

39
.5

58
.0

59
.9

65
.5

48
.0

64
.2

65
.7

70
.4

W
AV

(d
b4

,2
)

0.
0

44
.4

49
.1

63
.3

10
.4

50
.1

54
.2

67
.0

20
.8

56
.0

59
.6

70
.8

30
.5

61
.7

64
.9

74
.6

39
.5

67
.1

69
.9

78
.3

48
.0

72
.2

74
.6

81
.8

W
AV

(d
b4

,3
)

0.
0

57
.8

62
.3

74
.5

10
.4

62
.4

66
.4

77
.2

20
.8

67
.2

70
.7

80
.1

30
.5

71
.8

74
.8

82
.9

39
.5

76
.0

78
.6

85
.5

48
.0

79
.9

82
.1

87
.9

W
AV

(c
oi
f1
,1
)

0.
0

17
.4

21
.2

34
.2

10
.4

25
.8

29
.2

40
.5

20
.8

34
.4

37
.3

47
.0

30
.5

42
.7

45
.2

53
.5

39
.5

50
.5

52
.7

59
.7

48
.0

57
.8

59
.7

65
.6

W
AV

(c
oi
f1
,2
)

0.
0

26
.1

31
.4

48
.6

10
.4

33
.8

38
.6

53
.9

20
.8

41
.7

45
.9

59
.4

30
.5

49
.3

52
.9

64
.7

39
.5

56
.3

59
.5

69
.7

48
.0

62
.8

65
.6

74
.4

W
AV

(c
oi
f1
,3
)

0.
0

36
.8

43
.4

62
.3

10
.4

43
.6

49
.6

66
.5

20
.8

50
.7

55
.9

70
.8

30
.5

57
.2

61
.9

74
.9

39
.5

63
.3

67
.4

78
.6

48
.0

68
.9

72
.4

82
.1

W
AV

(s
ym

2,
1)

0.
0

16
.9

20
.8

33
.6

10
.4

25
.4

28
.8

39
.9

20
.8

34
.0

37
.0

46
.6

30
.5

42
.4

44
.9

53
.1

39
.5

50
.2

52
.4

59
.4

48
.0

57
.6

59
.5

65
.3

W
AV

(s
ym

2,
2)

0.
0

25
.6

30
.8

47
.9

10
.4

33
.3

38
.0

53
.2

20
.8

41
.3

45
.4

58
.8

30
.5

48
.9

52
.5

64
.2

39
.5

55
.9

59
.1

69
.3

48
.0

62
.5

65
.2

74
.1

W
AV

(s
ym

2,
3)

0.
0

36
.1

42
.6

61
.7

10
.4

43
.0

48
.9

66
.0

20
.8

50
.1

55
.3

70
.3

30
.5

56
.7

61
.3

74
.5

39
.5

62
.8

66
.9

78
.3

48
.0

68
.5

72
.0

81
.8

W
AV

(r
bi
o2
.2
,1
)

0.
0

18
.5

22
.6

35
.3

10
.4

27
.0

30
.6

41
.7

20
.8

35
.7

38
.8

48
.4

30
.5

44
.0

46
.7

55
.0

39
.5

51
.8

54
.2

61
.2

48
.0

59
.0

61
.1

67
.1

W
AV

(r
bi
o2
.2
,2
)

0.
0

29
.3

35
.4

54
.2

10
.4

36
.8

42
.3

59
.2

20
.8

44
.6

49
.5

64
.5

30
.5

51
.9

56
.3

69
.5

39
.5

58
.7

62
.5

74
.1

48
.0

64
.9

68
.2

78
.4

W
AV

(r
bi
o2
.2
,3
)

0.
0

43
.4

51
.1

66
.1

10
.4

49
.8

56
.8

70
.0

20
.8

56
.3

62
.5

74
.1

30
.5

62
.3

67
.8

77
.9

39
.5

67
.8

72
.6

81
.3

48
.0

72
.8

77
.0

84
.4

W
AV

(r
bi
o2
.8
,1
)

0.
0

38
.3

42
.1

53
.0

10
.4

43
.6

47
.1

56
.9

20
.8

49
.3

52
.3

61
.0

30
.5

54
.9

57
.5

65
.1

39
.5

60
.5

62
.7

69
.1

48
.0

65
.9

67
.8

73
.2

W
AV

(r
bi
o2
.8
,2
)

0.
0

47
.8

52
.9

67
.9

10
.4

52
.6

57
.3

71
.0

20
.8

57
.7

61
.9

74
.1

30
.5

62
.8

66
.4

77
.3

39
.5

67
.7

70
.9

80
.4

48
.0

72
.3

75
.1

83
.3

W
AV

(r
bi
o2
.8
,3
)

0.
0

59
.2

65
.2

76
.6

10
.4

63
.3

68
.7

79
.0

20
.8

67
.5

72
.4

81
.4

30
.5

71
.7

76
.0

83
.8

39
.5

75
.6

79
.3

86
.1

48
.0

79
.3

82
.5

88
.3

W
AV

(r
bi
o6
.8
,1
)

0.
0

42
.5

45
.1

53
.4

10
.4

47
.6

50
.0

57
.3

20
.8

53
.0

55
.0

61
.5

30
.5

58
.4

60
.1

65
.6

39
.5

63
.8

65
.2

69
.7

48
.0

69
.0

70
.1

73
.8

W
AV

(r
bi
o6
.8
,2
)

0.
0

57
.9

62
.0

70
.0

10
.4

62
.0

65
.8

72
.9

20
.8

66
.4

69
.8

76
.0

30
.5

70
.8

73
.7

79
.0

39
.5

74
.9

77
.5

82
.0

48
.0

78
.9

81
.1

84
.8

W
AV

(r
bi
o6
.8
,3
)

0.
0

70
.2

73
.5

80
.8

10
.4

73
.4

76
.4

82
.9

20
.8

76
.7

79
.4

85
.1

30
.5

79
.9

82
.2

87
.2

39
.5

83
.0

84
.9

89
.1

48
.0

85
.8

87
.4

91
.0

50



Figure 4.4: Average SNR(dB) of the reconstruction using the pre-filtering with NESTA for the filter
banks tested. Average SNR values for reconstructions with the NESTA TV minimization are shown as
horizontal lines.

Figure 4.5: Average SSIM of the reconstruction using the pre-filtering with NESTA for the filter banks
tested. Average SSIM values for reconstructions with the NESTA TV minimization are shown as
horizontal lines.
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Table 4.2: Average reconstruction SNR(dB), SSIM, and time using pre-filtering with NESTA with zero
threshold, classified by radial lines. The number of filters in each filter bank, the average `1 of the images
and the spectrum coverage are also shown. Numbers in bold correspond to filter banks with the best
values.

20 radial lines 40 radial lines 60 radial lines 80 radial lines 100 radial lines avg spec.
SNR SSIM time SNR SSIM time SNR SSIM time SNR SSIM time SNR SSIM time `1 cov.

TV 14.2 0.757 25.4 20.1 0.920 16.1 24.2 0.964 12.1 27.5 0.980 9.8 30.3 0.988 8.5 31.6 95.7
Haar 14.2 0.759 29.7 20.2 0.923 27.0 24.5 0.966 20.3 27.9 0.982 16.0 30.8 0.989 13.0 32.4 99.0
WIN(2,2) 16.6 0.874 4.1 21.0 0.938 4.3 24.4 0.966 4.5 27.5 0.980 4.6 30.3 0.988 4.7 78.2 90.9
WIN(2,3) 16.6 0.874 11.0 20.9 0.938 11.6 24.2 0.965 12.3 27.2 0.979 12.5 210.0 0.988 12.9 79.3 100.0
WIN(2,4) 16.6 0.874 20.9 20.9 0.938 21.6 24.4 0.966 23.5 27.4 0.980 23.5 30.2 0.988 24.1 79.8 100.0
WIN(2,5) 16.6 0.874 33.7 21.0 0.938 35.0 24.4 0.966 37.7 27.5 0.980 37.8 30.3 0.988 38.7 80.1 100.0
WIN(4,2) 16.7 0.873 7.8 20.5 0.926 15.6 21.6 0.931 20.6 22.8 0.944 22.3 25.9 0.970 18.6 64.6 78.6
WIN(4,3) 16.5 0.873 29.6 20.5 0.930 54.2 23.2 0.957 53.5 25.8 0.973 44.4 28.6 0.984 35.7 79.9 100.0
WIN(4,4) 16.5 0.873 66.5 20.8 0.936 88.8 23.1 0.954 85.7 24.2 0.959 79.3 25.6 0.968 71.4 84.0 100.0
WIN(4,5) 16.5 0.873 108.8 20.7 0.934 135.7 22.5 0.949 140.3 23.7 0.957 130.4 26.5 0.975 110.1 85.5 100.0
WIN(6,2) 13.6 0.742 34.6 19.4 0.906 21.2 23.8 0.959 15.8 27.4 0.979 13.3 30.6 0.988 11.6 35.6 75.7
WIN(6,3) 16.3 0.859 42.1 18.5 0.881 50.2 20.1 0.907 51.0 23.4 0.949 44.7 27.7 0.978 38.3 66.3 99.1
WIN(6,4) 16.1 0.855 125.9 19.7 0.915 102.4 22.6 0.948 84.3 26.0 0.971 73.7 29.7 0.986 64.2 79.7 100.0
WIN(6,5) 16.2 0.863 184.6 18.8 0.896 171.2 21.8 0.937 139.4 26.4 0.973 121.0 30.5 0.988 105.1 85.5 100.0
WIN(8,2) 8.3 0.330 18.8 17.9 0.805 15.0 23.6 0.949 12.9 27.6 0.978 11.3 30.7 0.988 10.5 32.6 74.8
WIN(8,3) 13.0 0.720 73.7 18.4 0.887 56.2 22.9 0.950 44.8 27.2 0.978 37.2 30.8 0.989 32.5 42.6 95.4
WIN(8,4) 15.7 0.829 92.3 18.1 0.865 92.6 23.0 0.944 79.8 27.8 0.978 70.8 31.3 0.989 61.5 66.2 100.0
WIN(8,5) 16.1 0.855 185.2 110.0 0.913 139.8 23.8 0.953 122.4 27.7 0.978 107.7 31.1 0.989 94.8 79.5 100.0
WIN(10,2) 3.8 0.113 18.9 12.1 0.486 14.7 21.5 0.894 13.0 26.8 0.972 11.4 30.3 0.987 10.6 33.3 74.5
WIN(10,3) 14.2 0.736 50.1 20.5 0.915 39.1 25.0 0.965 32.7 28.5 0.982 29.8 31.3 0.989 26.7 33.0 93.6
WIN(10,4) 13.2 0.728 125.1 19.1 0.898 94.2 24.4 0.963 77.6 28.4 0.983 67.1 31.4 0.990 58.3 47.9 98.2
WIN(10,5) 15.0 0.791 149.4 18.9 0.881 132.9 24.5 0.960 115.2 28.3 0.982 101.3 31.2 0.989 90.9 67.0 100.0
WAV(db1,1) 14.1 0.754 35.2 19.9 0.920 25.1 24.2 0.964 18.9 27.6 0.981 15.2 30.5 0.988 13.0 33.0 98.3
WAV(db1,2) 13.6 0.732 81.2 19.4 0.912 63.4 23.9 0.962 53.8 27.6 0.981 48.5 30.7 0.989 39.0 39.1 99.9
WAV(db1,3) 13.6 0.728 170.4 19.7 0.914 123.9 24.1 0.964 104.1 27.7 0.981 90.1 30.7 0.989 73.8 50.9 100.0
WAV(db4,1) 5.2 0.236 24.8 17.9 0.795 19.5 23.6 0.947 16.2 27.5 0.978 13.8 30.6 0.988 12.8 32.1 91.4
WAV(db4,2) 12.6 0.601 70.1 20.1 0.910 56.3 24.8 0.965 52.7 28.3 0.982 42.6 31.2 0.989 35.9 38.6 98.5
WAV(db4,3) 13.9 0.725 165.8 20.6 0.923 113.2 24.9 0.967 99.6 28.2 0.982 84.3 31.1 0.989 70.9 51.8 99.7
WAV(coif1,1) 13.8 0.714 27.7 20.1 0.907 20.8 24.7 0.963 16.7 28.2 0.981 14.2 31.0 0.989 12.7 31.6 95.0
WAV(coif1,2) 14.1 0.741 74.2 20.7 0.923 58.4 25.2 0.968 54.0 28.7 0.983 43.2 31.5 0.990 36.2 37.6 99.4
WAV(coif1,3) 14.4 0.757 168.3 21.0 0.931 116.7 25.4 0.970 100.2 28.7 0.983 84.2 31.5 0.990 70.4 50.7 99.9
WAV(sym2,1) 13.8 0.714 27.6 20.1 0.908 20.5 24.7 0.963 16.5 28.2 0.981 14.2 31.0 0.989 12.5 31.7 95.3
WAV(sym2,2) 14.1 0.742 74.9 20.6 0.923 58.4 25.2 0.968 54.3 28.6 0.983 43.4 31.5 0.990 36.6 37.9 99.4
WAV(sym2,3) 14.4 0.759 167.8 21.0 0.930 116.6 25.3 0.969 100.0 28.6 0.983 84.7 31.4 0.990 70.6 50.9 99.9
WAV(rbio2.2,1) 13.9 0.725 32.2 20.1 0.912 23.8 24.5 0.964 18.8 27.9 0.981 15.5 30.7 0.988 13.3 32.7 97.2
WAV(rbio2.2,2) 14.2 0.749 85.2 20.8 0.927 64.0 25.0 0.968 56.4 28.3 0.982 48.4 31.0 0.989 39.2 42.0 99.7
WAV(rbio2.2,3) 14.6 0.771 175.6 20.9 0.931 122.7 25.1 0.969 106.3 28.3 0.982 90.3 31.0 0.989 75.2 57.1 100.0
WAV(rbio2.8,1) 0.0 0.000 26.4 1.2 0.045 20.5 16.0 0.666 17.2 25.6 0.959 14.9 29.9 0.985 12.7 33.3 88.3
WAV(rbio2.8,2) 0.4 0.017 76.9 19.4 0.869 61.3 24.5 0.962 54.2 28.0 0.981 44.6 30.8 0.989 37.8 40.7 97.8
WAV(rbio2.8,3) 12.8 0.608 165.2 20.3 0.918 121.6 24.5 0.964 101.0 27.8 0.980 86.6 30.6 0.988 73.8 55.3 99.6
WAV(rbio6.8,1) 0.0 0.000 25.0 1.2 0.045 19.4 16.0 0.670 16.7 26.0 0.962 13.7 30.3 0.986 12.7 32.6 88.9
WAV(rbio6.8,2) 0.3 0.009 69.9 19.3 0.861 55.1 24.8 0.964 50.8 28.3 0.982 41.3 31.2 0.989 33.6 38.7 97.9
WAV(rbio6.8,3) 12.4 0.582 153.1 20.6 0.923 104.6 24.9 0.967 89.2 28.2 0.982 73.8 31.1 0.989 60.7 52.7 99.6

