Prof. André Noll Barreto
Prova 2 – 2012/1 (31/05/2012)

| Aluno:     | <br> | <br> |  |
|------------|------|------|--|
|            |      |      |  |
| Matrícula: |      |      |  |

### Instruções

- A prova consiste de três questões discursivas
- A prova terá a duração de 2h
- A prova pode ser feita a lápis ou caneta
- Não é permitida consulta a notas de aula, todas as fórmulas necessárias serão dadas no final da prova.
- Toda resposta deverá está contida nas folhas da prova. Folhas de rascunho serão fornecidas caso necessário, mas não devem ser entregues.
- Calculadoras podem ser utilizadas, mas todas as contas e respostas devem ser justificadas

| Questão | Nota |
|---------|------|
| Q1      |      |
| Q2      |      |
| Q3      |      |
|         |      |
| Total   |      |





Prof. André Noll Barreto

## Questão 1 (3,5 pontos)

Um sistema de transmissão digital transmite com potência 1mW e sofre uma atenuação de 80dB. Queremos transmitir a maior taxa de bits possível em um canal em banda passante com largura de banda igual a 1MHz, desde que seja atingida uma taxa de erro de bit menor ou igual a  $10^{-4}$ . São utilizados pulsos de Nyquist com fator de roll-off igual a 0,25. Sabendo que temos na recepção um ruído com densidade espectral de potência igual a -190 dBW/Hz. Podemos usar qualquer esquema M-PSK ou M-QAM (com constelação quadrada). Qual a taxa de bits que poderá ser alcançada?

A potência recebida é dada por

$$P_{RX} = 10^{-8} P_{TX} = 10^{-11} \text{ W}$$

A taxa de símbolos é dada por

$$R_S = \frac{B}{1+r} = \frac{10^6}{1,25} = 0.8 \times 10^6$$

Temos também que

$$\frac{N_0}{2} = 10^{-19} \text{W/Hz} \Rightarrow N_0 = 2 \times 10^{-19} \text{W/Hz}$$

e

$$E_s = \frac{P_{RX}}{R_s} = \frac{10^{-11}}{0.8 \times 10^6} = 1,25 \times 10^{-17} \Rightarrow \frac{E_s}{N_0} = 0,625 \times 10^2$$

Com BPSK.

$$P_b = Q\left(\sqrt{\frac{2E_b}{N_0}}\right) = Q\left(\sqrt{\frac{2E_s}{N_0}}\right) = Q\left(\sqrt{1,25 \times 10^2}\right) = Q(11,2) = 2,5 \times 10^{-29}$$

ComOPSK

$$P_{b} = Q\left(\sqrt{\frac{2E_{b}}{N_{0}}}\right) = Q\left(\sqrt{\frac{E_{s}}{N_{0}}}\right) = Q\left(\sqrt{62,5}\right) = Q(7,9) = 1,3 \times 10^{-15}$$

Com 8-PSK

$$P_b \approx \frac{2}{\log_2 M} Q\left(\sqrt{\frac{2E_s}{N_0}} \sin\left(\frac{\pi}{M}\right)\right) = \frac{2}{3} Q\left(\sqrt{1,25 \times 10^2} \sin\left(\frac{\pi}{8}\right)\right) = \frac{2}{3} Q\left(4,2785\right) = 6,3 \times 10^{-6}$$

Com 16-QAM, a probalidade de erro de símbolo em cada componente de fase e quadratura é

$$P_{SC} = 2\left(1 - \frac{1}{\sqrt{M}}\right)Q\left(\sqrt{\frac{3}{M-1}} \frac{E_s}{N_0}\right) = 2\left(\frac{3}{4}\right)Q\left(\sqrt{\frac{3}{15}}62,5\right) = \frac{3}{2}Q(3,54) = 3 \times 10^{-4}$$

Como em cada componente são transmitidos  $(\log_2 M)/2=2$  bits, a probabilidade de erro de bit é

$$P_b \approx \frac{1}{2} P_{SC} = 1,5 \times 10^{-4}$$

Devemos usar portanto **8-PSK** para garantir a taxa de erro de bit desejada.

