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Overview

Brief introduction

Generalization theory

Deep vs. shallow models

Feed-Forward networks: MLP, CNN

Recurrent Neural Networks: simple RNN, LSTM, GRU

Generative Neural Networks: VAE, GAN

Example 1: Image caption via Convolutional Neural Networks
(CNN) and Recurrent Neural Networks (RNN) with Word
Embedding (WE)

Example 2: Object detection

Some unsolved problems



Classification

Let be a finite set X={x,..,x{} in R9and for each point a label y={y,..,y;} usually

in {-1,1}. The problem of binary classification is to find a particular f(x) which
approximate y over X.

How to measure the performance of the approximation?

How to choose the function class?

How to find a particular element in the chosen function class?
How to generalize”?

E.g. the problem of learning a half-space or a linear separator. The task is to
find a d-dimensional vector w, if one exists, and a threshold b such that

w-X; > b for each x; labelled+1
w-X; < b for each x; labelled —1

A vector-threshold pair, (w, b), satisfying the inequalities is called a linear
separator -> dual problem: high dimensional learning via kernels (inner
products)



E Vapnik-Chervonenkis theorem 1971

The theorem explains the connection between generalisation, training set selection
and model selection.

Generalisation gap: the performance difference between the training set (empirical
risk) and the distribution (true risk):

P (?cug | Remp(f) — Rirue(f) |> €) < 88(F, T)e™ %
€

By VC-theorem the gap is upper bounded and depends only on the size of the
training set (T) and the separating capability of the chosen function class (F) measured
by the shattering coefficient S(F, T): the maximum number of different labelings the
function class F can realize over T samples (in binary classification ideally 27).

The VC-dimension of a function class VC(F) is the cardinality of the largest set in the
d-dimensional space which can be separated correctly (or shattered) with any label
set. According to Sauer’s lemma [Sauer, 1972] the shattering coefficient is upper

bounded as
S(F,T)<(1 +T)V0(f>‘

Linear separator: VCdim = d+1 (Radon theorem). Is it a sharp bound?



¥ Vapnik-Chervonenkis theorem

1) Optimize for low empirical risk on the largest possible training set
2) Choose a function class with low shattering coefficient (low VC-

dimension)
3) Evaluate on a separate validation set! Let us take a disjoint test set,

then according to the proof in [Devroye et al., 1996]
€

P(?‘ég | Remp(f) — Rirue(f) |> €) < 2P(?1€1£ | Remp(f) _R/emp(f) > 2)/ (4)

If we evaluate on a separate test set we have a new upper bound!
Limitations”?

1) Fixed distribution ... (€.9.7)
2) Really high for complex models & or...7?

3) Are we even close to the optimal during optimization?
A very good start: [Bottou & Bousquet, 2007



Deep vs. shallow models

Hypothesis: deep, hierarchical models can be exponentially more efficient than
a shallow one [Bengio et al. 2009, e Roux and Bengio, 2010, Delalleau and
Bengio, 2011 etc. |

Delalleau and Bengio, 2011]: deep sum-product network may require
exponentially less units to represent the same function compared to a shallow
sum-product network.

lLin & Tegmark, 2016]: efficient “flattening” of deep architectures is
exponentially expensive even for simple cases

What is the depth of a Neural Network (NN)?

In case of feed forward networks, the number of multiple nonlinear layers
between the input and the output layer.

We will see, in case of recurrent NN this definition does not apply.

But before: What is NN?



Neural Networks

Key ingredients:
* Wiring: units and connections

XOR = x,anpnoTx, OR nNoT X4 AND X,
y \ J
Z1

Fig.: Danny Bickson



Activation functions

Identity / flz)==x fl(x)=1

o | [ = {05 (2B o2

Loguioaka | —f@) = s £/(@) = f@)(1 - f(@)

| |f(@) = tanh(a) = o £(@)=1- f(a)?

Mt | @)=t (@) F@)= oy

O 7 PO [ T TR PO [

SoftPlus / f(z) = log.(1+ €) fi(z) = 1+16-1

Bent identity / fla) = @ +z f(z)= JT +1

SoftExponential %//% flo,z) = { - (::(1”0); igi gzgf’(mf) = { #";l izz Zig
“—+a for a>0 =

Sinusoid /\/\/ f(x) = sin(z) f/(z) = cos(z)

Sinc \/\/f(1)={sinzi} :zi i;g fl(x)z{%’)_“—:(;—? g i;g

Gussin | N |f(a) = f(z) = —2ze™

Usually:

f:RI->R

Output of a unit

* linear/
non-linear

*  bounded/
unbounded

* usually monotonic,
but not all

Why so rigid?