radial lines. So, in this specific scenario, the acquisition time decreased while the quality
of the reconstructed image increased.

Additionally, the improvements are more prevalent in WAV filter banks than in WIN.
WIN filter banks with order 2 and 4 presented no significant improvement in SNR and
SSIM (as seen in Table 4.3). Other ten WIN filter banks presented average SNR/SSIM
improvements between 0.1/0.002 and 0.6/0.015. None of these filter banks presented
statistically significant improvements (at 95% confidence level). The only two WIN filter
banks that presented significant improvements are WIN(8,2) and WIN(10,2).

Figure 4.8 shows a qualitative and quantitative comparison of the the reconstructions
for four different thresholds. In this Figure, each row corresponds to different experiment
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Figure 4.6: Average SNR(dB) of the reconstruction using the pre-filtering with NESTA for the filter
banks tested. Average SNR values for reconstructions with the NESTA TV minimization are shown as
horizontal lines.

Figure 4.7: Average SSIM of the reconstruction using the pre-filtering with NESTA for the filter banks
tested. Average SSIM values for reconstructions with the NESTA TV minimization are shown as
horizontal lines.
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Table 4.3: Difference of the average SNR (dB) and SSIM from the best reconstruction with threshold
(Figures 4.6 and 4.7), and the reconstruction with zero threshold (Figures 4.4 and 4.5), classified by filter
banks and radial lines.

Average improvement of the SNR Average improvement of the SSIM
Num radial lines 20 40 60 80 100 average 20 40 60 80 100 average
TV 0.1 0.1 0.1 0.1 0.0 0.1 0.008 0.002 0.001 0.000 0.000 0.002
Haar 0.2 0.2 0.1 0.1 0.1 0.1 0.011 0.003 0.001 0.000 0.000 0.003
WIN(2,2) 0.0 0.0 0.0 0.0 0.0 0.0 0.000 0.000 0.000 0.000 0.000 0.000
WIN(2,3) 0.0 0.0 0.0 0.0 0.0 0.0 0.000 0.000 0.000 0.000 0.000 0.000
WIN(2,4) 0.0 0.0 0.0 0.0 0.0 0.0 0.000 0.000 0.000 0.000 0.000 0.000
WIN(2,5) 0.0 0.0 0.0 0.0 0.0 0.0 0.000 0.000 0.000 0.000 0.000 0.000
WIN(4,2) 0.0 0.0 0.0 0.0 0.1 0.0 0.000 0.000 0.000 0.001 0.000 0.000
WIN(4,3) 0.0 0.0 0.1 0.1 0.1 0.0 0.000 0.000 0.000 0.000 0.000 0.000
WIN(4,4) 0.0 0.0 0.0 0.0 0.0 0.0 0.000 0.000 0.000 0.000 0.000 0.000
WIN(4,5) 0.0 0.0 0.0 0.0 0.0 0.0 0.000 0.000 0.000 0.000 0.000 0.000
WIN(6,2) 0.2 0.2 0.3 0.2 0.1 0.2 0.011 0.004 0.003 0.001 0.000 0.004
WIN(6,3) 0.0 0.0 0.3 0.4 0.4 0.2 0.000 0.000 0.005 0.004 0.002 0.002
WIN(6,4) 0.1 0.2 0.2 0.2 0.1 0.2 0.002 0.004 0.002 0.001 0.000 0.002
WIN(6,5) 0.1 0.3 0.5 0.3 0.1 0.2 0.002 0.007 0.006 0.002 0.000 0.003
WIN(8,2) 3.6 0.8 0.4 0.3 0.3 1.1 0.263 0.042 0.006 0.001 0.001 0.063
WIN(8,3) 0.6 0.7 0.5 0.2 0.1 0.4 0.029 0.015 0.005 0.001 0.000 0.010
WIN(8,4) 0.1 0.7 0.6 0.4 0.2 0.4 0.002 0.020 0.008 0.002 0.001 0.007
WIN(8,5) 0.1 0.1 0.4 0.3 0.2 0.2 0.004 0.003 0.004 0.002 0.001 0.003
WIN(10,2) 7.8 4.8 1.1 0.4 0.3 2.9 0.469 0.289 0.030 0.003 0.001 0.159
WIN(10,3) 0.3 0.4 0.3 0.2 0.2 0.3 0.027 0.010 0.003 0.001 0.000 0.008
WIN(10,4) 1.1 0.9 0.4 0.2 0.1 0.6 0.052 0.020 0.004 0.001 0.000 0.015
WIN(10,5) 0.0 0.9 0.5 0.3 0.2 0.4 0.002 0.024 0.005 0.001 0.000 0.006
WAV(db1,1) 0.3 0.4 0.3 0.2 0.2 0.3 0.017 0.006 0.002 0.001 0.000 0.005
WAV(db1,2) 0.6 0.6 0.4 0.3 0.2 0.4 0.035 0.012 0.003 0.001 0.000 0.010
WAV(db1,3) 0.7 0.5 0.3 0.2 0.2 0.4 0.043 0.011 0.003 0.001 0.000 0.012
WAV(db4,1) 6.9 0.8 0.4 0.3 0.3 1.8 0.360 0.044 0.006 0.002 0.001 0.083
WAV(db4,2) 1.0 0.5 0.4 0.3 0.3 0.5 0.089 0.011 0.004 0.001 0.001 0.021
WAV(db4,3) 0.1 0.3 0.4 0.3 0.3 0.3 0.019 0.008 0.003 0.001 0.001 0.006
WAV(coif1,1) 0.2 0.2 0.3 0.3 0.2 0.3 0.024 0.007 0.003 0.001 0.001 0.007
WAV(coif1,2) 0.3 0.5 0.4 0.3 0.2 0.3 0.025 0.009 0.003 0.001 0.000 0.008
WAV(coif1,3) 0.2 0.4 0.3 0.3 0.2 0.3 0.020 0.007 0.002 0.001 0.000 0.006
WAV(sym2,1) 0.2 0.3 0.3 0.2 0.2 0.3 0.024 0.007 0.003 0.001 0.000 0.007
WAV(sym2,2) 0.3 0.4 0.4 0.3 0.2 0.3 0.025 0.009 0.003 0.001 0.000 0.008
WAV(sym2,3) 0.2 0.3 0.3 0.3 0.2 0.3 0.019 0.007 0.002 0.001 0.000 0.006
WAV(rbio2.2,1) 0.2 0.3 0.2 0.2 0.1 0.2 0.019 0.007 0.002 0.001 0.000 0.006
WAV(rbio2.2,2) 0.2 0.2 0.2 0.2 0.1 0.2 0.020 0.006 0.002 0.001 0.000 0.006
WAV(rbio2.2,3) 0.1 0.2 0.2 0.2 0.1 0.2 0.013 0.005 0.002 0.001 0.000 0.004
WAV(rbio2.8,1) 11.6 15.3 5.4 0.6 0.2 6.6 0.581 0.723 0.228 0.007 0.001 0.308
WAV(rbio2.8,2) 11.8 0.5 0.4 0.3 0.3 2.7 0.591 0.023 0.004 0.001 0.001 0.124
WAV(rbio2.8,3) 0.9 0.3 0.4 0.3 0.3 0.4 0.100 0.008 0.003 0.001 0.001 0.023
WAV(rbio6.8,1) 11.6 15.4 5.4 0.6 0.3 6.7 0.582 0.726 0.229 0.006 0.001 0.309
WAV(rbio6.8,2) 12.0 0.6 0.5 0.4 0.3 2.8 0.604 0.029 0.004 0.001 0.001 0.128
WAV(rbio6.8,3) 1.4 0.3 0.4 0.3 0.3 0.6 0.132 0.008 0.003 0.001 0.001 0.029

setting, and a different image, filter bank and sampling scheme (given by the number of
radial lines); while each column indicates the level of the threshold, which varies from 0%
to 5% of the maximum amplitude of the filter spectrum.

Last row of Figure 4.8 shows the reconstructed image with best quality obtained.
When using the threshold method, the SNR increased from 34.8 dB to 34.9 dB for the
same filter bank WIN(8,4), with a threshold of 5%. There is a clear improvement in the 2
first rows of Figure 4.8. The image cannot be reconstructed with a threshold of zero, given
that the artifacts greatly compromise the visual quality of the image to a point that it is
not recognizable. However, when a threshold of 0.5%, 1% or 5% is used, a recognizable
image can be reconstructed. In these cases, the SNR and SSIM improves for a higher
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threshold. For 0.5%, the images seem to present ringing and noise artifacts, while with
5% the images have less noise, but are slightly blurry.

In general, the reconstruction quality increases with the threshold value, as can be
seen in rows 5, 6 and 7 of Figure 4.8. However, the third row of Figure 4.8 shows an
example of a setting where the threshold of 0.5% generated a higher SNR value than the
threshold of 1% (and 5% is still the highest). The fourth row shows a settings where the
threshold of 1% corresponds to the best reconstruction quality. In this case, the quality
decreases when using a 5% threshold, when compared to cases which the method was not
used.

Table 4.4 and 4.5 present respectively the average SNR and SSIM for all threshold
values. The best result among all threshold values is shown in bold. For 74.4% of the
cases, a 5% threshold corresponds to the best SNR and SSIM values. A threshold of
1% produced the best quality for 11.6%5 of the cases, while a threshold of 0.5% rarely
produced the best result (only for 2.3% 1). The best threshold value for maximizing the
reconstruction quality may seem difficult to predict. An empirical approach to find it
may be a good strategy, since it seems that the best threshold value depends on the filter
bank, the number of radial lines and probably the content of the image. In this work, a
limited number of threshold values were tested, albeit we observed that a threshold value
of 5% produced the best results, in general. But, it is possible that other threshold values
can lead to even better results.

4.4 Conclusions

In this chapter, I expanded the pre-filtering method. I changed the method to include
more measurements with zero values in the reconstruction. The inclusion of these
measurements was based on the filters, which have spectrum areas with a low energy.
Therefore, the filtered image would have low energy in these positions and the
measurements in these positions would be very close to zero. I tested the method using
NESTA as the reconstruction algorithm, therefore, I was able to compare to the IRLS
reconstruction algorithm.