Neste caso, temos 3 bits por símbolo, e a taxa de bits é

$$R_b = R_s \log_2 M = 3(0.8 \times 10^6) = 2.4 \text{ Mbps}$$





Prof. André Noll Barreto

## Questão 2 (3,5 pontos)

Queremos transmitir 3 bits por símbolo utilizando modulação digital em fase e quadratura. Para isso temos à disposição três moduladores diferentes: 8-PSK, 8-QAM retangular e 8-QAM em cruz. Qual deles apresenta o melhor desempenho em termos de BER para uma dada razão sinal ruído? Qual o pior? Considere uma RSR alta.

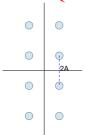
Para altas razões sinal-ruído, a probabilidade de erro é dominada pelos pontos mais próximos da constelação. Seja a distância entre dois pontos igual a *d*, a probabilidade de erro para um ponto vizinho é dada por

$$P_e = Q\left(\frac{d/2}{\sigma}\right)$$
, com  $\sigma = \sqrt{N_0/2}$ 

Para o 8-PSK a BER é dada aproximadamente por (ver notas de aula)

$$P_b \approx \frac{2}{\log_2 M} Q\left(\sqrt{\frac{2E_s}{N_0}} \sin\left(\frac{\pi}{M}\right)\right) = \frac{2}{3} Q\left(0.5412\sqrt{\frac{E_s}{N_0}}\right)$$

Para o 8-QAM retangular, temos a constelação



e a distância é dada por 2A.

A energia média por símbolo é dada por

$$E_s = \frac{4}{8}(2A^2) + \frac{4}{8}(A^2 + 9A^2) = 6A^2$$
 e  $P_e = Q\left(\frac{A}{\sqrt{N_0/2}}\right) = Q\left(\sqrt{\frac{E_s}{6}\frac{2}{N_0}}\right)$ 

Sabendo que metade dos símbolos tem 3 vizinhos e a outra metade 2 vizinhos, e supondo apenas um bit errado a cada erro de símbolo

$$P_{b} = \frac{5}{2} \frac{1}{3} Q \left( \sqrt{\frac{1}{3} \frac{E_{s}}{N_{0}}} \right) = \frac{5}{6} Q \left( 0.5774 \sqrt{\frac{E_{s}}{N_{0}}} \right) .$$

Alternativamente, poderia ser feito considerando-se dois PAMs, um 2-PAM e um 4-PAM, mas neste caso deve ser tomado cuidado, pois a Eb a ser usada na fórmula para cada PAM é diferente.





Prof. André Noll Barreto

Para o QAM em cruz



A energia média por símbolo é dada por

$$E_s = \frac{4}{8}(A^2) + \frac{4}{8}(2A^2) = \frac{3}{2}A^2$$
 e  $P_e = Q\left(\frac{A/2}{\sqrt{N_0/2}}\right) = Q\left(\sqrt{\frac{E_s}{3N_0}}\right)$ 

Sabendo que todos símbolos têm 2 vizinhos, e supondo apenas um bit errado a cada erro de símbolo

$$P_{b} = \frac{2}{3} Q \left( \sqrt{\frac{1}{3} \frac{E_{s}}{N_{0}}} \right) = \frac{2}{3} Q \left( 0.5774 \sqrt{\frac{E_{s}}{N_{0}}} \right) .$$

Sabendo que quanto maior o argumento da função Q, melhor é o desempenho, temos na ordem do melhor para o pior:

8-QAM em cruz, 8-QAM retangular, e 8-PSK.





Prof. André Noll Barreto

## Questão 3 (4 pontos)

Um sistema BPSK apresenta um modelo de canal discreto

 $h[k] = 0.5 \delta[k] + 0.2 \delta[k-1] - 0.1 \delta[k-2]$ .

Após o filtro casado temos um ruído com variância  $\sigma_w^2 = 0.02$ , e suponha que os símbolos BPSK amostrados têm amplitude unitária.

- a) Desenhe a treliça do decodificador MLSE de Viterbi
- b) Qual a resposta no domínio da transformada z do equalizador zero-forcing ideal?
- c) Projete um equalizador ZF e um MMSE com 4 taps cada. (Para o ZF utilize a fórmula para o MMSE, porém sem ruído, e lembre-se que neste caso teremos um ZF aproximado)
- d) Qual o erro quadrático médio para os dois equalizadores do item (c)?

