Prof. André Noll Barreto

Prova 5 - 2016/1 (21/06/2016)

Aluno:	 	 	
Matrícula:			

Instruções

- A prova consiste de 3 (três) questões discursivas.
- A prova terá a duração de 2h
- A prova pode ser feita a lápis ou caneta
- Pode ser consultado qualquer material impresso ou escrito.
- Calculadoras podem ser utilizadas, mas todas as contas e respostas devem ser justificadas

Indicar aqui as questões resolvidas:

Questão	Nota		
Total			

Prof. André Noll Barreto

Questão 1 (2,5 pontos)

Suponha que g(t) seja um pulso que satisfaça o critério de Nyquist de ISI nula, e que no transmissor seja utilizado um pulso de formatação $P(f) = \sqrt{G(f)}$. Supondo que no receptor é utilizado um filtro casado, mostre que o ruído w_k no sinal discreto amostrado a intervalos T_s na saída do receptor é branco, ou seja, $E\{w_k w_l\} = 0$, para $k \neq l$.

O ruído branco n(t) tem PSD $S_n(f) = \frac{N_0}{2}$. Ao passar por um filtro casado com resposta $H(f) = P^*(-f) = \sqrt{G(f)}$, temos na saída

$$S_{\rm w}(f) = |H(f)|^2 S_{\rm n}(f) = \frac{N_0}{2} G(f)$$

A autocorrelação do ruído é

$$R_w(\tau) = \mathcal{F}^{-1}\{S_w(f)\} = \frac{N_0}{2}g(t)$$

Sabemos também que $w_k = w(kT_s)$, e, portanto

$$E\{w_k w_l\} = E\{w(kT_s)w(lT_s)\} = R_w((k-l)T_s) = \frac{N_0}{2}g((k-l)T_s),$$

Como o pulso g(t) satisfaz o critério de Nyquist, $g(iT_s) = 0$, e, portanto $E\{w_k w_l\} = 0$

Prof. André Noll Barreto

Questão 2 (2,5 pontos)

Um sistema utiliza 16-QAM e transmite a uma taxa de 1Mbps. Sabemos que a resposta impulsional do sistema h(t) = p(t) * c(t) * p(-t) tem uma duração de 5 μ s, quantos estados teria um equalizador de Viterbi?

A taxa de símbolos é dada por $T_s = \frac{1}{R_s} = \frac{\log_2 M}{R_b} = \frac{4}{10^6} = 4\mu s$. Deste modo em 5 μ s teremos $L = \left[\frac{5\mu s}{T_s}\right] = 2$. O equalizador de Viterbi terá $M^{L-1} = 16$ estados.

Prof. André Noll Barreto

Questão 3 (5 pontos)

Um sistema de comunicações digitais é utilizado em um canal com resposta impulsional $h[k] = \delta[k] - j\delta[k-1]$.e $\frac{E_{s,tx}}{N_0} = 6$ dB.

- a) Qual a probabilidade de erro de bit para um sinal QPSK sem equalização? (1 ponto)
- b) Qual o filtro ZF no domínio da transformada-Z? (1 ponto)
- c) Construa a treliça do decodificador de Viterbi. (1 ponto)
- d) Ache os equalizadores MMSE de 3 taps supondo que tenhamos na saída do equalizador (2 pontos)
 - a. Um sinal sem atraso
 - b. Um sinal com atraso de uma amostra

Qual é melhor? Qual a razão sinal-ruído(distorção) na saída?

Supondo que a distorção é Gaussiana, qual seria a BER após a equalização?

a)
 Vamos supor que tenhamos os símbolos

$$s_k = \frac{\sqrt{2}}{2} (\pm 1 \pm j) \sqrt{E_s}$$

O sinal recebido será y[k] = x[k] - jx[k-1] + w[k].

Podemos considerar que enviamos o símbolo $x[k] = s_1 = \frac{\sqrt{2}}{2}(1+j)\sqrt{E_s}$, cuja região de decisão é o quadrante superior direito.

Dependendo de x[k-1], o sinal recebido será um dos quatro sinais

$$y_1[k] = \frac{\sqrt{2}}{2} [(1+j) - j(1+j)] = \sqrt{2E_s}$$

$$y_2[k] = \frac{\sqrt{2}}{2} [(1+j) - j(1-j)] = 0$$

$$y_3[k] = \frac{\sqrt{2}}{2} [(1+j) - j(-1+j)] = \sqrt{2E_s} (1+j)$$

$$y_4[k] = \frac{\sqrt{2}}{2} [(1+j) - j(-1-j)] = \sqrt{2E_s} j$$

Observando-se os pontos recebidos na constelação e a região de decisão, a probabilidade de erro de símbolo é

$$P_e = \frac{1}{4} \left(P(\epsilon | y_1) + P(\epsilon | y_2) + P(\epsilon | y_3) + P(\epsilon | y_4) \right)$$
$$= \frac{1}{4} \left(0.5 + 0.75 + 2Q \left(\sqrt{\frac{2E_s}{N_0}} \right) + 0.5 \right) \approx 0.4375$$