In your tests, we observed that the NESTA algorithm does not outperform the IRLS,
in terms of image quality. The image quality produced by NESTA and IRLS is similar
for WAV filter banks, and image quality produced by IRLS is higher than NESTA’s. We
observed that the inclusion of the zero-valued measurement either improves the
reconstruction quality or does not change it. In most cases, the highest improvements

1Notice that the 3 values do not sums to 100%. I am not considering the cases that all threshold
values present the same reconstruction quality, because none of them shows the highest quality

55



Table 4.4: Average SNR (dB) of the reconstruction using pre-filtering with threshold.

20 radial lines 40 radial lines 60 radial lines 80 radial lines 100 radial lines
0 0.5% 1% 5% 0 0.5% 1% 5% 0 0.5% 1% 5% 0 0.5% 1% 5% 0 0.5% 1% 5%

TV 14.2 14.2 14.2 14.3 20.1 20.1 20.1 20.2 24.2 24.2 24.2 24.3 27.5 27.5 27.5 27.5 30.3 30.3 30.3 30.3
Haar 14.2 14.3 14.3 14.4 20.2 20.3 20.3 20.4 24.5 24.5 24.5 24.7 27.9 27.9 27.9 28.0 30.8 30.8 30.8 30.9
WIN(2,2) 16.6 16.6 16.6 16.6 21.0 21.0 21.0 21.0 24.4 24.4 24.4 24.4 27.5 27.5 27.5 27.5 30.3 30.3 30.3 30.3
WIN(2,3) 16.6 16.6 16.6 16.6 20.9 20.9 20.9 20.9 24.2 24.2 24.2 24.2 27.2 27.2 27.2 27.2 210.0 210.0 210.0 210.0
WIN(2,4) 16.6 16.6 16.6 16.6 20.9 20.9 20.9 20.9 24.4 24.4 24.4 24.4 27.4 27.4 27.4 27.4 30.2 30.2 30.2 30.2
WIN(2,5) 16.6 16.6 16.6 16.6 21.0 21.0 21.0 21.0 24.4 24.4 24.4 24.4 27.5 27.5 27.5 27.5 30.3 30.3 30.3 30.3
WIN(4,2) 16.7 16.7 16.7 16.7 20.5 20.5 20.5 20.5 21.6 21.6 21.6 21.6 22.8 22.8 22.8 22.8 25.9 25.9 25.9 26.0
WIN(4,3) 16.5 16.5 16.5 16.5 20.5 20.5 20.5 20.5 23.2 23.2 23.2 23.3 25.8 25.8 25.8 25.9 28.6 28.6 28.6 28.7
WIN(4,4) 16.5 16.5 16.5 16.5 20.8 20.8 20.8 20.8 23.1 23.1 23.1 23.1 24.2 24.2 24.2 24.2 25.6 25.6 25.6 25.6
WIN(4,5) 16.5 16.5 16.5 16.5 20.7 20.7 20.7 20.7 22.5 22.5 22.5 22.5 23.7 23.7 23.7 23.7 26.5 26.5 26.5 26.5
WIN(6,2) 13.6 13.7 13.8 12.6 19.4 19.5 19.6 19.6 23.8 23.8 23.9 24.0 27.4 27.5 27.5 27.6 30.6 30.6 30.7 30.8
WIN(6,3) 16.3 16.3 16.3 16.3 18.5 18.5 18.5 18.4 20.1 20.1 20.1 20.3 23.4 23.5 23.6 23.7 27.7 27.8 27.9 28.0
WIN(6,4) 16.1 16.1 16.1 16.1 19.7 19.7 19.8 19.9 22.6 22.7 22.8 22.9 26.0 26.1 26.1 26.2 29.7 29.8 29.8 29.8
WIN(6,5) 16.2 16.3 16.3 16.3 18.8 18.8 18.8 19.1 21.8 21.9 21.9 22.2 26.4 26.4 26.5 26.7 30.5 30.6 30.6 30.7
WIN(8,2) 8.3 11.9 11.9 11.8 17.9 18.6 18.7 17.6 23.6 24.0 24.0 23.1 27.6 27.8 27.9 27.8 30.7 30.9 30.9 31.0
WIN(8,3) 13.0 13.3 13.3 13.6 18.4 18.8 18.8 19.1 22.9 23.2 23.2 23.4 27.2 27.3 27.3 27.4 30.8 30.8 30.8 30.8
WIN(8,4) 15.7 15.8 15.8 15.8 18.1 18.5 18.6 18.8 23.0 23.4 23.5 23.6 27.8 28.0 28.1 28.2 31.3 31.4 31.5 31.5
WIN(8,5) 16.1 16.2 16.2 16.2 110.0 20.0 20.0 20.1 23.8 24.0 24.0 24.2 27.7 27.8 27.9 28.0 31.1 31.2 31.2 31.3
WIN(10,2) 3.8 9.7 10.9 11.6 12.1 16.2 17.0 16.7 21.5 22.2 22.6 21.5 26.8 27.2 27.2 26.3 30.3 30.6 30.6 30.4
WIN(10,3) 14.2 14.4 14.5 13.7 20.5 20.6 20.7 20.9 25.0 25.2 25.2 25.3 28.5 28.6 28.6 28.7 31.3 31.4 31.5 31.5
WIN(10,4) 13.2 13.8 14.0 14.3 19.1 19.7 19.8 20.0 24.4 24.7 24.7 24.8 28.4 28.5 28.6 28.6 31.4 31.5 31.5 31.6
WIN(10,5) 15.0 15.1 15.0 15.0 18.9 19.6 19.6 19.8 24.5 24.8 24.9 25.0 28.3 28.5 28.5 28.6 31.2 31.4 31.4 31.4
WAV(db1,1) 14.1 14.2 14.2 14.4 19.9 20.1 20.1 20.3 24.2 24.3 24.3 24.4 27.6 27.7 27.7 27.8 30.5 30.6 30.6 30.7
WAV(db1,2) 13.6 13.9 14.0 14.2 19.4 19.7 19.8 20.0 23.9 24.1 24.2 24.3 27.6 27.8 27.8 27.9 30.7 30.8 30.8 30.9
WAV(db1,3) 13.6 14.0 14.0 14.2 19.7 110.0 20.0 20.2 24.1 24.3 24.4 24.5 27.7 27.8 27.8 27.9 30.7 30.8 30.8 30.9
WAV(db4,1) 5.2 12.1 12.1 11.9 17.9 18.7 18.7 17.8 23.6 23.9 24.0 23.5 27.5 27.8 27.8 27.8 30.6 30.8 30.8 30.9
WAV(db4,2) 12.6 13.3 13.6 13.2 20.1 20.5 20.5 20.6 24.8 25.2 25.2 25.3 28.3 28.6 28.6 28.7 31.2 31.4 31.5 31.5
WAV(db4,3) 13.9 14.1 14.0 14.1 20.6 20.9 20.9 20.9 24.9 25.2 25.2 25.3 28.2 28.5 28.5 28.6 31.1 31.3 31.3 31.3
WAV(coif1,1) 13.8 14.0 14.0 12.9 20.1 20.3 20.3 20.3 24.7 24.8 24.9 25.0 28.2 28.3 28.3 28.4 31.0 31.2 31.2 31.2
WAV(coif1,2) 14.1 14.3 14.3 14.4 20.7 21.0 21.0 21.1 25.2 25.5 25.6 25.6 28.7 28.9 28.9 28.9 31.5 31.7 31.7 31.7
WAV(coif1,3) 14.4 14.6 14.6 14.6 21.0 21.3 21.3 21.4 25.4 25.6 25.6 25.7 28.7 28.9 28.9 28.9 31.5 31.6 31.6 31.7
WAV(sym2,1) 13.8 14.0 14.1 13.1 20.1 20.3 20.3 20.4 24.7 24.8 24.9 25.0 28.2 28.3 28.4 28.4 31.0 31.2 31.2 31.2
WAV(sym2,2) 14.1 14.3 14.3 14.3 20.6 20.9 21.0 21.1 25.2 25.5 25.5 25.6 28.6 28.8 28.8 28.9 31.5 31.6 31.6 31.7
WAV(sym2,3) 14.4 14.6 14.6 14.6 21.0 21.2 21.3 21.3 25.3 25.5 25.6 25.6 28.6 28.8 28.8 28.9 31.4 31.6 31.6 31.6
WAV(rbio2.2,1) 13.9 14.1 14.1 13.5 20.1 20.2 20.3 20.4 24.5 24.6 24.7 24.8 27.9 28.0 28.0 28.1 30.7 30.8 30.8 30.8
WAV(rbio2.2,2) 14.2 14.3 14.4 14.4 20.8 20.9 21.0 21.0 25.0 25.2 25.2 25.2 28.3 28.4 28.4 28.4 31.0 31.1 31.1 31.1
WAV(rbio2.2,3) 14.6 14.7 14.7 14.7 20.9 21.1 21.1 21.1 25.1 25.2 25.3 25.3 28.3 28.4 28.4 28.5 31.0 31.1 31.1 31.1
WAV(rbio2.8,1) 0.0 11.0 11.4 11.6 1.2 15.7 16.5 16.5 16.0 20.7 21.4 21.1 25.6 26.1 26.2 25.7 29.9 30.1 30.2 210.0
WAV(rbio2.8,2) 0.4 11.7 12.2 12.2 19.4 19.8 19.9 19.4 24.5 24.9 24.9 24.9 28.0 28.2 28.2 28.3 30.8 31.0 31.1 31.1
WAV(rbio2.8,3) 12.8 13.5 13.5 13.7 20.3 20.6 20.7 20.7 24.5 24.8 24.9 24.9 27.8 28.1 28.1 28.1 30.6 30.9 30.9 30.9
WAV(rbio6.8,1) 0.0 10.7 11.3 11.6 1.2 15.5 16.3 16.7 16.0 20.6 21.3 21.4 26.0 26.5 26.6 26.2 30.3 30.5 30.6 30.4
WAV(rbio6.8,2) 0.3 11.7 12.2 12.3 19.3 19.8 19.9 19.6 24.8 25.2 25.2 25.2 28.3 28.6 28.7 28.7 31.2 31.5 31.5 31.5
WAV(rbio6.8,3) 12.4 13.4 13.4 13.9 20.6 20.9 20.9 20.9 24.9 25.2 25.3 25.3 28.2 28.5 28.5 28.6 31.1 31.3 31.3 31.3

was for the 5% threshold. Other values of threshold might lead to even better results,
but the best value seems to be filter and content dependent. In the worst case, using the
threshold method do not change the results, but in most cases, it can improve them,
therefore, it is worth using the method.

I only implemented the inclusion of zero measurements using the NESTA algorithm.
Future works include to test the method with IRLS. However, the filter banks that
presented the best values with IRLS presented no improvements (in terms of
reconstruction quality) when zero-valued measurements were added.
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Table 4.5: Average SSIM of the reconstruction using pre-filtering with threshold.