(Lembre-se, 
$$MSE = E \{ |y[k] - x[k]|^2 \}$$
)

a)

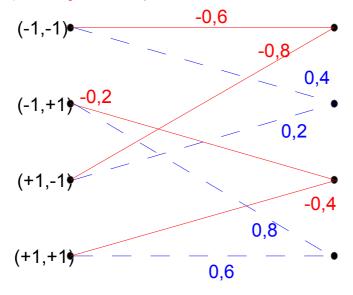
o sinal recebido pode ser modelado como

$$y[k] = x[k] * h[k] + n[k] = 0.5 x[k] + 0.2 x[k-1] - 0.1 x[k-2] + n[k]$$

o decodificador MLSE tem  $M^{L-1}$  estados s, em que cada estado corresponde aos L-1 últimos bits, que podem ser descritos pela tabela abaixo

| ons, que podem ser deseritos pera mocia aodixo |      |                           |         |  |  |
|------------------------------------------------|------|---------------------------|---------|--|--|
| s[k]=(x[k-2],x[k-1])                           | b[k] | y[k]                      | s[k-1]  |  |  |
| (-1,-1)                                        | -1   | -0,5-0,2+0,1= <b>-0,6</b> | (-1,-1) |  |  |
|                                                | 1    | 0,5-0,2+0,1= <b>0,4</b>   | (-1,1)  |  |  |
| (-1,1)                                         | -1   | -0,5+0,2+0,1= <b>-0,2</b> | (1,-1)  |  |  |
|                                                | 1    | 0,5+0,2+0,1= <b>0,8</b>   | (1,1)   |  |  |
| (1,-1)                                         | -1   | -0,5-0,2-0,1= <b>-0,8</b> | (-1,-1) |  |  |
|                                                | 1    | 0,5-0,2-0,1= <b>0,2</b>   | (-1,1)  |  |  |
| (1.1)                                          | -1   | -0,5+0,2-0,1= <b>-0,4</b> | (1,-1)  |  |  |
| (1,1)                                          | 1    | 0,5+0,2-0,1= <b>0,6</b>   | (1,1)   |  |  |

Que corresponde à treliça







Prof. André Noll Barreto

**b**)

A transformada z do canal é dada por

$$H(z)=0.5+0.2z^{-1}-0.1z^{-2}$$

O equalizador ZF ideal teria a resposta

$$F(z) = \frac{1}{H(z)} = \frac{1}{0.5 + 0.2 z^{-1} - 0.1 z^{-2}}$$

c)

Podemos considerar um atraso u = 0 para simplificar. Com 4 taps (M=3), a equação fica equação

$$\begin{bmatrix} R_{y}[0] & R_{y}[-1] & R_{y}[-2] & R_{y}[-3] \\ R_{y}[1] & R_{y}[0] & R_{y}[-1] & R_{y}[-2] \\ R_{y}[2] & R_{y}[1] & R_{y}[0] & R_{y}[-1] \\ R_{y}[3] & R_{y}[2] & R_{y}[1] & R_{y}[0] \end{bmatrix} \begin{bmatrix} f[0] \\ f[1] \\ f[2] \\ f[3] \end{bmatrix} = E_{s} \begin{bmatrix} h^{*}[0] \\ 0 \\ 0 \\ 0 \end{bmatrix},$$

Para ZF, consideramos ruído igual a zero

$$R_{v}[0] = E[y[k]y^{*}[k]] = E[(0.5x[k] + 0.2x[k-1] - 0.1x[k-2])^{2}]$$

Sabemos que  $E[(x[k-m])^2] = E_s = 1$  e E[x[k-m]x[k-l]] = 0;  $m \neq l$  portanto  $R_v[0] = 0.25 + 0.04 + 0.01 = 0.3$ .