Fig.: wikipedia 8



Feed-forward Neural Networks
As Bayesian Networks [Pearl, 2011]:

* The nodes are either input, output or hidden
« (Connections between the nodes: directed edges
« usual presumption: finite set of nodes -> finite set of layers (are
there any layers?)
* no directed cycles -> directed acyclic graphs (DAG)!
e usual posteriors:
* linear combination (edge weights) of inputs
« Activation function

Zi(l-l—l) L (H—l) l b(H—l)
y(l-l-l) L f(zi(l-i—l)),

1

where z*1 is the linear combination of the i-th element in the

(I+1)-th hidden layer, and f is the non-linear transformation
(common: f: R -> R ! When is it not?)



Feed-forward neural networks

Some common restrictions:
* Disjoint set of nodes -> layers
* Exists an ordering of layers (so ordering of nodes!!)
« “Causality”: previous layer “causes” the next one
* each node is connected to
* Nodes in the previous layer (input nodes)
* Nodes in the next layer
* continuously differentiable activation functions
* Optimization via previously determined loss function
(CDF?)

If it is fully connected:
* Each node in the previous layer is connected
* Each node in the next layer is connected

If so, the Network is called Multi-Layer Perceptron (in short MLP)

10



Convolutional Neural Network (CNN)

Histogram of Oriented Gradients (HOG)
Training images

Receptive field

(77 —
@ N
o Conv. Layer
Gaussian Mixture Model Fisher score
0=lw, 1, 5,;i=1..N| N U,= QZ'T logP(x,IG),U,:V,Z,T logP(y)0)
Fisher vector Sub-sam pli ng
GX=F_”2UX, Gy=F_”2Uy

Support Vector Machine (SVM) 0]0]0]10]0101010]0]0)
K(X,Y)=UITYF—1UY=G;GY OOOOOO FU”y conn.

Traditional pattern recognition VS. CNN 11



>

2 Feed-forward Neural Networks
MLP vs. CNN

* Each node is adopted on a subset of the input, but all
over the image

It can be interpreted

* FEither as a lot of fully connected node

with zero weights and there weights where they

are non-zero is shared

* Or leave this complicated definition and just
simply define it as a convolution over the input:

N (o)) = [ fit) g(x-t)dt

(7 =N
Usually we think of it as a discrete convolution
and
in case of images, it is 2D/3D or XD convolution.
\ _/  What kind of input can we think for 1D?

12



>

A Feed-forward Neural Networks
MLP vs. CNN

* Each node is adopted on a subset of the input, but all
over the image

Example:

1/16| 1/8 | 1/16

1/8 | 1/4 | 1/8

1/16| 1/8 | 1/16

(7 =N
What does it do? What are we changing during
optimization?
The main advantages of the CNN over MLP (in practice)
\ _/ is the highly reduced size of the parameter set:

32x32x128 vs. 3x3x128 (128 hidden node and 32;(?2
input) so the VCdim will be significantly lower &



LeNet-5

LeNet-5 for handwriting recognition in [LeCun et al. 1998]

C3: f. maps 16@10x10

C1: feature maps S4: {. maps 16@5x5
INPUT
32x32 6@28x28 S2: f. maps C5: layer g, | OUTPUT
6@14x14 120 o layer S

|
‘ Full conmection ‘ Gaussian connections

Convolutions Subsampling Convolutions Subsampling Full connection

Key advantages:
» Fixed feature extraction vs. learning the kernel functions
« Spatial structure through sampling
» “Easier to train” due much lesser connection than fully connected

Training: back propagation

By definition it is a feed forward deep neural network. 14



[Krizhevsky et al. 2012]

224

Advantages over LeNet:

3

X
48
55
5‘ ..
5
55
Stride
“of 4
48

Image classification with CNN

N 3 . >
-1 7 1N EAV It .
e 3 _1'_ ....... =~ - : 3 o\ - -
3" : ) - [
\ . 192 192 128 2048 2048
,7 128 N ] ]
N AN 13 13
2 . -
3 AN\
------- 3," T 3 . ”:::J » »
s ~ 13 = ) 13 dense | |dense
3 -
192 192 128 Max ] ]
Max 8 Max pooling 2948 2048
pooling pooling

Local response normalization (normalize over the kernel maps at
the same position) over RelLU (-1.2%..1.4% in error rate)
Overlapping pooling (-0.3..-0.4% in error rate)
traditional image tricks: augmentation as horizontal flipping,

subsampling, PCA over the RGB and noise (-1% in error rate)

Dropout

dense

1000



Image classification with CNN

[Krizhevsky et al. 2012]
ImageNet: 150k test set and 1.2 million training images with 1000 labels.

Evaluation: top-1 and top-5 error rate [ Model [ Top-1 (val) | Top-5 (val) | Top-5 (test) |
SIFT + FVs [7] — — 26.2%
' - additional data SCRN TR e 16.4%
. . . S . (Y . (Y . (/)
4096 dim. representation per image T CNNF 30.0% 6.6% —
7 CNNs* 36.7% 15.4% 15.3%

motor scooter 0
container ship motor scooter pard @
black widow lifeboat go-kart i
cockroach amphibian moped
fireboat bumper car

Madagascar cat

convertible agaric squirrel monkey
grille mushroom grape spider monkey

pickup jelly fungus elderberry titi

beach wagon gill fungus |ffordshire bullterrier indri

fire engine || dead-man’s-fingers currant howler monkey | |'y




Recent results

He et al. 2015]: Delving Deep into Rectifiers: Surpassing Human-Level Performance on
ImageNet Classification

Parametric RelLU + zero mean Gaussian init + extreme (at the time...) deep network:
A:19 layers, B: 22 layers, C: 22 layers with more filters

0.95
Training of model C: 8xK40 Nvidia GPU 3..4 weeks (!)
5 08 s =N » IRV S
08} — %ﬁlVar[wl] =1 ours
0751 ____ AVarlw] =1 Xavier
0 1 2 3 4 5 6 7 8 9
Epoch
i Al T oA P
H t k d yell
mOdel top- 1 top-s 1: coucal ?Tko;r::goror ?Tyé?oxvlvady‘s slipper
2: indigo bunting 2: patio 2:slug
: lorik 2l : hen-of-the-wood
MSRA [1 1 ] 29.68 10.95 i: veglkie:; stick i; r:(')rt])?le home 131: sgrr:kﬂo:ne ooss
5: custard apple 5: Old English sheepdog 5: coral fungus

VGG-16[25] | 28.077 9.33%
GoogleNet [29] - 9.15
A, ReLU 2648  8.59 .

A, PReLU 2559 823

GT: go-k
1: stagg 1: acoHstic guitar 1: gs_tl)(a:rt
B, PReLU 2553 813 " e

4: microphone 4: cowboy hat 4: sports car 1 7

C ) PRCLU 24.27 7.38 5: feather boa 5: banjo 5: motor scooter




VGG-19 34-layer plain 34-layer residual

Recent results cem ]

size: 224

pool, /2

output
el [36cm128 |

He et al. 2015]: ResNet:“Is learning better e SN S S
1 " I, /2 pool, /2 poo*I, 12
networks as easy as stacking more layers”? s " ;

3x3 conv, 256 3x3 conv, 64 3x3 conv, 64 I

[ ] >
I 3x3 conv, 256 ] 3x3 conv, 64 3x3 conv, 64 _,
| 3x3conv,256 | 3x3 conv, 64 3x3 conv, 64
x 2 L7 2
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A
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. v A2
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v
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2
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[ ] [
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[ ] [
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mOdel top- 1 CIT. top-S CIT. | 33conv,512 | | 33conv,256 | E) co:v, 256 |
VGG_ 1 6 [4 1 ] 28 .07 9 . 3 3 [ 365 | [ co;v, 26 | [ co;v, 256
| 3x3conv,256 | | 3x3conv, 256
GOOgLeNet [44] = 9 . 1 5 [ 3 m!v, 256 | | 33conv, 256 |
A2
PReLU-net [13] 24.27 7.38 i —
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plain-34 28.54 10.02 [ 3x3conv,256 | | 3x3conv, 256
[ 33conv, 256 | ) w;v. 256
ResNet-34 A 25.03 7.76 | e
:;?u; pool, /2 I 3x3 conv, 512, /2 ] I 3x3 con:, 512, /2 T ..... S
ReSNet'34 B 24.52 7 .46 [ 33conv, 512 | [ Bﬂco:v, 51z| ______ Y
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ResNet-152 21.43 5.71 ;