20 radial lines 40 radial lines 60 radial lines 80 radial lines 100 radial lines
0 0.5% 1% 5% 0 0.5% 1% 5% 0 0.5% 1% 5% 0 0.5% 1% 5% 0 0.5% 1% 5%

TV 0.757 0.758 0.758 0.765 0.920 0.921 0.921 0.922 0.964 0.965 0.965 0.965 0.980 0.980 0.980 0.981 0.988 0.988 0.988 0.988
Haar 0.759 0.761 0.762 0.770 0.923 0.923 0.924 0.926 0.966 0.966 0.967 0.967 0.982 0.982 0.982 0.982 0.989 0.989 0.989 0.989
WIN(2,2) 0.874 0.874 0.874 0.874 0.938 0.938 0.938 0.938 0.966 0.966 0.966 0.966 0.980 0.980 0.980 0.980 0.988 0.988 0.988 0.988
WIN(2,3) 0.874 0.874 0.874 0.874 0.938 0.938 0.938 0.938 0.965 0.965 0.965 0.965 0.979 0.979 0.979 0.979 0.988 0.988 0.988 0.988
WIN(2,4) 0.874 0.874 0.874 0.874 0.938 0.938 0.938 0.938 0.966 0.966 0.966 0.966 0.980 0.980 0.980 0.980 0.988 0.988 0.988 0.988
WIN(2,5) 0.874 0.874 0.874 0.874 0.938 0.938 0.938 0.938 0.966 0.966 0.966 0.966 0.980 0.980 0.980 0.980 0.988 0.988 0.988 0.988
WIN(4,2) 0.873 0.873 0.873 0.872 0.926 0.926 0.926 0.926 0.931 0.931 0.931 0.931 0.944 0.944 0.944 0.944 0.970 0.970 0.970 0.970
WIN(4,3) 0.873 0.873 0.873 0.873 0.930 0.930 0.930 0.930 0.957 0.957 0.957 0.957 0.973 0.973 0.973 0.973 0.984 0.984 0.984 0.984
WIN(4,4) 0.873 0.873 0.873 0.873 0.936 0.936 0.936 0.936 0.954 0.954 0.954 0.954 0.959 0.959 0.959 0.959 0.968 0.968 0.968 0.968
WIN(4,5) 0.873 0.873 0.873 0.873 0.934 0.934 0.934 0.934 0.949 0.949 0.949 0.949 0.957 0.957 0.957 0.957 0.975 0.975 0.975 0.975
WIN(6,2) 0.742 0.749 0.753 0.631 0.906 0.909 0.910 0.906 0.959 0.959 0.960 0.961 0.979 0.980 0.980 0.980 0.988 0.989 0.989 0.989
WIN(6,3) 0.859 0.859 0.859 0.859 0.881 0.881 0.881 0.881 0.907 0.909 0.909 0.912 0.949 0.951 0.951 0.953 0.978 0.979 0.979 0.980
WIN(6,4) 0.855 0.855 0.855 0.857 0.915 0.916 0.917 0.919 0.948 0.949 0.949 0.950 0.971 0.972 0.972 0.973 0.986 0.986 0.986 0.986
WIN(6,5) 0.863 0.863 0.864 0.864 0.896 0.897 0.897 0.903 0.937 0.938 0.938 0.943 0.973 0.974 0.974 0.975 0.988 0.988 0.988 0.988
WIN(8,2) 0.330 0.586 0.589 0.593 0.805 0.848 0.841 0.796 0.949 0.954 0.955 0.931 0.978 0.979 0.980 0.979 0.988 0.988 0.989 0.989
WIN(8,3) 0.720 0.732 0.734 0.750 0.887 0.895 0.896 0.902 0.950 0.953 0.954 0.956 0.978 0.979 0.979 0.979 0.989 0.989 0.989 0.989
WIN(8,4) 0.829 0.831 0.831 0.830 0.865 0.876 0.880 0.884 0.944 0.950 0.951 0.952 0.978 0.980 0.980 0.981 0.989 0.990 0.990 0.990
WIN(8,5) 0.855 0.857 0.857 0.859 0.913 0.914 0.914 0.915 0.953 0.955 0.956 0.958 0.978 0.979 0.979 0.980 0.989 0.989 0.989 0.989
WIN(10,2) 0.113 0.469 0.524 0.583 0.486 0.733 0.767 0.775 0.894 0.915 0.924 0.902 0.972 0.975 0.975 0.965 0.987 0.988 0.988 0.987
WIN(10,3) 0.736 0.753 0.763 0.686 0.915 0.920 0.922 0.925 0.965 0.967 0.967 0.968 0.982 0.982 0.983 0.983 0.989 0.990 0.990 0.990
WIN(10,4) 0.728 0.758 0.764 0.779 0.898 0.910 0.913 0.918 0.963 0.965 0.966 0.967 0.983 0.983 0.983 0.983 0.990 0.990 0.990 0.990
WIN(10,5) 0.791 0.792 0.792 0.792 0.881 0.900 0.901 0.905 0.960 0.964 0.964 0.965 0.982 0.983 0.983 0.983 0.989 0.990 0.990 0.990
WAV(db1,1) 0.754 0.760 0.762 0.770 0.920 0.923 0.923 0.926 0.964 0.965 0.966 0.967 0.981 0.981 0.981 0.982 0.988 0.989 0.989 0.989
WAV(db1,2) 0.732 0.752 0.756 0.767 0.912 0.918 0.920 0.924 0.962 0.964 0.965 0.966 0.981 0.981 0.981 0.982 0.989 0.989 0.989 0.989
WAV(db1,3) 0.728 0.753 0.758 0.771 0.914 0.921 0.922 0.926 0.964 0.965 0.966 0.967 0.981 0.981 0.982 0.982 0.989 0.989 0.989 0.989
WAV(db4,1) 0.236 0.581 0.593 0.596 0.795 0.839 0.831 0.801 0.947 0.952 0.953 0.940 0.978 0.979 0.979 0.979 0.988 0.988 0.988 0.988
WAV(db4,2) 0.601 0.666 0.690 0.655 0.910 0.920 0.920 0.921 0.965 0.968 0.969 0.969 0.982 0.983 0.983 0.983 0.989 0.990 0.990 0.990
WAV(db4,3) 0.725 0.739 0.738 0.744 0.923 0.930 0.930 0.931 0.967 0.969 0.969 0.970 0.982 0.983 0.983 0.983 0.989 0.990 0.990 0.990
WAV(coif1,1) 0.714 0.733 0.738 0.645 0.907 0.912 0.914 0.909 0.963 0.965 0.965 0.966 0.981 0.982 0.982 0.982 0.989 0.989 0.989 0.989
WAV(coif1,2) 0.741 0.761 0.763 0.766 0.923 0.931 0.931 0.933 0.968 0.971 0.971 0.971 0.983 0.984 0.984 0.984 0.990 0.990 0.990 0.990
WAV(coif1,3) 0.757 0.775 0.777 0.777 0.931 0.937 0.937 0.938 0.970 0.972 0.972 0.972 0.983 0.984 0.984 0.984 0.990 0.990 0.990 0.990
WAV(sym2,1) 0.714 0.734 0.739 0.654 0.908 0.913 0.914 0.915 0.963 0.965 0.965 0.966 0.981 0.982 0.982 0.982 0.989 0.989 0.989 0.989
WAV(sym2,2) 0.742 0.760 0.762 0.766 0.923 0.930 0.931 0.932 0.968 0.970 0.971 0.971 0.983 0.984 0.984 0.984 0.990 0.990 0.990 0.990
WAV(sym2,3) 0.759 0.776 0.777 0.777 0.930 0.936 0.936 0.937 0.969 0.971 0.971 0.972 0.983 0.984 0.984 0.984 0.990 0.990 0.990 0.990
WAV(rbio2.2,1) 0.725 0.740 0.744 0.678 0.912 0.916 0.917 0.919 0.964 0.965 0.965 0.966 0.981 0.981 0.981 0.982 0.988 0.989 0.989 0.989
WAV(rbio2.2,2) 0.749 0.763 0.765 0.769 0.927 0.932 0.932 0.933 0.968 0.969 0.969 0.970 0.982 0.983 0.983 0.983 0.989 0.989 0.989 0.989
WAV(rbio2.2,3) 0.771 0.780 0.780 0.784 0.931 0.935 0.935 0.936 0.969 0.970 0.970 0.970 0.982 0.983 0.983 0.983 0.989 0.989 0.989 0.989
WAV(rbio2.8,1) 0.000 0.520 0.555 0.581 0.045 0.704 0.746 0.768 0.666 0.868 0.892 0.895 0.959 0.964 0.966 0.959 0.985 0.986 0.986 0.985
WAV(rbio2.8,2) 0.017 0.546 0.582 0.608 0.869 0.889 0.892 0.859 0.962 0.965 0.966 0.966 0.981 0.982 0.982 0.982 0.989 0.989 0.989 0.989
WAV(rbio2.8,3) 0.608 0.683 0.678 0.708 0.918 0.925 0.925 0.926 0.964 0.967 0.967 0.967 0.980 0.982 0.982 0.982 0.988 0.989 0.989 0.989
WAV(rbio6.8,1) 0.000 0.500 0.544 0.582 0.045 0.687 0.734 0.772 0.670 0.860 0.887 0.899 0.962 0.967 0.968 0.963 0.986 0.987 0.987 0.986
WAV(rbio6.8,2) 0.009 0.541 0.584 0.613 0.861 0.884 0.890 0.863 0.964 0.968 0.968 0.968 0.982 0.983 0.983 0.983 0.989 0.990 0.990 0.990
WAV(rbio6.8,3) 0.582 0.665 0.667 0.713 0.923 0.930 0.930 0.930 0.967 0.969 0.969 0.970 0.982 0.983 0.983 0.983 0.989 0.990 0.990 0.990
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Figure 4.8: MRI reconstructions with pre-filtering including zero valued measurements. 1st column:
Ground truth images. 2nd to 5-th columns: Reconstructions with zero-valued measurements with
threshold respective to 0%, 0.5%, 1% and 5% of the maximum value of the filter. The label in the
left indicates the filter bank used and the number of radial lines of the simulation of the row.
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Chapter 5

Isotropic and anisotropic filtering
norms

In this chapter, I generalize the TV minimization algorithm by substituting the TV cost
function by a generic filtering cost function. The proposed method is referred as the
filtering norm minimization. The method follows the same principles of the pre-filtering
CS methods, i.e. filtered versions of the signals generate better signal reconstructions
(using CS methods) because they are usually sparser than the original signals. Differently
from pre-filtering approaches, in filtering norms the filter operations are embedded in the
minimization cost functions (e.g. in the TV minimization). I also implement isotropic
and anisotropic forms (and their linear combinations) of the filtering cost functions. Our
implementation is based on NESTA, which incorporates convex approximations of the
isotropic and anisotropic filtering norms.

The proposed method tackles specific problems with a specific setting of parameters.
For instance, using filtering norm minimization with filters with 2 vanishing moments
allows to reconstruct images composed of smooth regions with better quality than with
TV minimization. Also, combinations of specific approaches can be implemented. For
example, the algorithm can use filters that are good for one specific type of
reconstruction, while other filters (or combinations of several filters) can be used for
other types of reconstruction.

5.1 NESTA brief recap

First, a brief summary of NESTA algorithm is given, focusing in the parts that are
modified and directly used for the proposed method. As detailed in this previous chapter,
NESTA is a first order algorithm that consists of 4 iterative steps. From the current
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solution xk, it iterates to find better solutions that minimize a function f . A description
of the NESTA algorithm is given below.

Algorithm 2 Description of NESTA.
Input: x0, µ
Output: xn

for k ≥ 0, until a given criteria do
2: Compute ∇fµ(xk)

yk = argminx
Lµ
2 ||xk − x||

2
`2 + 〈∇fµ(xk), x− xk〉, subject to ||b−Mx||2 ≤ ε

4: zk = argminxLµ||xk − x0||22 + 〈∑k
i=0

k+1
2 ∇f(xi), x− xk〉, subject to ||b−Mx||2 ≤ ε

xk = 2
k+3yk + (1− 2

k+3)zk
6: end for

To solve the `1 minimization problem, the authors used the approximation to the `1

function as:

fµ(x) = max〈u, x〉 − µpd(u)
u ∈ Qd = {u : ||u||∞ ≤ 1},

(5.1)

with the smoothing term given by pd(u) = 1
2 ||u||

2
2. This approximation is strongly convex

and Lipschitz, with Lipschitz constant Lµ/µ. Its gradient is a known function, given by
the following equation:

∇fµ(x(i)) =

 µ−1x(i), if |x(i)| < µ

sgn(x(i)), otherwise .
(5.2)

Notice that the method could easily be adapted to handle other minimization problems
by changing the function f . One of these problems is the TV minimization. The operators
that apply the horizontal and vertical finite differences are:

Dh(x) = x(i+ 1, j)− x(i, j)
Dv(x) = x(i, j + 1)− x(i, j),

(5.3)

and the isotropic TV minimization can be defined as:

||x||TV := ||Dx||2, Dx =
Dh(x)
Dv(x)

 . (5.4)

The isotropic TV norm approximation used on NESTA is expressed in the following form:

||x||TV = max〈u,Dx〉
u ∈ Qd

, (5.5)
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where Qd is {u =
[
u1
u2

]
: u2

1 + u2
2 ≤ 1} and the added smoothing term is pd(u) = 1

2 ||u||
2
2.

The TV norm approximation that NESTA minimizes is:

||x||TV ≈ fµ = max〈u,Dx〉 − µ
2 ||u||

2
2,

u ∈ Qd,
(5.6)

and its gradient is given by:

∇fµ =

 µ−1DHDx, if ||Dx|| < µ

||Dx||−1
2 DHDx, otherwise

. (5.7)

5.2 Filtering Norm Minimization

In this section, I present the method proposed in this chapter. Notice that Equation 5.3
can be expressed as:

Dh(x) = x~
[
1 −1

]
,

Dv(x) = x~

[
1
−1

]
,

(5.8)

where ~ denotes the 2D convolution. In other words, the TV norm in Equation 5.4 is

the norm of the filtered versions of x, using 2D filters with coefficients
[
1 −1

]
and

[
1
−1

]
.

Although the TV minimization reconstructs non-sparse signals, the method requires the
signal (usually 2D signals) to be approximately piece-wise constant, which limits the range
of applications. In the work presented in this chapter, this method is generalized, making
it possible to minimize the norm of filtered versions of a signal by using any 1D or 2D
filter. Therefore, I use the ensemble of filters that best sparsifies the signal to generate a
good reconstruction for a given application.