Da mesma forma

$$R_{y}[1] = E[y[k]y^{*}[k+1]] = R_{y}[-1]$$

$$= E[(0.5x[k]+0.2x[k-1]-0.1x[k-2])(0.5x[k+1]+0.2x[k]-0.1x[k-1])]$$

$$= 0.1-0.02 = 0.08$$

$$R_{y}[2] = E[y[k]y^{*}[k+2]] = R_{y}[-2]$$

$$= E\{(0.5x[k]+0.2x[k-1]-0.1x[k-2])(0.5x[k+2]+0.2x[k+1]-0.1x[k])\}$$

$$= -0.05$$

$$R_{y}[3] = E\{y[k]y^{*}[k+3]\} = R_{y}[-3]$$

$$= E\{(0.5x[k]+0.2x[k-1]-0.1x[k-2])(0.5x[k+3]+0.2x[k+2]-0.1x[k+1])\}$$

$$= 0$$

Ou seia temos que resolver o sistema

$$\begin{bmatrix} 0.3 & 0.08 & -0.05 & 0 \\ 0.08 & 0.3 & 0.08 & -0.05 \\ -0.05 & 0.08 & 0.3 & 0.08 \\ 0 & -0.05 & 0.08 & 0.3 \end{bmatrix} \begin{bmatrix} f \begin{bmatrix} 0 \\ f \begin{bmatrix} 1 \\ 1 \end{bmatrix} \\ f \begin{bmatrix} 2 \\ 3 \end{bmatrix} \end{bmatrix} = \begin{bmatrix} 0.5 \\ 0 \\ 0 \\ 0 \end{bmatrix} , \text{ ou seja } \begin{bmatrix} f \begin{bmatrix} 0 \\ 1 \end{bmatrix} \\ f \begin{bmatrix} 2 \\ 1 \end{bmatrix} \end{bmatrix} = \begin{bmatrix} 1.96 \\ -0.728 \\ 0.596 \\ -0.28 \end{bmatrix}, \text{ e a}$$

estimativa após equalização será

$$\hat{x}_{ZF}[k] = 1,96 \ y[k] - 0,728 \ y[k-1] + 0,596 \ y[k-2] - 0,28 \ y[k-3]$$

Para o MMSE muda o cálculo dos  $R_y[n]$ , sabendo que  $E[(n[k-m])^2] = \sigma_w^2 = 0.02$  e E[n[k-m]x[k-l]] = 0, portanto

$$R_y[0] = E\{y[k]y^*[k]\} = E\{(0.5x[k] + 0.2x[k-1] - 0.1x[k-2] + n[k])^2\} = 3.2 \quad . \text{ Todos os outros valores são iguais, já que } E\{n[k-m]n[k-l]\} = 0; \quad m \neq l \quad .$$

Agora, temos que resolver o sistema





Prof. André Noll Barreto

$$\begin{bmatrix} 0.32 & 0.08 & -0.05 & 0 \\ 0.08 & 0.32 & 0.08 & -0.05 \\ -0.05 & 0.08 & 0.32 & 0.08 \\ 0 & -0.05 & 0.08 & 0.32 \end{bmatrix} \begin{bmatrix} f \begin{bmatrix} 0 \\ f \begin{bmatrix} 1 \\ 1 \end{bmatrix} \\ f \begin{bmatrix} 2 \\ 1 \end{bmatrix} \end{bmatrix} = \begin{bmatrix} 0.5 \\ 0 \\ 0 \\ 0 \end{bmatrix} \text{, ou seja} \begin{bmatrix} f \begin{bmatrix} 0 \\ 1 \end{bmatrix} \\ f \begin{bmatrix} 2 \\ 1 \end{bmatrix} \end{bmatrix} = \begin{bmatrix} 1.788 \\ -0.602 \\ 0.484 \\ -0.215 \end{bmatrix}, \text{ e a}$$

estimativa após equalização será

$$\hat{x}_{MMSE}[k] = 1,788 \ y[k] - 0,602 \ y[k-1] + 0,484 \ y[k-2] - 0,215 \ y[k-3]$$

d)