Feed-forward Neural Networks

We already know: VC-dimension (VCdim) of linear separator is d+1

Arbitrary feed-forward neural network [Cover, 1968, Baum & Haussler, 1989,
Maas, 1993, Sakural, 1993] with linear threshold, piecewise linear or sigmoidal
activation functions and w parameters:

* with fixed depth VCdim = O(wlogw)
* if the depth is unbounded the VCdim is O(w?)

There exists a feed-forward network with infinite VCdim: a special activation
function and the network has only a single hidden layer [Sontag, 1992].

19



2. BRecurrent Neural Networks

 The nodes are either input, output or hidden

« (Connections between the nodes: directed edges

* Presumption: finite set of nodes -> finite set of layers (are
there any layers?)

* There are some directed cycles -> not a directed acyclic

graph anymore ... &

* Common: self loops only
* Posteriors are similar to FF

Milestones:
e classic "back-propagation through time" (BPTT) model
[Werbos et al., 1988]
o | STM [Hochreiter & Schmidhuber, 1997]
e Forget gate (Gers et al., 2000]
e GRU [Cho et al., 2014]

20



Recurrent Neural Networks (RNN)

Simulates a discrete-time dynamical system [Rumelhart et al. 1986]

Three components:
X, input in time
y, output in time t
h, hidden state in time t

The connection between the layers are straightforward:

h; = fh(xtaht—l)
Yyt = fo(ht)7

In comparison to feed forward networks, the main difference is the connection
between the current and the last hidden state (a loop in the network) -> can
carry along information about the previous inputs! But for how long?

21



Recurrent Neural Networks (RNN)

Let be given a sequence of samples

o (o5 58}

Estimation of the parameters (©) of RNN is based on minimization of the
following additive cost function:

1 N T,
N sz (n)’fo h(n)))

1t=1

where n n n
hg) f( ()h())

h{" =0

The d(y,f(h)) is some penalty function (divergence, distance etc.).

22



W1 W2
W3 w4

Feed forward representation of
RNN

This unfolded representation is

-~

already “deepish” @  but with
the same weights at each layer
(time)

Recurrent Neural Networks (RNN)

time=3 O O
W1 3 W4 W2

time=2 O O
W1 3 W4 W2

time=1 O O
W1 3 W4 W2

im0 () O O

(figures by Geoffrey Hinton)

23



Recurrent Neural Networks (RNN)

A particular example:
h; = fu(xe, 1) = ¢ (W' hyy + U'xy)
Yt = fo(ht,Xt) = ¢o (VTht) ;

where W,U and V are the weight matrices and the ® functions are some
bounded non-linear functions, such as the sigmoid.

The parameters of this conventional RNN can be estimated by SGD over the
cost function with back propagation through time [Rumelhart et al. 1986]. The
trick is to unfold the network and after back propagation we average the
weights through time to have identical functions (as we assumed initially).

The question remains, how to “deepen” RNN?

24
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A Deep Recurrent Neural Networks

Stacked RNN (sRNN [Schmidhuber 1992, EI Hihi and Bengio 1996)):

- stacking multiple recurrent hidden layers on top of each other
- modeling multiple time scales in the input sequence

Pascanu et al. 20714]: three type of expansions:

- deep Input-to-Hidden function
(temporal neighbours in NLP [Mikolov et al. 2013])

- deep Hidden-to-Hidden function (DT-RNN)
with shortcuts to preserve the responsiveness of RNN

- deep Hidden-to-Output function (DO-RNN)

25



Long-short term memory in general
(Greff et al., 2015)