Suppose we have a set of filters h1, h2, ..., hn (1D or 2D), we can define the matrix H
as the vertical concatenation of filtering operations (similar to Equation 5.3 and Equation
5.8, but for any set of filters):

Hx =


x~ h1

x~ h2
...

x~ hn

 , (5.9)

where H is the vertical concatenation of convolutional Toeplitz matrices [86],
corresponding to each filter hk. In section 5.2.4, more details of H for the 1D and 2D
cases are presented.
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Let us define the isotropic filtering norm (iFN) minimization problem, with quadratic
constraints, by the foollowing equation:

argminxiFN(x, h)
subject to ||b−Mx||2 ≤ ε.

(5.10)

The anisotropic filtering norm (aFN) minimization is defined as:

argminxaFN(x, h)
subject to ||b−Mx||2 ≤ ε,

(5.11)

where, for a list of filters h = h1, h2, ..., hn, the iFN(x, h) and aFN(x, h) are given by:

iFN(x, h) := ||Hx||2 and aFN(x, h) := ||Hx||1. (5.12)

In the next sections, I present the NESTA implementations of the isotropic and anisotropic
filtering norm minimizations with quadratic constraints.

5.2.1 NESTA Isotropic Filtering Norm

The TV model was first formulated in the literature as an isotropic model [87, 88, 11],
using the `2 norm of finite differences. Our first approach for filtering norms was using
the same isotropic model based on NESTA TV minimization, but using different filter
banks. To adapt NESTA TV for minimizing the isotropic filtering norm (the problem in
Equation 5.10) the cost function must be smooth. Since the filtering norm iFN in Equation
5.12 is generally not smooth, I use an approximation of the filtering norm with the same
smoothing term of the NESTA TV minimization of Equation 5.6. So, the approximation
of iFN(x, h) is given by:

iFN(x, h) ≈ fµ = max〈u,Hx〉 − µ
2 ||u||

2
2.

u ∈ Qd

(5.13)

Here, the dual feasible set Qd is {u = [u1, u2, ..., un]T : ∑n
i=1 u

2
i ≤ 1}, which is selected to

generalize the term Qd in Equation 5.6 for n filters (instead of 2). The fµ gradient for the
filtering norm minimization is given by:

∇fµ = HH

 µ−1Hx, if ||Hx||2 < µ

||Hx||−1
2 Hx, otherwise.

(5.14)

The isotropic filtering norm was implemented based on the NESTA algorithm. After
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building the matrix H from the filters, the problem is solved using Algorithm 1, but
substituting ∇fµ in line 2 by the term given by Equation 5.14.

The problem in Equation 5.10 refers to the synthesis formulation of the isotropic
filtering norm. However, the analysis formulation can also be solved with similar approach.
By substituting x by Wx on Equation 5.14, the gradient of the cost function for the
analysis isotropic filtering norm problem can be obtained by:

argminxiFN(Wx, h)
subject to ||b−Mx||2 ≤ ε.

(5.15)

5.2.2 NESTA Anisotropic Filtering Norm

Anisotropic TV models can be used in several image processing applications [65, 67]. The
anisotropic TV regularization function penalizes noise more than the isotropic TV [68].
Therefore, it is important to develop an anisotropic formulation for the filtering norm. As
H is not invertible, the anisotropic filtering norm minimization in Equation 5.11 must be
solved as an analysis problem, as given by:

argminx||Hx||1
subject to ||b−Mx||2 ≤ ε.

(5.16)

This problem is solved by using the analysis formulation of NESTA `1. A smooth and
convex approximation of aFN(x, h) can be obtained by substituting x by Hx in Equation
5.1 and Equation 5.2, resulting in the following approximation:

aFN(x, h) ≈ fµ(x) = max〈u,Hx〉 − µ1
2 ||u||

2
2

u ∈ Qd = {u : ||u||∞ ≤ 1}.
(5.17)

This function is also Lipschitz with constant Lµ/µ. Its gradient is given by:

∇fµ(x[i]) =

 µ−1(Hx)(i), if |(Hx)(i)| < µ

||Hx||−1
1 (Hx)(i), otherwise .

(5.18)

For solving the anisotropic analysis problem, as given by:

argminxaFN(Wx, h)
subject to ||b−Mx||2 ≤ ε,

(5.19)

the implementation composes the calculated H with the provided transformation W, i.e.
I use W ·H instead of W in Equation 5.18.
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5.2.3 NESTA Isotropic + Anisotropic Filtering Norm

Several solutions to reconstruct signals from partial Fourier data rely on models that
combine isotropic and anisotropic approaches. Some models use positive weights [71, 89,
90, 91, 67], while others use negative weights for the isotropic model [72, 92]. Recently,
good results were obtained using a weight equals to -0.5 for the isotropic term and a
weight equals to 1.0 for the anisotropic term [93, 94].

To further increase the range of applications of our method, I implemented a general
linear combination of the isotropic and anisotropic filter norms. Since the gradient
operation is a linear operation, these linear combinations are easily implemented using
the following expression:

argminxα1aFN(x, h) + α2iFN(x, h)
subject to ||b−Mx||2 ≤ ε,

(5.20)

where α1 and α2 are real values. The function fµ, corresponding to
α1aFN(x, h) + α2iFN(x, h), is calculated as a linear combination of Equation 5.13 and
Equation 5.17. The gradient ∇fµ, which is a linear combination of Equation 5.14 and
Equation 5.18, is calculated in each NESTA iteration. The estimations of xk are
computed as described in Algorithm 1. I use the notation iaFN(x, h) to refer to
aFN(x, h) + iFN(x, h).

5.2.4 The matrix H

Note that the filtering norms are modifications of the original NESTA selecting specific
gradient functions. The common point of these functions is that they depend on the
matrix H, specified in more details in this section. The matrix H is formed by the
vertical concatenation of the discrete convolution Toeplitz matrices [86], corresponding
to each filter hk. For the 1D case, the rows of the convolution matrix is formed by the
coefficients of the corresponding filters. For the 2D case, the coefficients of the filters are
padded with zeros to reach the image size. Then, the result is vectorized to form the first
row of the matrix. The subsequent rows of the matrix are shifted versions of the first row.
The final matrix H is the vertical concatenation of the matrices for each filter hk. H is
implemented as a sparse matrix, which is composed mostly of zeros. This speeds-up the
matrix multiplication operation and saves storage.

As an illustrative example for the 1D case, for a signal x with 5 entries, and for the
filters: h1 =

[
a1 a2

]
, and h2 =

[
b1 b2

]
, the application of the matrix H to x is:
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Hx =



a2 a1 0 0 0
0 a2 a1 0 0
0 0 a2 a1 0
0 0 0 a2 a1

b2 b1 0 0 0
0 b2 b1 0 0
0 0 b2 b1 0
0 0 0 b2 b1



.



x1

x2

x3

x4

x5


=



x1a2 + x2a1

x2a2 + x3a1

x3a2 + x4a1

x4a2 + x5a1

x1b2 + x2b1

x2b2 + x3b1

x3b2 + x4b1

x4b2 + x5b1



(5.21)

.
For an example of the 2D case, for a image x have 3 rows and 4 columns, for the filter

bank h1 =
[
a11 a12
a21 a22

]
, h2 =

[
b11 b12
b21 b22

]
and h3 =

[
c11 c12
c21 c22

]
, the application of the matrix

H to x is:

Hx =



a22 a21 0 0 a12 a11 0 0 0 0 0 0
0 a22 a21 0 0 a12 a11 0 0 0 0 0
0 0 a22 a21 0 0 a12 a11 0 0 0 0
0 0 0 0 a22 a21 0 0 a12 a11 0 0
0 0 0 0 0 a22 a21 0 0 a12 a11 0
0 0 0 0 0 0 a22 a21 0 0 a12 a11

b22 b21 0 0 b12 b11 0 0 0 0 0 0
0 b22 b21 0 0 b12 b11 0 0 0 0 0
0 0 b22 b21 0 0 b12 b11 0 0 0 0
0 0 0 0 b22 b21 0 0 b12 b11 0 0
0 0 0 0 0 b22 b21 0 0 b12 b11 0
0 0 0 0 0 0 b22 b21 0 0 b12 b11

c22 c21 0 0 c12 c11 0 0 0 0 0 0
0 c22 c21 0 0 c12 c11 0 0 0 0 0
0 0 c22 c21 0 0 c12 c11 0 0 0 0
0 0 0 0 c22 c21 0 0 c12 c11 0 0
0 0 0 0 0 c22 c21 0 0 c12 c11 0
0 0 0 0 0 0 c22 c21 0 0 c12 c11



.



x11

x12

x13

x14

x21

x22

x23

x24

x31

x32

x33

x34



=



a22x11 + a21x12 + a12x21 + a11x22

a22x12 + a21x13 + a12x22 + a11x23

a22x13 + a21x14 + a12x23 + a11x24

a22x21 + a21x22 + a12x31 + a11x32

a22x22 + a21x23 + a12x32 + a11x33

a22x23 + a21x24 + a12x33 + a11x34

b22x11 + b21x12 + b12x21 + b11x22

b22x12 + b21x13 + b12x22 + b11x23

b22x13 + b21x14 + b12x23 + b11x24

b22x21 + b21x22 + b12x31 + b11x32

b22x22 + b21x23 + b12x32 + b11x33

b22x23 + b21x24 + b12x33 + b11x34

c22x11 + c21x12 + c12x21 + c11x22

c22x12 + c21x13 + c12x22 + c11x23

c22x13 + c21x14 + c12x23 + c11x24

c22x21 + c21x22 + c12x31 + c11x32

c22x22 + c21x23 + c12x32 + c11x33

c22x23 + c21x24 + c12x33 + c11x34


(5.22)

Notice that in 2D case, some rows are excluded. These rows calculate convolution of
the image x considering elements of different rows/columns of the image. Therefore, the
matrix H for the 2D case is built in such way the rows/columns do not interfere in the
norm calculation of the others rows/columns.
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Ground truth TV filters (h1) 2nd order filters (h2) TV+2nd order (h3)

(a) Phantom (b) SNR=46.8, SSIM=0.999 (c) SNR=11.7, SSIM=0.592 (d) SNR=16.7, SSIM=0.879

(e) Smooth image (f) SNR=27.0, SSIM=0.917 (g) SNR=47.7, SSIM=0.999 (h) SNR=29.6, SSIM=0.968

Figure 5.1: Isotropic filtering norm reconstructions using 20 radial projections.

5.3 Applications and Simulations

5.3.1 Tests Using Synthetic Images

In this section, I present a proof of concept for the proposed method using synthetic
images. The simulation consists of reconstructing an image from incomplete 2D Fourier
data. The magnetic resonance imaging (MRI) is our target application and, I use 20
radial projections on the 2D Fourier space approximated by a Cartesian grid. I chose 2
synthetic images and reconstruct them using the isotropic filtering norm with 3 sets of
filters. One of the selected filters for this test are the horizontal and vertical first order
finite differences (h1): h1

1 =
[
1 −1

]
and h1

2 =
[
1 −1

]T
. I also test the horizontal and

vertical second order finite differences filters (h2): h2
1 =

[
1 −2 1

]
and h2

2 =
[
1 −2 1

]T
.

While h1 filters are more suitable to sparsify piece-wise constant images, h2 filters have 2
vanishing moments and can sparsify smoother images. Finally, I also used a third set of
filters (h3), which corresponds to the union of the sets of filters h1 and h2.

I compared the image qualities of the reconstructions using the SNR (dB) and SSIM
metrics, detailed in chapter 2. The two synthetic images used in our simulations are
presented in Figures 5.1(a) and (e). Figure 5.1(a) corresponds to the well known Shepp-
Logan phantom [95], which is piece-wise constant that is better reconstructed by the TV
minimization algorithm. The image in Figure 5.1(e) is a smooth image, whose amplitude
changes linearly in the horizontal direction and according to a sinusoidal function in the
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vertical direction. Figures 5.1 (b)-(d) and (f)-(h) show the reconstructions for these two
images, respectively. Results show that each filter banks performs better for a specific
type of image. While the TV minimization works very well for piece-wise constant images
(Figure 5.1(b)), the filtering norm based on h2 does not work as well (Figure 5.1(c)).
Using both sets of filters corresponds to an intermediate result (Figure 5.1(d)). However,
h2 presents best results for the smoother sinusoidal image (Figure 5.1(g)), while the TV
minimization has a lower performance (Figure 5.1(f)). Again, the combination of the two
sets of filters shows an intermediate result (Figure 5.1(h)). Since synthetic images have
very specific features, one can easily select the optimal set of filters to produce the best
reconstruction quality. Natural images, on the other hand, have a variety of features,
which may include piece-wise constant parts and smooth transitions. In the next section,
I present test simulations with real MRI images.