Lembrando que

$$y[k] = 0.5 x[k] + 0.2 x[k-1] - 0.1 x[k-2] + n[k]$$
  
 $\hat{x}_{ZF}[k] = 1.96 y[k] - 0.728 y[k-1] + 0.596 y[k-2] - 0.28 y[k-3]$ 

Portanto para o ZF

$$\hat{x}_{ZF}[k] = 0.98 \, x[k] + 0.028 \, x[k-1] - 0.0436 \, x[k-2] + 0.052 \, x[k-3] - 0.1156 \, x[k-4] + 0.028 \, x[k-5] + 1.96 \, n[k] - 0.728 \, n[k-1] + 0.596 \, n[k-2] - 0.28 \, n[k-3]$$

$$MSE_{ZF} = E\left[\left|\hat{x}_{ZF}[k] - x[k]\right|^{2}\right] = 0.02^{2} + 0.028^{2} + 0.0436^{2} + 0.052^{2} + 0.1156^{2} + 0.028^{2} + \dots + 1.96^{2}(0.02) + 0.728^{2}(0.02) + 0.28^{2}(0.02) = 0.1089$$

$$\dots + 1.96^{2}(0.02) + 0.728^{2}(0.02) + 0.28^{2}(0.02) = 0.1089$$

e parao o MMSE

$$\hat{x}_{ZF}[k] = 0,8942 \, x[k] + 0,0569 \, x[k-1] - 0,0574 \, x[k-2] + 0,0494 \, x[k-3] - 0,0913 \, x[k-4] + 0,0215 \, x[k-5] + 1,7885 \, n[k] - 0,6016 \, n[k-1] + 0,4836 \, n[k-2] - 0,2149 \, n[k-3]$$

$$MSE_{MMSE} = E\left\{ \left| \hat{x}_{MMSE}[k] - x[k] \right|^2 \right\} = 0,1058$$





Prof. André Noll Barreto

### Fórmulas Úteis

Integrais:

$$\int x \sin ax \, dx = \frac{1}{a^2} (\sin ax - ax \cos ax) \qquad \int x^2 \sin ax \, dx = \frac{1}{a^3} (2 \, ax \sin ax + 2 \cos ax - a^2 \, x^2 \cos ax)$$

$$\int x \cos ax \, dx = \frac{1}{a^2} (\cos ax + ax \sin ax) \qquad \int x^2 \cos ax \, dx = \frac{1}{a^3} (2 \, ax \cos ax - 2 \sin ax + a^2 \, x^2 \sin ax)$$

$$\int x e^{ax} \, dx = \frac{e^{ax}}{a^2} (ax - 1) \qquad \int x^2 e^{ax} = \frac{e^{ax}}{a^3} (a^2 \, x^2 - 2 \, ax + 2)$$

$$\int \frac{1}{x^2 + a^2} \, dx = \frac{1}{a} \tan^{-1} \frac{x}{a} \qquad \int \frac{x}{x^2 + a^2} \, dx = \frac{1}{2} \ln (x^2 + a^2)$$

$$\int \frac{x}{a^4 + x^4} \, dx = \frac{1}{2} a^2 \tan^{-1} \frac{x^2}{a^2}$$

Funções Importantes:

$$\operatorname{rect}(t) = \begin{cases} 1 & , |t| < 1/2 \\ 1/2 & , |t| = 1/2 \\ 0 & , |t| > 1/2 \end{cases} \qquad \Delta(t) = \operatorname{rect}(t)(1 - 2|t|)$$

Tabela de Transformadas de Fourier:

$$\begin{split} g\left(t\right) &= \int_{-\infty}^{\infty} G\left(f\right) e^{j2\pi ft} \, df \overset{F}{\Leftrightarrow} G\left(f\right) = \int_{-\infty}^{\infty} g\left(t\right) e^{-j2\pi ft} \, dt \\ \delta\left(t\right) &\overset{F}{\Leftrightarrow} 1 & 1 &\overset{F}{\Leftrightarrow} \delta\left(f\right) \\ t^{n} e^{-at} u\left(t\right) &\overset{F}{\Leftrightarrow} \frac{n!}{(a+j2\pi f)^{n+1}} & e^{-a|x|} \overset{F}{\Leftrightarrow} \frac{2a}{a^{2}+4\pi^{2}f^{2}} \\ \cos\left(2\pi f_{0}t\right) &\overset{F}{\Leftrightarrow} \frac{1}{2} \left[\delta\left(f-f_{0}\right) + \delta\left(f+f_{0}\right)\right] & e^{j2\pi f_{0}t} \overset{F}{\Leftrightarrow} \delta\left(f-f_{0}\right) \\ \sin\left(2\pi f_{0}t\right) &\overset{F}{\Leftrightarrow} \frac{1}{2j} \left[\delta\left(f-f_{0}\right) - \delta\left(f+f_{0}\right)\right] & u\left(t\right) &\overset{F}{\Leftrightarrow} \frac{1}{2} \delta\left(f\right) + \frac{1}{j2\pi f} \\ & \operatorname{sgn} t &\overset{F}{\Leftrightarrow} \frac{1}{j\pi f} & \operatorname{rect}\left(\frac{t}{\tau}\right) &\overset{F}{\Leftrightarrow} |\tau| \operatorname{sinc}(\pi f \tau) \\ \sin\left(2\pi Bt\right) &\overset{F}{\Leftrightarrow} \frac{1}{|2B|} \operatorname{rect}\left(f/2B\right) & \Delta\left(\frac{t}{\tau}\right) &\overset{F}{\Leftrightarrow} \frac{\tau}{2} \operatorname{sinc}^{2}\left(\frac{\pi f \tau}{2}\right) \\ k_{1}g_{1}(t) + k_{2}g_{2}(t) &\overset{F}{\Leftrightarrow} k_{1}G_{1}(f) + k_{2}G_{2}(f) & \sum_{n=-\infty}^{\infty} \delta\left(t-nT\right) &\overset{F}{\Leftrightarrow} \frac{1}{T} \sum_{n=-\infty}^{\infty} \delta\left(f-\frac{n}{T}\right) \\ g\left(t\right) &\overset{F}{\Leftrightarrow} g\left(-f\right) & g\left(t\right) e^{j2\pi f_{0}t} & G\left(f\right) e^{j2\pi f_{0}t} & G\left(f\right$$





Prof. André Noll Barreto

### Identidades Trigonométricas:

$$\sin(2x) = 2\sin x \cos x$$

$$\cos(2x) = \cos^2 x - \sin^2 x$$

$$\sin^2 x + \cos^2 x = 1$$

$$\cos^2 x = \frac{1}{2}(1 + \cos 2x)$$

$$\sin^2 x = \frac{1}{2}(1 - \cos 2x)$$

$$\sin(x \pm y) = \sin x \cos y \pm \cos x \sin y$$

$$\cos(x \pm y) = \cos x \cos y \mp \sin x \sin y$$

$$\tan(x \pm y) = \frac{\tan x \pm \tan y}{1 \mp \tan x \tan y}$$

$$a \cos x + b \sin x = \sqrt{a^2 + b^2} \cos(x + \tan^{-1}(-b/a))$$

### Probabilidade

$$P(B|A) = \frac{P(A \cap B)}{P(A)} = \frac{P(A|B)P(B)}{P(A)}$$

eventos são independentes se P(B|A)=P(B)

se 
$$A_i$$
,  $1 \le i \le N$  são eventos disjuntos e  $\bigcup_{i=1}^N A_i = S \Rightarrow P(B) = \sum_{i=1}^N P(B|A_i) P(A_i)$ 

#### Variáveis Aleatórias

$$P_{y}(y) = \sum_{i} P_{x,y}(x_{i}, y)$$

CDF 
$$F_{\mathbf{x}}(\mathbf{x}) = Pr(\mathbf{x} \le \mathbf{x})$$
 PDF  $p_{\mathbf{x}}(\mathbf{x}) = \frac{dF_{\mathbf{x}}(\mathbf{x})}{d\mathbf{x}}$ 

v.a exponencial 
$$p_{\mathrm{x}}(x) = \lambda e^{-\lambda x} u(x)$$
 v.a. Gaussiana  $p_{\mathrm{x}}(x) = \frac{1}{\sqrt{2 \, \pi \, \sigma}} e^{-(x-\bar{x})^2/2\sigma^2}$ 

$$Q(x) = \frac{1}{\sqrt{2\pi}} \int_{x}^{\infty} e^{-x^2/2} dx$$

$$E\{f(\mathbf{x})\} = \int_{-\infty}^{\infty} f(\mathbf{x}) p_{\mathbf{x}}(\mathbf{x}) d\mathbf{x} \qquad p_{\mathbf{x}}(\mathbf{x}) = \int_{-\infty}^{\infty} p_{\mathbf{x},\mathbf{y}}(\mathbf{x},\mathbf{y}) d\mathbf{y}$$