Hochreiter & Schmidhuber 1997] actually 2005
Hochreiter, 1991]: vanishing gradients prevents RNN to utilize long sequences

ldea: memorization inside the cell

p
‘% recurrent

block output .
VAR 4

Legend
LSTM block 5/

—— unweighted connection

output

—  weighted connection
recurrent

peepholes connection with time-lag

input
- . oy
- -~y

@® branching point
©®©  mutliplication
recurrent @ sum over all inputs

gate activation function
(always sigmoid)

input activation function
(usually tanh)

output activation function
(usually tanh)

input

. -
input recurrent input

V.
e - 26
mput recurrent



Long-short term memory in general
(Greff et al., 2015)

block output ;9 ;f';mm Legend
Q
—— unweighted connection

LSTM block y

— weighted connection

output

recurrent
, f— connection with time-lag

peepholes

@  branching point

©  mutliplication

recurrent @ sum over all inputs
’..
’ — .
! gate activation function
(always sigmoid)
input activation function
(usually tanh)

output activation function
(usually tanh)

forget gate

input

)
. AR :
. k A3 M
input recurrent input

block input

input recurrent

z' = g(W,x' +R,y"" ! +b,) block input
it =oc(Wix! + Ry ' +p; ©ct™ ' +b;) input gate
f' = o(Wpx" + Rfyt_1 +pr© c!+ bs)  forget gate
cd=itoz+ffoct! cell state
ol = o(Wox! + Roy'"™ ! +p,®ct +b,) output gate
y' =o' ® h(c?) block output



Gate recurrent unit or GRU (Cho et al.,
2014)

it = 0 (Wz ' [ht—laxt])
re =0 (Wr ' [ht—laxt])
h; = tanh (W - [ry « hy_1,2¢])

ht:(1—2t>*ht_1—|—zt*ht

No forget gate!

Fig: Christopher Olah 28



Notes on LSTM

Hyperparameters:
e Random search... [Anderson, 1953, Solis & Wets, 1981]

¢ The size of the hidden layer is independent of the learning rate
[Greff et al., 2017]:

They can be determined independently. First, determine the learning
rate over a small network, then the number of hidden units

10 TII\'IIIT TIMIT
b ] |
LN I 18
12 12
M . 0.6
v
€ 15 1 | 1°9
B
= 4-0.6

-
~l

5.9 5.0 4.0 3.0 2. 59 5.0 4.0 3.0 2.0
learning rate learning rate 29



Notes on LSTM

Performance of various versions:
* They are actually very similar |[Greff et al., 2017, Chung et al.,
2014]
* GRU is similar in performance but simpler than regular LSTM
* Forget gate was introduced in 2000 |Gers et al., 2000]
* Recurrent connections between all gates -> overfit
* Bidirectional LSTMs are better
* Full gradient was introduced only in 2005
* Forget gate and output activation are crucial
* For text, image caption we need attention, what could it be”?
* VC dimension of RNN: similar to feed-forward with parameters
multiplied typically by the maximal length of sequences [Koiran &
Sontag, 1998]

30



3. Generative models

* The nodes are either input or hidden (no output!)

* (Connections between the nodes: not necessary directed edges

* Presumption: finite set of nodes -> finite set of layers (are there any
layers?)

* There are some directed/undirected cycles -> not a directed acyclic
graph &

« Posteriors are similar to FF, but no restrictions (full graph? &)

Important models:

e Boltzmann Machine [Hinton et al., 1983]

Restricted Boltzmann Machine, Harmonium [Smolensky et al., 1986]
Deep Belief Networks [Hinton et al., 2006]

Variational Autoencoders [Dayan et al., 1995, Kingma et al., 2013]
Generative Adversarial Networks |Goodfellow et al., 2014]

VCdim for regression: fat-shattering, upper bounded by a bit larger networks
VCdim [Alon et al., 1997, Anthony & Bartlett, 1999] 31



Theorem: any distribution in finite R4 can be
formulized via d normal distributions.

Generative samples

Pl Variational Autoencoders [Kingma et al., 2013]

E.g. Left is a normal distribution in 2D, right? (fig.

/ Doersch)

Decoder

D

/

3
2
1
0

Encoder

~N

/

-1.5

Training samples

What is the p(x)? Parametric and ...

e o 9
Che e
e ® .
o o o -
e . ° %
% ¢ o o
°
. o.' ° ..o. .
1 ° . °® °
. o
° . °
-2k
-3l °
-4
-4 -3 — —

Our goal is to generate samples based on an arbitrary
distribution (e.g. images).