5.3.2 Tests Using Magnetic Resonance Images

Experimental methodology

The simulation of MRI reconstruction processes are performed on the same dataset of
previous chapters. The sampling pattern is also the same used in previous chapters.
To reconstruct the images, three previously described cost functions models are used:
isotropic (iFN), anisotropic (aFN), and a combination of isotropic and anisotropic (iaFN,
with α1 = 1 and α2 = 1). A total of 8 different sets of filter banks were chosen to be
used in the filtering norm reconstructions. As mentioned earlier, the filters have the goal
of sparsifying the images to achieve reconstructed images with a better reconstruction
quality. The filters can be classified in 3 types:

• First-order finite difference filters (FOFD): filters that sparsify piece-wise constant
regions;

• Second-order finite differences filters (SOFD): filters that sparsify smooth regions;

• WIN filters: filters that are horizontal, vertical, and diagonal high-passes of order
2 (with cutoff frequencies raging from 0.5 to 1.0), designed with the windowing
method (Hamming window), as presented in chapter 3.

This specific WIN filter bank was chosen because it obtained one of the best reconstruction
quality with pre-filtering. It is also a small filter bank, which corresponds to a very sparse
matrix H, which leads to a fast implementation.

Table 5.1 presents a summary of the parameters of these sets of filters. Note that the
combination of h1 with the cost function iFN corresponds to the isotropic TV minimization
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Table 5.1: Description of the set of filter banks used on our experiment.

filter banks Description Type Nof
Filters

Nof
coeffs.

h1 The horizontal and vertical finite differences, used on TV
minimization. It was described in section 5.1. Good for
piece-wise regions.

FOFD 2 4

h2 2D Haar high passes filter, horizontal (h2
1 =

[
1 −1
1 −1

]
),

vertical (h2
2 =

[
1 1
−1 −1

]
) and diagonal (h2

3 =
[

1 −1
−1 1

]
) first

order finite differences [96].

FOFD 3 12

h3 The horizontal and vertical second order finite differences,
as described in section 5.1. Good for smooth regions.

SOFD 2 6

h4 WIN filters from [19], i.e. high pass filters designed with
windowing method.

WIN 3 27

h5 Composed from filters from h2 and h3. FOFD,
SOFD

5 18

h6 Composed from filters from h2 and h4. FOFD,
WIN

6 39

h7 Composed from filters from h3 and h4. SOFD,
WIN

5 33

h8 Composed from filters from h2, h3 and h4. FOFD,
SOFD,
WIN

8 45

(NESTA TV), a very established method for image CS reconstruction. Therefore, by
including it in the tests, the proposed method is compared to the state-of-the-art methods.

I simulate the measurement noise with four different levels of Gaussian noise. The
levels of noise are the following: no noise, 60 dB, 40 dB, and 20 dB. The standard deviation
σ of the Gaussian noise distributions is used to compute the tolerance of the search space (ε
in 5.20). As suggested in the original NESTA paper, ε =

√
m+ 2

√
2mσ. Finally, to obtain

an empirical trade-off between speed and reconstruction quality, I set µ = 10−4. I perform
26,400 image reconstructions, corresponding to testing combinations of 4 parameters for
all 55 images of the dataset: 8 filter banks, 3 cost functions, 4 noise levels, and 5 total
radial lines projections. I run the experiment on the same computational cluster of the
experiments of previous chapters. The implementation is performed in MATLAB, based
on the original NESTA code [97], modified to accommodate the methods proposed in
this work. To analyze the several parameter combinations, I use an n-way analysis of
variance (ANOVA) [98] to test which pairs of parameters lead to a statistically significant
difference in terms of image quality. I consider a p-value of 0.05 and use both SNR and
SSIM, described in the previous section, as performance quality metrics.

Results

Table 5.2 shows the results of the ANOVA test for the SNR/SSIM mean values, separated
by the filter banks (left table) and the cost functions (right table). Among the filter banks,
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h8 is the filter with the best quality performance, in terms of both SNR and SSIM. The
second best filter bank is h6, followed by h7 and h5. Filters h3 and h4 present the worst
results, while h2 is slightly better than h1 (the diagonal finite difference filter improves
the results of the TV). Notice that filters h1 to h4 are single filters, while h5 to h8 are
combinations of different types of filters. Therefore, in this experiment, combinations
of different types of filters lead to better image quality results. It is worth mentioning
that the combinations of WIN and FOFD filters outperform other combinations of filters.
Table 5.2 (right) also shows the ANOVA tests separated by cost functions. Notice that
iaFN results in significant higher average SNR and SSIM values than iFN and aFN. When
comparing aFN and iFN functions, aFN presents a better SNR value than iFN, while iFN
presents a better SSIM value.

Table 5.3 shows the ANOVA test for several combinations of filter banks and functions.
We observe in this table that the combination of h8 with iaFN has significant higher
average SNR values than any other combination, while having the same average SSIM
values than iFN(x,h6), iFN(x,h8), and iaFN(x,h8). At same time, iFN with h1, the NESTA
TV, presents significant lower average SNR and SSIM values than the filter banks with
combinations of the different filter types (except for the SSIM value, when compared with
aFN(x,h5)). Additionally, the ANOVA tests for radial lines show that the number of
radial projections lead to statistically significant differences in quality, i.e. an increase in
the number of radial lines (rl) projections increases both SNR and SSIM average values.
The ANOVA test for levels of noise shows a not significant difference of SNR/SSIM values
for no-noise and 60 dB noise. Meanwhile, the levels of noise of 40 dB and 20 dB present
a significant smaller SNR/SSIM values than no-noise and 60 dB.

Table 5.2: ANOVA test between SNR/SSIM values for the image reconstructions, isolated by filter banks
(left table) and cost functions (right table). Each cell has a pair of ‘1’, ‘0’, ‘-1’, with the first value
corresponding to the ANOVA test results for SNR and the second for SSIM. The ‘1’ value means that the
mean value of the corresponding row parameter is statistically higher (p < 0.1) than the corresponding
column parameter. The ‘-1’ value means that the value to the corresponding row parameter is statistically
lower than the one corresponding to the column parameter. Finally, the ‘0’ value means that there is no
statistical difference between the two values. Green cells corresponds to ‘1’ to both SNR and SSIM, red
cells to both ‘0’ or ‘-1’, and blue cells to one of the metrics corresponding to ‘1’.

h1 h2 h3 h4 h5 h6 h7 h8

h1 0/0 -1/0 1/1 1/1 -1/-1 -1/-1 -1/-1 -1/-1
h2 1/0 0/0 1/1 1/1 -1/0 -1/-1 -1/-1 -1/-1
h3 -1/-1 -1/-1 0/0 0/0 -1/-1 -1/-1 -1/-1 -1/-1
h4 -1/-1 -1/-1 0/0 0/0 -1/-1 -1/-1 -1/-1 -1/-1
h5 1/1 1/0 1/1 1/1 0/0 -1/-1 0/-1 -1/-1
h6 1/1 1/1 1/1 1/1 1/1 0/0 1/1 -1/0
h7 1/1 1/1 1/1 1/1 0/1 -1/-1 0/0 -1/-1
h8 1/1 1/1 1/1 1/1 1/1 1/0 1/1 0/0

iF
N

aF
N

ia
FN

iFN 0/0 -1/1 -1/-1
aFN 1/-1 0/0 -1/-1
iaFN 1/1 1/1 0/0
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Figure 5.2: MRI reconstructions. 1st row: ground truth images. 2nd to 5-th rows: TV minimization;
iFN(x, h2); iaFN(x, h6); and iaFN(x, h8). 1st to 5th columns: 40 radial lines and 20dB of added noise;
40 radial lines and 40 dB of noise; 20 radial lines and 40 dB of noise;20 radial lines and 20 dB of noise;
and 60 radial lines and 40 dB of noise.
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Figure 5.2 shows qualitative results for 4 different reconstruction scenarios, with the
following combinations of functions and filter banks: iFN(x, h1) (NESTA TV) as a
comparison point; iFN(x, h2) to show the difference of adding the diagonal FOFD filter
to NESTA TV; iaFN(x, h6) and iaFN(x, h8) that are the two best performing methods.
I included a crop and a zoom of all images for better visualization. We can observe that
images reconstructed using iaFN(x, h6) and iaFN(x, h8) present more details and more
contrast than images reconstructed with iFN(x, h1) and iFN(x, h2). This is easier to
visualize for the images in the 3rd and 4th columns of Figure 5.2, which correspond to
the scenarios with the lowest number of radial lines. For these cases, when compared to
the isotropic TV minimization, the model iaFN(x, h8) improved up to 2.8 dB in terms of
SNR and 0.204 in terms of SSIM. For a higher number of radial lines and a small
amount of noise, the differences in performance are smaller. Nevertheless, iaFN(x, h8)
always presents the best results in this experiment, in terms of qualitative visual quality,
SNR, and SSIM.

Figure 5.3 shows the average SNR and SSIM for a selection of 4 filter banks of Figure
5.2, considering all functions and the highest (20 Db) and lowest (no noise) levels of noise.
We can observe that filters h6 and h8 outperform (in terms of SNR and SSIM) h1 and
h2 in most scenarios, specially for fewer number of measurements with noise. Also, using
the aFN and iaFN favored h6 and h8 the most, specially for more measurements and
less noise. Figure 5.4 compares the NESTA TV minimization iFN(x, h1) and the best
performing model, iaFN(x, h8), for every tested scenario (all levels of added noise and
number of radial lines). In terms of SNR, iaFN(x, h8) significantly outperforms (with
95% level of confidence) the state-of-the-art method for every scenario. In terms of SSIM,
it outperforms the state-of-the-art method for almost all scenarios.

Computational Time Analysis

Finally, I measured and compared the computational running time. I believe this metric
is worth mentioning, given that the matrix H can heavily impact the computational time
of ∇fµ(xk). More specifically, H is an overcomplete transformation matrix that gets
bigger with the number of filters used by the method. Fortunately, the implementation
using sparse matrix representation mitigates the effect of the computational time, as long
the matrix is sufficiently sparse. However, every (non border) column of the matrix is
N -sparse, where N is the total number of coefficients of the filter bank. Figure 5.5 shows
the reconstruction times versus the total number of coefficients of the corresponding filter
banks, considering all reconstructions. The figure shows a boxplot which the central bars
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Figure 5.3: Average SNR (top) and SSIM (bottom) values, with the corresponding confidence intervals
(95%), computed between the ground truth and the images reconstructed using the filtering norm with
filter banks h1, h2, h6, and h8 for the iFN, aFN and iaFN models. The plot illustrates the values for all
tested radial lines values, considering the no-noise (top of the bars) and the 20dB noise (middle of the
bars) cases.

correspond to the median values, and the boxes correspond to the interquartile ranges 1.
Notice that the median computational time, as expected, increases with the number of
coefficients. The median reconstruction time using h8 (45 coefficients) is 3.6 times slower

1The interquartile boxplot was more appropriated to data visualization because some outliers skew
the average value significantly

73



Figure 5.4: Average SNR (top) and SSIM (bottom) values, with the corresponding confidence intervals
(95%), computed between the ground truth and the images reconstructed using the NESTA TV algorithm
(iFN(x, h1) and the isotropic and anisotropic filtering with h8 (iaFN(x, h8), best configuration) for the
tested samplings and levels of noise.

than using the TV (4 coefficients). The filter banks with a higher number of coefficients
had also a higher variance.

I also analyzed the median reconstruction time for different cost functions. In this case,
the computation of ∇fµ(xk) for iaFN is the sum of the ∇fµ(xk) corresponding to iFN
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Figure 5.5: Reconstruction times(s), grouped by the total number of coefficients of the filter banks.
Outliers over 120s are not shown because the interval was chosen for the best visualization.

Table 5.4: Median reconstruction time(s).

filter bank h1 h2 h3 h4 h5 h6 h7 h8 Overall
Total n. coeffs. 4 12 6 27 18 39 33 45 median

iFN 13.2 17.7 18.5 28.5 29.2 42.8 39.3 51.4 30.8
aFN 15.3 20.2 18.5 32.8 28.8 41.6 39.0 53.5 30.6
iaFN 18.4 35.2 32.2 35.9 60.1 59.2 63.3 91.6 50.9

and the ∇fµ(xk) corresponding to aFN, leading to a higher reconstruction time. Table
5.4 shows the median reconstruction time for combinations of filter banks and functions.
The table also shows the overall median reconstruction time for all filter banks. If the
reconstruction time is the most important factor for the application, the best cost function
is iFN(x, h1). But, if image quality is the most important factor, iaFN(x, h8) is the best
cost function. On the other hand, iaFN(x, h6) is a good compromise because it provides a
reconstruction quality that is very close to the best performing model (iaFN(x, h8)), with
around 2/3 of the reconstruction time.