Teorema Central do Limite 
$$y_n = \frac{1}{\sqrt{n}} \sum_{i=1}^n \frac{x_i - \mu}{\sigma} \rightarrow Normal(0,1)$$

Designaldade de Chebyshev 
$$Pr(|x-\bar{x}| \le k \sigma) \ge 1 - \frac{1}{k^2}$$

Correlação 
$$\sigma_{xy} = E[(x - \bar{x})(y - \bar{y})]$$
 Coeficiente de correlação  $\rho_{xy} = \frac{\sigma_{xy}}{\sigma_y \sigma_y}$ 

### Estimação LMS

$$\hat{\mathbf{x}}_{0} = \sum_{i=1}^{n} a_{i} \mathbf{x}_{i} \quad \text{com} \quad \begin{bmatrix} a_{1} \\ a_{2} \\ \vdots \\ a_{n} \end{bmatrix} = \begin{bmatrix} R_{11} & R_{12} & \cdots & R_{1n} \\ R_{21} & R_{22} & \cdots & R_{2n} \\ \cdots & \cdots & \cdots & \cdots \\ R_{n1} & \cdots & \cdots & R_{nn} \end{bmatrix} \begin{bmatrix} R_{01} \\ R_{02} \\ \vdots \\ R_{0n} \end{bmatrix} , \mathbf{e} \quad R_{ij} = E \left[ \mathbf{x}_{i} \mathbf{x}_{j} \right]$$

$$E \left[ \mathbf{e}^{2} \right] = R_{00} - (a_{1} R_{01} + a_{2} R_{02} + \cdots + a_{n} R_{0n})$$





Prof. André Noll Barreto

Processos Estocásticos

$$R_{\mathbf{x}}(\tau) = E\left[\mathbf{x}(t)\mathbf{x}(t+\tau)\right] \qquad S_{\mathbf{x}}(f) = F_{\tau}\left[R_{\mathbf{x}}(\tau)\right]$$

$$\mathbf{y}(t) = \mathbf{x}(t) * h(t) \Rightarrow S_{\mathbf{y}}(f) = \left|H(f)\right|^{2} S_{\mathbf{x}}(f) \quad \mathbf{e} \quad \overline{\mathbf{y}} = H(0)\overline{\mathbf{x}}$$

$$R_{\mathbf{x},\mathbf{y}}(\tau) = E\left[\mathbf{x}(t)\mathbf{y}(t+\tau)\right]$$

x e y são descorrelatados se  $R_{x,y}( au)=\overline{x}\,\overline{y}$  e são ortogonais se  $R_{x,y}( au)=0$ 

Filtro de Wiener

$$H_{opt}(f) = \frac{S_{m}(f)}{S_{m}(f) + S_{n}(f)}$$

#### Transmissão Digital

filtro de recepção ótimo  $H(f) = k \frac{P(-f)e^{-j2\pi fT_m}}{S_n(f)}$ 

$$P_{e} = Q\left(\frac{\beta}{2}\right)$$
 ,  $\beta^{2} = \frac{E_{p} + E_{q} - 2E_{pq}}{N_{0}/2}$  , com  $E_{pq} = \int_{0}^{T_{m}} p(t)q(t)dt$ 

banda de transmissão com pulsos de Nyquist:

$$B = (1+r)R_s$$
 para sistemas em banda passante,  $B = (1+r)\frac{R_s}{2}$  em banda base