1.0p

0.5+

0.0}

—-0.5r

-1.0

-15 -1.

1.0 15
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Variational Autoencoders

Latent models: hidden random variables -> in our case hidden
normal distributions. How many*?

P(X) = / P(X|z;0)P(2)dz

Our goal is to maximize the log-likelihood over the training samples.

Our assumption is:

P(X|z;0) = N(X|f(z;0),0% * 1)

This is a very well known distribution &

33



Variational Autoencoders

Isotropic normal distributions! Gaussian Mixtures.

A& A| 2

What are they representing”?
E. g. MNIST:

1. Digit (GMM!)
2. Angle

3. Thickness
4. Continuity
Etc.

Should we hard-wire them?
All right, but still the cardinality of z is ....

We like CDF & 34



Variational Autoencoders

How to sample z? If we know p(z), it could be that p(x|z) is small...

ldea: generate a new distribution Q(z) ~ p(z|x) where p(x|z) is non
zero (compatible z-s to generate x). In other words, (RBM!
) KL divergence of p(z|x) and Q(z) should be low:

D[Q(2)||P(z|X)] = Ez~q [log Q(2) — log P(z|X)]

HHEENRNNHEE
22|92 1]o]]]|1]7]2]
Samples generated by  FiAHERHERPIE
a VAE 6]0[3]|2]0|7[4]2|2] 1
2|74 7[5]e|1]5]4]%]

- GIEHEIR S
Trained on MNIST En
714]9|S|4|@[all ||\

4|/][7|0|7]1[)]|@[%]8

1112(5/0]5(4(2]/]|&8]7




Generative Adversarial Networks

[Goodfellow et al. 2014]:

Discriminative VS. Generative networks
Tries to identify false Tries to generate false samples
samples generated by which tricks the discriminative
the generative model model
Typically a CNN. Typically a deconvolution.

Let be G a generative model, D a discriminator ->

mgn max V(D,G) = Egnpyu(@) 108 D(x)] + Eznp, (2)[log(1l — D(G(2)))]

36



GGenerative Adversarial Networks

Let be G a generative model, D a discriminator

for number of training iterations do
for £ steps do

e Sample minibatch of m noise samples {z(1), ..., 2(™)} from noise prior p,(z).
e Sample minibatch of m examples {z(!),... (™} from data generating distribution
pdata(m)-

e Update the discriminator by ascending its stochastic gradient:

Vo, =3 [logD (2) +10g (1- D (G ()]

=1

end for
e Sample minibatch of m noise samples {z(}),. .., 2(™} from noise prior p, (z).
e Update the generator by descending its stochastic gradient:

Vo, 2108 (1-0 (6 (=),

end for

It can be proved that it will converge and the generative distribution
will be similar to the data distribution. Recent result: replace KL with

3
Wasserstein divergence -> Wasserstein GAN [Arjovsky et al., 2017] ’



P! Generative Adversarial Networks

-

[Radford, Metz and Chintala, 2016]: bedrooms

38



InitialModel: A close up of e
a plate of food on a table gt

Colors

&= InitialModel: A train that
== s sitting on the tracks.

<

BestModel: A blue and
== yellow train traveling
=1 down train tracks.

i3

Better Image Model
I log pi(S1) | | log p2(S2) |
(I T 3!
PN BestModel: A bunch of
T T T bananas and a bottle of
wine.
E — E — E —eee— E 7 RN Botter Image Model
wn w (%] (7] . s
il il — — f - ’
(3 p InitialModel: A close up of a
T T T ‘v ] rerson eating a hot dog.
J ~ 8

t

SN-1

face.

Ensemble, BeamSearch and scheduled sampling

- \BestModel: A woman
holding a banana up to her e

Counting

InitialModel: A brown
bear is swimming in the

water.