5.4 Conclusions

I proposed a filtering norm minimization algorithm for compressive sensing and image
reconstruction. The method is a generalization of the CS TV minimization algorithm
that uses different filter banks, besides the finite differences filters used by the original
algorithm. I also expanded the NESTA algorithm, which is commonly used in CS, to
include isotropic and anisotropic formulations. For the reconstruction of piece-wise
constant and smooth images, I obtained a good balance (in terms of image quality)
when I combined first and second order finite differences filters.
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In our MRI reconstruction simulations, the best results corresponded to the filter
banks h8, which combines 8 different filters including first and second order finite
differences filters, as well as filters designed with the windowing method. Results showed
that the best cost function is the linear combination of isotropic and anisotropic filter
norms (iaFN). When compared to the original NESTA TV algorithm (iFN(x, h1)
model), the combination of the best filter banks and functions led to significant
improvements in image quality, but required larger reconstruction times. Also, a higher
improvement in image quality was achieved for lower sampling settings.
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Chapter 6

Towards a Pre-filtering with
decimation

Despite some good results for some filter banks, the pre-filtering method has some
limitations. In chapter 3, the plot of sparsity versus reconstruction SNR (Figure 3.10)
does not show a positive correlation between the sparsity and the image quality. When
investigating this issue, I observed that filters that sparsify the signals in the space
domain usually also sparsify them in the frequency domain. A possible explanation for
this behavior is that very selective band-pass filters do not reconstruct the images as
well as some filters with smooth frequency response. I believe that previous results can
be improved if I manage to keep the sparsity on the space domain, but do not sparsify
the frequency domain. To do that, one can make use of the frequency spectrum
spreading, often caused by the decimation operation.

Let us consider the signal x[n] to be decimated by a factor of M . The decimation
operation consists of taking only the samples in x[n] that are multiples of M , i.e. the
signal decimated by a factor M is given by x[Mn]. Let the DTFT discrete time Fourier
transform (DTFT) of x[n] be X2/pi(ω). The decimation property states that:

DTFT{x[Mn]} = 1
M

M−1∑
k=1

X2π

(
ω − 2πk
M

)
. (6.1)

As consequence, the values of X2π corresponding to frequencies below 2π/M are stretched
over all the spectrum. Also, the frequencies in the intervals given by:

[2π/M, 4π/M ], [4π/M, 6π/M ], · · · , [2(M − 1)π/M, 2Mπ/M ] (6.2)

are overlapped in the interval [0, 2π/M ], then they are stretched by a factor of M and
fit the interval [0, 2π]. Therefore, a signal that is sparse in the frequency domain can
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Figure 6.1: A signal x (top left), its decimation x[2n] (middle left) and decimated and shifted x[2n+ 1]
(bottom left). On the right sizes, the absolute value of the DFT of the signals in the right.

be transformed to a dense spectrum signal by applying a decimation operation. At the
same time, although this operation makes the signal less sparse in frequency domain, it
does not affect considerably the sparsity in the space domain. The sparsity level on space
remains proportional to the signal length.

Figure 6.1 shows an example of a decimation by 2 for a signal x of size 64. In this
example, the DFT of x has 14 spikes and 40 zeros (21.88% of non-zeros), while the DFT
of x[2n] has 14 spikes and 18 zeros (43.75% of non-zeros). The same happens to the
decimated and shifted version of x, x[2n+ 1]. Both the DFT of x[2n] and x[2n+ 1] have
half the sparsity of the DFT of x.

Therefore, the decimation property is important to test our hypothesis that the pre-
filtering does not reconstruct very well when the filters sparsify the frequency domain.
In this chapter, I propose to incorporate the decimation in the pre-filtering model. The
goal is to pre-process the measurements in such way they correspond to a signal with
a wide spectral bandwidth, while still being sparse in the space domain. However, the
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Figure 6.2: The lazy wavelet transform decomposition and reconstruction for a decimation factor of 2.

method still has limitations. For example, each measurement in the decimated domain
requires at least 2 original measurements to form a valid measurement for reconstructing
the decimated signal. These two measurements may not necessary be in the original
sampling. It is worth point out thath this chapter describes a work in progress. There
are no reconstruction results in this chapter.

6.1 Pre-filtering with decimation

To incorporate the decimation in a reconstruction scheme, such as the pre-filtering, we
first need to reconstruct a decimated signal back. For this, I included a polyphase
representation that is generally used in filter bank design, which is known as the Lazy
wavelet transform [81, 99]. The lazy wavelet transform decomposition and
reconstruction is shown in Figure 6.2, for a decimation factor of two. The decomposition
stage is formed by decimating (with factor of M) every shifted version of a signal, until
M − 1. The reconstruction is perfect and is formed by the time expansion by a factor of
M with the opposite shift.

The lazy wavelet decomposition is applied before the CS reconstruction, while the the
lazy wavelet reconstruction is performed after the CS reconstruction. However, the inputs
of CS reconstruction are undersampled Fourier coefficients. Therefore, the lazy wavelet
decomposition is performed in the frequency domain.

Based on the pre-filtering model shown in Figure 4.1 and the lazy wavelet transform,
I propose a modified model that is shown in Figure 6.3. Notice that I also included the
transformation Sd before the reconstruction. This transformation samples the
measurements in the decimated form. Also, the transformation Sd is related to the
sampling pattern of the original measurements S. In next section, I present the
mathematical formulation that allows to understand the relation between Sd and S.
This relation will set the limitations of the method in the original sampling frequency
positions. Also, the mathematical formulation describes the decimation transformation
in frequency domain, D̂0 and D̂1.
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Figure 6.3: Pre-filtering with decimation model.

6.2 Mathematical formulation of the pre-filtering
with decimation

The filtering step

I use similar matrix notation as the one in Section 4.1. Let x be a signal in time domain,
with length N , and FN the N point discrete Fourier transform (DFT) transformation.
X is the DFT of x, i.e. X = FNx. Let the vector s represents the selection of the
sampling pattern. The matrix S selects the s elements of the input, i.e. S = Is,∗. The
measurements composed by a selection s of the Fourier coefficients, given by:

b = SFNx, (6.3)

therefore, SFN is the sampling matrix.
The first step of the method is to calculate the filtered versions of the measurements

bk. This is performed by multiplying b by a filter in the frequency domain. The matrix
Hk = diag(FNhk) represents the transformation that multiplies elementwise the spectrum
of a N -length signal by the spectrum of the filter hk. As seen in Section 4.1, the filtered
measurements are given by:

bk = SHkST b. (6.4)
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Time shift and decimation

For a decimation factor of 2, let D0 be the matrix that selects the even entries of a signal,
and D1 the matrix that selects the odd entries. D0 can be represented as a matrix formed
by the odd rows of a identity matrix and D1 a matrix formed by the even rows1, as given
by:

D0x = x[2n]
D1x = x[2n+ 1],

(6.5)

where n ranges from 1 to N/2 and the subscripts 0 and 1 refer to the shift applied in the
decimation process (z−1 block in Figure 6.2).

The signal x is recovered from x[2n] and x[2n+ 1] by interlacing x[2n] and x[2n+ 1].
This is equivalent to zero filling the odd entries of x[2n] and the even entries of x[2n+ 1]
and summing both. In the matrix formulation, this operation can be represented by:

x = D0
Tx[2n] + D1

Tx[2n+ 1]. (6.6)

As our measurements are taken in the frequency domain, I want to represent the
equivalent of the decimation process (Equation 6.5) in the frequency domain. In other
words, I want to find the matrix that, when applied to the spectrum of a signal,
corresponds to the operation of decimation in time. Let us denote this matrix as D̂0,
which is given by the relation:

D̂0X = FN
2
x[2n] = FN

2
D0x. (6.7)

As the signal x[2n] has length N/2, I apply the DFT of N/2 points to it. As X = FNx,
by excluding x that appears in both sides of thr equations, multiplying the result by
FN
−1 = FN

T on both sides, and isolating D̂0, we obtain:

D̂0 = FN
2
D0FN

T . (6.8)

An example of such a matrix, for N=4, is given by:

D̂0 = 1/2


1 0 0 0 1 0 0 0
0 1 0 0 0 1 0 0
0 0 1 0 0 0 1 0
0 0 0 1 0 0 0 1

 . (6.9)

1Vector signals are denoted to start with index zero, while where matrix rows starts at 1. Thus, the
even and odd entries are inverted for signals and matrices
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When applied to a spectrum of a signal, this transformation averages the coefficients in
the positions i and i+N/2, resulting spectrum with N/2 points .

Similarly, we can obtain the equivalent in frequency of the shifted version of the
decimation operator D̂1:

D̂1 = FN
2
D1FN

T . (6.10)

D̂1 also averages the coefficients in the positions i and i+N/2, but with different weights.
In this formulation, the time shifts and decimation operations are embedded to a single

matrix operation (D̂1), for both time frequency domains. The matrices from Equations
6.8 and 6.10 can be generalized for any decimation factor and shifts in time. The shape
of this matrix for a general factor d of decimation is a horizontal concatenation of d
diagonal matrices of size N/d each. The different values of shift changes the values of the
diagonals. For simplicity, I use only a decimation factor of 2. However, the formulation
can be generalized for any natural factor d that divides N .

Applying the time shift and decimation to bk

The next step consists of applying the decimation and time shift (when applicable) to
the filtered version of bk. The approach is to zero fill bk at non-sampled positions (ST )
to get a full frequency spectrum and, then, apply the decimation D̂s. After this step, we
will have a N/d length spectrum, with many non-sampled frequencies. The last step is
to get rid of these non-sampled, using a new matrix Sd, the decimation sampling matrix.
Therefore, the decimated and shifted (in time by respectively 0 and 1) versions of bk are:

b0
k = SdD̂0ST bk
b1
k = SdD̂1ST bk

. (6.11)

In this work, I only use s = 0 and s = 1 because I am using a decimation factor d=2.
But, this can be generalized for any shift values between 0 and d-1.

With Equations 6.4 and 6.11, we obtain the entire linear transformation applied to
the original measurements:

bsk = SdD̂sSTSHkST b. (6.12)

The matrices Sd and S are very correlated. When we apply D̂s (Equation 6.8) to a
signal spectrum, we are considering that all points are sampled. But we do not have all
the measurements. Notice that ST appears just in the right side of D̂s in Equation 6.12, so
the input of D̂s has some zeros corresponding to non-sampled positions. When we apply
D̂s (matrix in Equation 6.9) we average coefficients that are sampled with coefficients that
are not. Therefore, the accuracy of these measurements is compromised. The decimation
sampling matrix Sd has to be built to avoid it.
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However, it is possible to select S in such way that the matrix Sd does not discard any
information. To accomplish that, SdD̂sSTS must be equal to SdD̂s. To guarantee this
equality, the sampling process by S does not discard the samples kept by Sd. To avoid
discarding samples, the relation between S and Sd is as follows:

STS =
STd Sd 0

0 STd Sd

 . (6.13)

Notice that STS is aN×N diagonal matrix, in which STS(i,i) = 1 if i is a sampled position,
and STS(i,i) = 0 otherwise. In other words, the sampling pattern must be repeated in the
first and second half of the spectrum. The result from Equation 6.13 comes directly from
the following theorem.

Theorem 1. Let

STS =
S1 0

0 S2

 , (6.14)

where S1 and S2 are diagonal matrices. Then, if S1 = S2 = Sd
TSd then SdD̂sSTS =

SdD̂s.

Proof of Theorem 1. Let us rewrite D̂s in the form [DL|DR], where DL and DR are
diagonal matrices, arriving in the following expression:

SdD̂sSTS = Sd[DL|DR]
S1 0

0 S2

 = [SdDLS1|SdDRS2].

Since DL, DR and S1 are all diagonal matrices, they can be commuted. Therefore,

[SdDLS1|SdDRS2] = [SdS1DL|SdS2DR].

Assuming that S1 = S2, then

[SdS1DL|SdS2DR] = SdS1[DL|DR] = SdS1D̂s.

Supposing S1 = Sd
TSd and using that SdSd

T = I, arriving in:

SdS1D̂s = SdSd
TSdD̂s = SdD̂s.