Probabilidade de Erro de Símbolo ( $P_e$ ) e de Bit ( $P_b$ ) de Esquemas de Modulação Comuns

$$\begin{split} P_{b,BPSK} = & P_{b,QPSK} = Q\left(\sqrt{\frac{2\,E_b}{N_0}}\right) \quad P_{b,OOK} = Q\left(\sqrt{\frac{E_b}{N_0}}\right) \\ P_{b,2-FSK,\,coerente} = & Q\left(\sqrt{\frac{E_b(1-\operatorname{sinc}\left(2\,\pi\,\Delta\,f\,T_s\right)\right)}{N_0}}\right) \quad P_{b,2-FSK,\,n\tilde{a}o-coerente} = \frac{1}{2}\,e^{-E_s/N_0} \\ P_{e,M-PAM} = & 2\left(\frac{M-1}{M}\right)Q\left(\sqrt{\frac{6\log_2M}{M^2-1}\frac{E_b}{N_0}}\right) \\ P_{e,M-QAM} = & 1-(1-P_{e,M_1-PAM})(1-P_{e,M_2-PAM}), \qquad M_1M_2 = M \\ P_{e,M-PSK} \approx & 2\,Q\left(\sqrt{\frac{2\,E_b\log_2M}{N_0}}\operatorname{sen}\frac{\pi}{M}\right) \end{split}$$

Equalização TSE

$$F_{ZF}(z) = \frac{1}{H(z)}$$
  $F_{MMSE}(z) = \frac{H^{*}(z)}{|H(z)|^{2} + \frac{S_{x}(z)}{S_{x}(z)}}$ 

MMSE:

$$\begin{bmatrix} R_{y}[0] & R_{y}[-1] & \dots & R_{y}[-M] \\ R_{y}[1] & R_{y}[0] & \dots & R_{y}[1-M] \\ \vdots & \vdots & \ddots & \vdots \\ R_{y}[M] & R_{y}[M-1] & \dots & R_{y}[0] \end{bmatrix} \begin{bmatrix} f[0] \\ f[1] \\ \vdots \\ f[M] \end{bmatrix} = E_{s} \begin{bmatrix} h^{*}[u] \\ h^{*}[u-1] \\ \vdots \\ h^{*}[0] \\ 0 \\ \vdots \\ 0 \end{bmatrix},$$

$$R_{y}[m] = E\{y[n+m]y[n]\} ,$$





Prof. André Noll Barreto

Equalização FSE

ZF: 
$$\sum_{i=1}^{m} F_{i}(z)H_{i}(z) = z^{-u}$$

MMSE:

$$\sum_{i=1}^{m} \sum_{k=0}^{M} f_i E\{y_i[n-k] y_j^*[n-l]\} = E\{x_{n-u} y_j^*[n-l]\}, \qquad l=0,1,...,M; \quad j=1,2,...,m$$

### Equalização MLSE

queremos obter a sequência xi que minimiza  $\sum_{i} \left| y[i] - \sum_{k} h[k] x_{i-k} \right|^2$ 

### Função Q

| z   | Q(z)    | z   | Q(z)    |
|-----|---------|-----|---------|
| 0.0 | 0.50000 | 2.0 | 0.02275 |
| 0.1 | 0.46017 | 2.1 | 0.01786 |
| 0.2 | 0.42074 | 2.2 | 0.01390 |
| 0.3 | 0.38209 | 2.3 | 0.01072 |
| 0.4 | 0.34458 | 2.4 | 0.00820 |
| 0.5 | 0.30854 | 2.5 | 0.00621 |
| 0.6 | 0.27425 | 2.6 | 0.00466 |
| 0.7 | 0.24196 | 2.7 | 0.00347 |
| 0.8 | 0.21186 | 2.8 | 0.00256 |
| 0.9 | 0.18406 | 2.9 | 0.00187 |
| 1.0 | 0.15866 | 3.0 | 0.00135 |
| 1.1 | 0.13567 | 3.1 | 0.00097 |
| 1.2 | 0.11507 | 3.2 | 0.00069 |
| 1.3 | 0.09680 | 3.3 | 0.00048 |
| 1.4 | 0.08076 | 3.4 | 0.00034 |
| 1.5 | 0.06681 | 3.5 | 0.00023 |
| 1.6 | 0.05480 | 3.6 | 0.00016 |
| 1.7 | 0.04457 | 3.7 | 0.00011 |
| 1.8 | 0.03593 | 3.8 | 0.00007 |
| 1.9 | 0.02872 | 3.9 | 0.00005 |