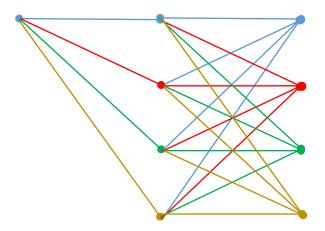
e, considerando codificação de Gray

$$P_e \approx \frac{1}{4} \left(0.25 + 0.5 + Q \left(\sqrt{\frac{2E_s}{N_0}} \right) + 0.25 \right) = 0.25$$

b)

$$H(z) = 1 - iz^{-1}$$

e, portanto,


$$F_{ZF}(z) = \frac{1}{H(z)} = \frac{1}{1 - iz^{-1}}$$

Prof. André Noll Barreto

c) O equalizador tem $M^L = 4$ estados e M = 4 transições, e a treliça é dada

d)

$$R_{y}[0] = E\{y^{*}[k]y[k]\}$$

$$= E\{(x[k] - jx[k-1] + w[k])(x^{*}[k] + jx^{*}[k-1] + w^{*}[k])\}$$

$$= 2E_{s} + N_{0} = E_{s}\left(2 + \frac{N_{0}}{E_{s}}\right)$$

$$\begin{split} R_y[1] &= E\{y[k]y^*[k-1]\} \\ &= E\{(x[k] - jx[k-1] + w[k])(x^*[k-1] + jx^*[k-2] \\ &+ w^*[k-1])\} = -jE_s \end{split}$$

$$R_{y}[2] = E\{y[k]y^{*}[k-2]\}$$

$$= E\{(x[k] - jx[k-1] + w[k])(x^{*}[k-2] + jx^{*}[k-3] + w^{*}[k-2])\} = 0$$

Considerando um atraso u:

$$E_{s} \begin{bmatrix} 2 + N_{0}/E_{s} & j & 0 \\ -j & 2 + N_{0}/E_{s} & j \\ 0 & -j & 2 + N_{0}/E_{s} \end{bmatrix} \begin{bmatrix} f_{1} \\ f_{2} \\ f_{3} \end{bmatrix} = E_{s} \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix},$$

$$\frac{E_{s}}{E_{s}} = 4, \text{ teremos}$$

e, com $\frac{E_s}{N_0} = 4$, teremos

$$f = [0,5896; 0,3265; -0,1451].$$

O erro quadrático médio é

$$MSE = E_s(1 - h[0]f[0]) = E_s(1 - 0.5896) = 0.4104E_s.$$

Considerando um atraso
$$u = 1$$

$$E_{S} \begin{bmatrix} 2 + N_{0}/E_{S} & j & 0 \\ -j & 2 + N_{0}/E_{S} & j \\ 0 & -j & 2 + N_{0}/E_{S} \end{bmatrix} \begin{bmatrix} f_{1} \\ f_{2} \\ f_{3} \end{bmatrix} = E_{S} \begin{bmatrix} j \\ 1 \\ 0 \end{bmatrix},$$
e, com $\frac{E_{S}}{N_{0}} = 4$, teremos
$$f = \begin{bmatrix} 0.2630i : 0.4082 : 0.1814i \end{bmatrix}.$$

$$\mathbf{f} = [0,2630j; 0,4082; 0,1814j].$$

O erro quadrático médio é

Prof. André Noll Barreto

$$MSE = E_s(1 - h[0]f[1] - h[1]f[0]) = E_s(1 - 0.4082 - j(0.2630j))$$

= 0.3288E_s.

O melhor é com atraso u = 1.

O MSE inclui toda a distorção, e a

$$\left(\frac{E_s}{N_0}\right)_{MMSE} = \frac{E_s}{MSE} = \frac{1}{0,3288} = 3,041$$

A BER é

$$Q\left(\sqrt{\left(\frac{E_s}{N_0}\right)_{MMSE}}\right) = 0.041$$

Comunicações Digitais Prof. André Noll Barreto

Função Q

X	Q(x)	X	Q(x)
0,1	4,60E-001	3,1	9,68E-004
0,2	4,21E-001	3,2	6,87E-004
0,3	3,82E-001	3,3	4,83E-004
0,4	3,45E-001	3,4	3,37E-004
0,5	3,09E-001	3,5	2,33E-004
0,6	2,74E-001	3,6	1,59E-004
0,7	2,42E-001	3,7	1,08E-004
0,8	2,12E-001	3,8	7,23E-005
0,9	1,84E-001	3,9	4,81E-005
1,0	1,59E-001	4,0	3,17E-005
1,1	1,36E-001	4,1	2,07E-005
1,2	1,15E-001	4,2	1,33E-005
1,3	9,68E-002	4,3	8,54E-006
1,4	8,08E-002	4,4	5,41E-006
1,5	6,68E-002	4,5	3,40E-006
1,6	5,48E-002	4,6	2,11E-006
1,7	4,46E-002	4,7	1,30E-006
1,8	3,59E-002	4,8	7,93E-007
1,9	2,87E-002	4,9	4,79E-007
2,0	2,28E-002	5,0	2,87E-007
2,1	1,79E-002	5,1	1,70E-007
2,2	1,39E-002	5,2	9,96E-008
2,3	1,07E-002	5,3	5,79E-008
2,4	8,20E-003	5,4	3,33E-008
2,5	6,21E-003	5,5	1,90E-008
2,6	4,66E-003	5,6	1,07E-008
2,7	3,47E-003	5,7	5,99E-009
2,8	2,56E-003	5,8	3,32E-009
2,9	1,87E-003	5,9	1,82E-009
3,0	1,35E-003	6,0	9,87E-010