BestModel: Two brown
bears sitting on top of
rocks.
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[Szegedy et al., 2014]:
Inception: replace convolutions with smaller but deeper

mini networks -> dimension reduction

[loffe & Szegedy, 2015]: Batch normalization (we will discuss it)

type pa:::;::e/ oz::eut depth #1x1 f_iijcf #3x3 iii;f #5%5 g:::; params ops

convolution TXT7/2 112x112x64 1 2.7K 34M
max pool 3x3/2 56X 56 xX64 0

convolution 3x3/1 56 X56 X192 2 64 192 112K 360M
max pool 3x3/2 28x28x192 0

inception (3a) 28X 28X 256 2 64 96 128 16 32 32 159K 128M
inception (3b) 28x28x 480 2 128 128 192 32 96 64 380K 304M
max pool 3x3/2 14x14x480 0

inception (4a) 14x14x512 2 192 96 208 16 48 64 364K 73M
inception (4b) 14x14x512 2 160 112 224 24 64 64 437K 88M
inception (4c) 14x14x512 2 128 128 256 24 64 64 463K 100M
inception (4d) 14x14Xx528 2 112 144 288 32 64 64 580K 119M
inception (4e) 14x14x832 2 256 160 320 32 128 128 840K 170M
max pool 3x3/2 7X'7Tx832 0

inception (5a) 7TX7TX832 2 256 160 320 32 128 128 1072K 54M
inception (5b) 7X'7x1024 2 384 192 384 48 128 128 1388K 71IM
avg pool TX7/1 1x1x1024 0

dropout (40%) 1x1x1024 0

linear 1Xx1x1000 1 1000K 1M

softmax 1x1x1000 0




Word embedding [Y. Bengio et al., 2000]

An actual language model:
i-th output = P(w; = i | context) guag

Predict terms from the context
softmax
X0 “. o000 ) ,
~ Input representation:
most | computation here \\ One-hot encoding (dim. is the size
' of the dictionary)
\
- ', This is the original model, recent

! ee) | models use smoothed input word

l / representations

! /

1 /

\ L/ Interesting property [Mikolov et al.,

e 2013]:
C(Wi_n C(w,_ C(w;_ . , ,
(Evt, : - (:v; 2 ((.t ;) ) King + Woman close to Queen in L2
Hcugig - TG -> [Rothe,Ebert & Schiitze, 2016]:
inC shared parameters Orthogonal word embedding,
across words PO|arity
index for wy_p,4+1 index for w;_, index for w;_;

In 1C: 512 dim emb.
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s

A woman is throwing a frisbee in a park.

A dog is standing on a hardwood floor. A stop sign is on a road with a
— mountain in the background.

A little girl sitting on a bed with Ag people sitting on a boat A giraffe standing in a forest with
a teddy bear. in the water. trees in the background.

Trick: instead of hard wiring of input selection ->
distribution

« Differentiable &

Shortcomings?
Are the vectors additive? (images?)
Connected or non-connected components?

« Distribution: another RNN’s softmax In image caption, if hard coded:
output -> we can train it! - IL| vs. T vs. IW|7? |
«  Overfitting... Distribution of importance of locations?
Soft vs. hard attention: Object vs. concept detection...
« Soft: linear combination of location vectors (cat, bird vs. daylight, winter etc.)

(image parts)

« Hard: one-hot coded BUT: do we even need attention? &)
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Image caption (Vinyals et al, 2016)

Putting everything together:
CNN (BN Inc.) + WE (d=512) + LSTM (#hidden=512) : image caption

log pi(S1) | | log p2(S2) log pn(SN)
L) t 1 t
efg;%-m Pi P2 PN
r1 f
s > >
:g%%% E —_—> E —| = |— o0 — |-
<= | | (D] |4] |32 4
§- WeSO WeS | WeSN- |
t t t t
image So Si SN-1

Ensemble, BeamSearch and scheduled sampling
NO Attention! & 3



Image caption (Vinyals et al, 2016)

e Pre-trained image model: trained on ImageNet, fine-tuning (tricky) helped a bit
¢ \Word embedding was not pre-trained
¢ Ensemble:
o Multiple models with different initialization, learning parameters or even
different networks
e BeamSearch:
o Consider the k best sentences before generating the next word
o Beam size matters, actually k=3 was the best on the MS COCO
challenge
e Optimization: SGD with fixed learning rate and without momentum + Dropout
¢ Transfer Learning: models trained on different datasets
e Scheduled sampling: curriculum learning strategy, flip a coin to use the predicted
or the true previous word

Together 20+% in performance
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—xample 2: Object detection