For a general decimation factor d, the relation between S and Sd is such that STS
is equal to a diagonal matrix formed by d repetitions of STd Sd in the diagonal. Finally,
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selecting a sampling matrix according to Equation 6.13, the pre-processed measurements
can be obtained by:

bsk = SdD̂sHkST b. (6.15)

Reconstruction

I use compressed sensing to reconstruct each of the pre-processed measurements bsk. I
want to obtain the signal xsk which corresponds to the signal x filtered by the filter hk,
time shifted by s, and decimated by a factor of 2. Therefore, bsk corresponds to the
undersampled (by Ŝ) Fourier spectrum of xsk. To accomplish that, the CS reconstruction
model has to be changed accordingly to the following problem:

argminx̂||x̂||1
subject to ||ŜFN

2
x̂||2 < ε

. (6.16)

As seen in the model in Figure 6.3, this process is repeated two times for every filter
hk; one corresponding to decimation with no temporal shift (the path through D̂0) and
the other corresponding to a decimation with a temporal shift (D̂0).

After these two CS reconstructions, the reconstruction step of the lazy wavelet is
performed to recover the filtered versions xk. Finally, I combine the reconstructed signals
xk and the original measurements in the final composition (Algorithm 1) to obtain the
reconstruction of signal x.

6.3 Practical implications

For 2D signals

Figure 6.3 shows the pre-filtering with decimation model for an unidimensional signal
x. For 2D signals, which is a case where MRI is applied to, some changes have to be
made. The 2D signal x[n,m] is decomposed and perfectly reconstructed using the diagram
depicted in Figure 6.4. In this Figure, ↓ 21,2 represents the decimation operation in
both vertical and horizontal dimensions, z1 represents the spatial delay in the horizontal
dimension, and z2 in the vertical dimension.

Sampling pattern limitations

Restrictions for building sampling patterns pose a major limitation in the proposed
method. When the transformation D̂s is applied to a signal spectrum, it averages (with
exponential weights corresponding to the temporal shifts) the values of corresponding
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Figure 6.4: The 2D lazy wavelet transform decomposition and reconstruction for a vertical and horizontal
decimation factor of 2.

aliased positions i and i + N/2. If i is a sampled position and i + N/2 is not (or vice
versa), this generates an invalid measurement. A reconstruction using invalid
measurements does not correspond to the solution space of the original CS problem,
and, therefore, this solution is not correct. Therefore, the two possible solutions for this
problem are: 1) discard the invalid measurements; or to 2) select a sampling pattern
that allows only valid measurements in the acquisition. However, the second option is
not general, it requires restrictions to the sampling pattern. To generalize the method
for any pattern, measurements need to be discarted.

For example, if a 1D signal of length N is sampled taking m measurements in random
positions (i.e. a sampling rate of m/N), the expectation value of the valid sampling rate
is (m/N)2. For the 2D case, 1 valid measurement is formed by exactly 4 measurements in
specific positions. The valid sampling rate of pre-filtering with decimation for a random
sampled 2D signal is even smaller than in the 1D case. Figure 6.5 compares the valid
sampling rates for a random sampling. Notice that an original sampling rate of 50%
corresponds to a valid sampling rate of 25% for the 1D case, and 6.25% for the 2D case.
Considering original random sampling rates at the same number of measurements of 20,
40, 60, 80 and 100 radial lines, would result in valid sampling rates of 0.0001, 0.0019,
0.0086, 0.0244 and, 0.0530. Therefore, relying on the valid sampling values for 2D pre-
filtering with decimation is impractical.

Increasing the valid sampling rate

However, some strategies to help to increase the valid sampling rate can be used. One of
the approaches is to consider we are handling with signals in the domain of real numbers.
Let x be a real signal, its DFT X is even and symmetric, which can be mathematically
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Figure 6.5: Comparison of valid sampling rates compared to the original sampling rate of b.

expressed by [57]:
XN−k = XH

k . (6.17)

This means that we can obtain the value of the symmetric position of a measurement using
the complex conjugate value of the known measurements. This step can be performed
before the pre-processing of the measurements b. We zero-fill b by ST b, add the values
of the symmetric positions, update S with the new entries, and obtain the updated b by
applying the updated S. However, when using the radial measurements in the 2D k-space,
the symmetric spectrum positions are all sampled. Therefore, there is no advantage in
using this approach for the radial sampling pattern (the same can not be said for other
trajectories).

Other possible strategy relies on the spectrum of the filters hk, using the ideas
presented in Chapter 4. Zero-valued measurements can be included in the positions of
the filter spectrum which magnitude is below a given threshold. This increases the
number of measurements, and as consequence, increases the valid measurements in the
decimation process.

6.4 Conclusions

In this chapter, I proposed including a decimation step to the pre-filtering method. I
mathematically formulated the operations to perform the decimation in the
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measurements, i.e. the undersampling operation in the frequency domain. The
formulation still has limitations. Either a specific sampling pattern is required or either
most of the measurements cannot be used, which can significantly compromise the
reconstruction. This issue is more problematic for the 2D case, in which even less
measurements can be used. Solutions to decrease this sampling pattern issue has been
proposed, however, this problem has not yet been solved.
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Chapter 7

Conclusions

In this thesis, I addressed the undersampled MRI reconstruction problem. By solving
this problem, the acquisition time of MRI exams can be reduced, which makes it more
affordable, spreads its usage for other types of exams, increases the patient comfort, and
improves the image quality.

The approach to solve this problem was based on filtering strategies using CS. Filtering
strategies in CS are used in the pre-filtering method and in the reconstruction using the
TV minimization algorithms. However, only finite difference filters were tested in these
approaches.

I performed a systematic experiment that simulates the undersampled MRI
reconstruction using the pre-filtering method implementation with the IRLS algorithm.
In this experiment, I tested a large set of filter banks divided in two classes, one
designed with a windowing method and other based on wavelet decomposition filters.
Filter banks designed with windowing method with a low order provided a significantly
higher image quality than the other filter banks. The filter WIN(2,2) provided the best
compromise between reconstruction time and reconstruction quality. However, the filters
that provided the best results did not present the best `1, used as sparsity measure. I
could not establish a correlation between the sparsity provided by the filters and
reconstruction quality.

I also tested the NESTA `1 minimization as the reconstruction algorithm for pre-
filtering, using the same simulations settings of experiments with IRLS. Using NESTA,
some filter banks had a much faster reconstruction time. The reconstruction quality for
WAV filters was similar for NESTA and IRLS. However, for WIN filters, NESTA presented
worst reconstruction quality than IRLS.

Other proposed method was the inclusion of zero-valued measurements in the
reconstruction stage of the pre-filtering method. The method includes a measurement
for each spectrum position where the value of the magnitude of the filter is below a
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threshold. The threshold of 5% of the maximum amplitude of the filters led to the
highest improvements in the reconstruction quality. However, the threshold
corresponding to the best results seemed to be content and filter dependent, the best
values might be chosen empirically for each content and application.

I proposed a modification of the NESTA algorithm, in which I changed the
minimization cost function, called filtering norms. The proposed cost function is a norm
of a filter operation that can sparsify the iterated signals, leading to better
reconstructions. Different images are better sparsifyed by different filters, and the
proposed method allows the user to choose the filters. The isotropic and anisotropic
filtering norms were also implemented. I showed an example of a smooth image that is
better reconstructed with a second order filter instead of the finite difference (NESTA
TV). For the MRI reconstruction experiments, the highest image quality was obtained
by a combination of 8 filters, containing first and second order filters and WIN filters.
The results using these filters were statistically significant better than the results
obtained TV minimization, specially for the isotropic and anisotropic combinations of
the filtering norm.

I developed the mathematical formulation of the inclusion of a decimation in the pre-
filtering method. The decimation process decreases the sparsity on the frequency domain
while not changing significantly the sparsity of the signal in the space domain. I believe
that this could increase the quality of the reconstruction in the reconstruction stages of
the pre-filtering. However, the method presented limitations in the measurement process.
I showed that an specific sampling pattern is required for obtaining valid measurements
for using the method.

Table 7.1 shows the configurations with the best reconstruction quality (and the 95%
confidence interval) for every method discussed in this work. Overall, the best
reconstruction quality for a lower sampling rate (20 and 40 radial lines) was achieved
with IRLS pre-filtering for low order filters WIN with 2 band divisions. In average, the
SNR/SSIM was 2.9dB/0.103 higher than NESTA TV minimization for 20 radial lines.
The improvement was also noticeable for the different sampling rates, reaching an
improvement of 1.2dB/0.003 SNR/SSIM for 100 radial lines.

The inclusion of zero-valued measurements improved the reconstruction quality until
0.4 dB SNR in average for the tested scenarios, and very rarely decreases the quality.
With an optimum value of threshold it is possible to further improve the pre-filtering
results.

The highest quality for the highest sampling rates was obtained for the isotropic +
anisotropic filtering norms with the filters h8. The best results exceeded significantly
the results of NESTA TV, ranging from values 1.1 dB to 1.5 dB higher SNR than what
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Table 7.1: SNR(dB) and SSIM corresponding to the best results of the presented methods.

Method TV pre-filtering pre-filtering pre-filtering filtering norm
NESTA IRLS NESTA 0% tk NESTA 5% tk iaFN

filter bank WIN(2,3) WAV(coif,2) WAV(coif,2) h8

SNR(dB), 20 rl 14.9±0.2 17.8±0.2 14.1±0.1 14.5±0.1 16.5±0.2
SNR(dB), 40 rl 21.3±0.2 22.8±0.2 20.7±0.2 21.1±0.1 22.4±0.2
SNR(dB), 60 rl 25.3±0.2 26.3±0.2 25.2±0.2 25.6±0.2 26.6±0.3
SNR(dB), 80 rl 28.4±0.2 29.3±0.3 28.7±0.3 28.9±0.3 29.8±0.3
SNR(dB), 100 rl 31.0±0.3 32.2±0.3 31.5±0.4 31.7±0.4 32.5±0.4
SSIM, 20 rl 0.797±0.011 0.900±0.006 0.742±0.013 0.766±0.011 0.859±0.008
SSIM, 40 rl 0.938±0.004 0.957±0.003 0.924±0.005 0.933±0.004 0.951±0.003
SSIM, 60 rl 0.971±0.002 0.976±0.000 0.968±0.002 0.971±0.002 0.977±0.002
SSIM, 80 rl 0.983±0.001 0.986±0.001 0.983±0.001 0.984±0.001 0.987±0.001
SSIM, 100 rl 0.989±0.000 0.992±0.000 0.990±0.000 0.990±0.000 0.992±0.000

was obtained with NESTA TV (on average). Isotropic+anisotropic filtering norms also
presented the best overall results for 60, 80 and 100 radial lines.

The thesis presented filtering methods that improve the reconstruction quality of MRI
images when compared to finite difference filters based methods. I presented the filter
banks to use in each method which most improved the image quality. I obtained a
significative gain in the reconstruction quality, for both low and high sampling rates. The
proposed techniques and filter banks can be used in other MRI reconstruction techniques
and using real MRI machines data. It can further improve the image quality obtained
by these MRI reconstruction techniques, or even decrease the acquisition time of MRI
exams. However, some unanswered question still remain, letting opportunities for future
works.

7.1 Future works

One of the main unsolved issues in this thesis is the relation between sparsity and
reconstruction quality. I expected a strong correlation, but this was not observed in the
sparsity and quality metrics results obtained. Further studies are needed in order to
determine if there is a relationship between this two variables.

The IRLS algorithm presented the best overall results in the pre-filtering. Also, the
inclusion of zero-valued measurements almost always improved the reconstruction quality,
despite only being implemented for the NESTA algorithm. A future work is to implement
the zero-valued measurements inclusion using the IRLS algorithm.

Another future work is the implementation of the pre-filtering with decimation, started
in this work. Also, the problem of the restrictions on the sampling pattern is still open.
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Perhaps hybrid approaches can be performed for obtaining the spectrum positions that
are required for the restrictions of the sampling pattern before the reconstruction.

Other methods inspired by pre-filtering are also possible. One of them is based on
the wavelet decomposition and recomposition. The measurements are decomposed in
its wavelet components. The final recomposition could be performed by a sum of the
reconstruction of components. The advantage could be that the we are not necessary
pursuing sparsity, but the best wavelet decompositions.

As the test for filters were empirical, different filters could lead to even better results
with the proposed methods. Designing these filters by optimization processes, maximizing
the reconstruction quality (of the factors that lead to the best quality) would be a valuable
work.

The internal reconstructions of the pre-filtering method were all performed with a `p
solver, and usually with p=1. Different approaches could be tested. Using TV
minimization or even the filtering norms are possible approaches. Specially, when using
the filtering norm, 2 filters banks will be used in the problem, the one used by filtering
the measurements, and other used as reconstruction cost function. Testing these
combination of filters and their features that lead to better reconstruction quality would
be an interesting study.
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