Traditional models:
o Haar wavelet [Poggio et al., 1998] and Haar-like features [Viola and Jones, 2001]
Rigid features + SVM or AdaBoost (and also reduce the number of features)
o Deformable parts model [Felzenswalb et al. 2010]
o 100 Hz: HOG + Boosted Trees etc. [Benenson et al. 20172
Localization

And non-rigid feature extraction (CNN) : Where?

e pérsbn:0.992

o R-CNN [Girshick et al., 2014]:
Regions with CNN features "

o SPP-net [He et al., 2014]: Re;\?ﬁgltt?lon |:>
Spatial Pyramid Pooling in DNN

o Fast R-CNN [Girschick et al., 2015]:
CNN feature maps

o RegionlLet [Wang et al., 2015]:
Integral image over CNN

o Faster R-CNN [Ren et al., 2015]:
Region Proposal Network

Fig. Kaiming He
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feature
feature

feature
feature

CNN CNN

CNN-s over the candidate regions
Rigid region size

High complexity

In practice:

Separate SVM over the feats.

not CDF &

02/04/2017

R-CNN vs. Fast R-CNN

feature

feature
fe
SPP/Rol pooling

L)

One CNN per image

Feature map per pixel (filters/pixel)
Arbitrary sized regions of feature maps
Much faster than R-CNN

SVM over the candidate feature maps

Still not CDF )

Fig. Kaiming He
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Faster R-CNN [Ren et al., 2015]

classifier

Instead of complex search:

© Region proposals:
different sized but rectangular regions
on multiple scales
o Still rigid proposals
o End-to-end optimization: CDF &
O
O

Rol pooling

Very fast <200ms (on a Titan...)
Embedded systems? Region Proposal Network
feature maps

| 2k scores | | 4k coordinates | <mm  kanchor boxes
cls layer\ t reg layer .
| 256-d |
intermediate layer
t conv layers /
AT 77—

sliding window N R e S e

e T R AR

conv feature map : 47



person : 0.992

8 horse : 0.993 2

SN
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Some connected topics

Missing, but very important topics:

e Optimization: SGD, Newton, ADAM [Kingma & Ba, 2013],
RMSProp [Hinton et al., 2014], Nesterov [Nesterov, 1983] etc.

¢ reinforcement learning [Cassandra, 1998, Sutton and Barto,
1998, Sorokin et al., 2015], AlphaGo, Virtual-Real translations

e self-organizing maps [Ritter et al., 1992, Kohonen, 2013]

e Support Vector Networks (MLP!) [Cortes & Vapnik, 1992] and
kernels [Schoelkopf, Herbrich & Smola, 2001]

¢ Bayesian Networks, when we do not know the structure and
Dynamic Bayesian Networks [Pearl, 20711]

* Manifold learning and statistical manifolds [Campbell, 1986]  «



Some unsolved problems

Saturation, vanishing gradients and sparsity empirical risk minimization:
optimization, converge speed etc.

« pRelLU [Het et al., 2015]

« Maxout |[Goodfellow et al., 2013]

* local response/batch normalization [loffe et al., 2015, Szegedy
et al., 2010]

Generalization gap:

DropOut [Hinton et al., 2012], DropConnect [\Wan et al., 2013]
Convolution (in comparison to MLP) [Lecun et al., 1998]
FastFood [Yang et al., 2015]

Memorization? [/hang et al., 2017]

Batch size affects generalization [Keskar et al., 2017]
practical VCdim? Tree ensembles!
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Some unsolved problems

Architecture: network structure

Lower bounds for deepness to approximate a given function [Rolnick
& Tegmark, 2017]

Network-in-Network [Lin et al., 2014, BN Maxout NiN [Chang et al.,
2015]

spectral representation (pooling) [Rippel & Snoek, 2015]

Identity map and residual block [He et al., 2015], highway networks
[Srivastava et al., 2015]

Manifold tangent classifier, high-order contractive auto-encoder [Rifal
et al., 2011]

Compression? [He et al., 2015, Ullrich et al., 2017]

Do we have to learn the parameters? Fisher Information [Cencov,
1982] & Johnson-Lindenstrauss theorem [J&L, 1984]: reduce VC
dimension from O(wlogw) to O(w) in special cases?

Embedded systems: We need robust and reliable models (e.g.
autonomous drones and vehicles: Nvidia Tegra vs. Titan)

Thank youl! 51



