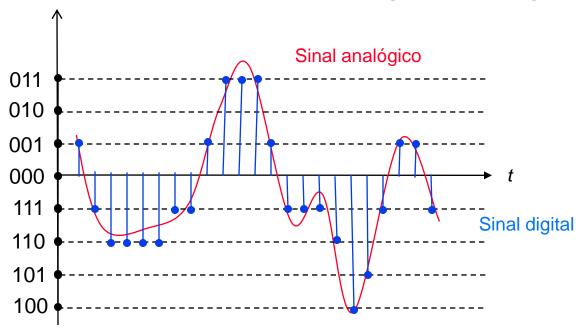

Teoria das Comunicações

1 - Introdução

Enlace de um Sistema de Comunicação

Enlace

- Objetivo
 - Enviar mensagem de uma fonte a um (ou mais) destino
 - Eficientemente
 - Fielmente
- Fonte
 - Origina a mensagem
 - · Voz, vídeo, áudio, dados, ...
- Transdutor de fonte
 - Converte mensagem em um sinal que pode ser transmitido
 - Converte sinal recebido em uma mensagem
 - Sinal pode ser analógico ou digital



Mensagens Analógicas e Digitais

- Mensagens Analógicas:
 - Valores podem assumir infinitos valores em um intervalo contínuo
 - Exemplos
 - Sinal de voz
 - Intensidade luminosa de um pixel
 - Dados meteorológicos (temperatura, umidade, etc)
 - •
- Mensagens digitais
 - São constituídas de um número finito de símbolos (alfabeto)
 - Exemplos:
 - Mensagens de texto
 - Frequência à aula
 - Gols do Flamengo a cada jogo
 - Bits
 -

Conversão Analógico-Digital

- conversão de um valor analógico para um digital é chamado de digitalização
 - Quantização (eixo de valores)
 - Acarreta perdas pelo erro de quantização (níveis são finitos)
 - Amostragem (eixo do tempo)
 - Pode ocorrer com perdas ou não (Teorema da Amostragem de Nyquist)
 - Sinal digital pode ser representado como sequência de bits

Enlace - Transmissor

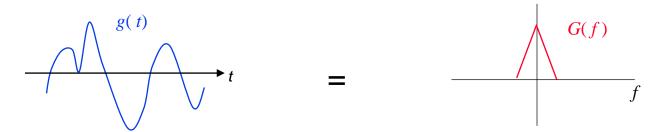
- Processa o sinal-mensagem e o adequa ao canal utilizado, gerando sinal
 - Onda eletromagnética
 - Rádio
 - Luz
 - Onda acústica
 -
- Transmissor inclui:
 - Codificação de canal,
 - Multiplexação
 - Modulação ou codificação de linha
 - Amplificação

Canal (1/2)

- Diversos significados em telecomunicações
 - ex., um canal de TV, um canal de voz GSM
- No nosso caso: Meio físico para transmissão de informação
- O que constitui o canal?
 - Características do equipamento
 - Características do meio de transmissão
- Exemplos de meios de transmissão:
 - Informação transmitida no espaço
 - Cabo coaxial
 - Fibra óptica
 - Ar (comunicações sem fio, radiodifusão)
 - Ågua (sonar)
 - Informação transmitida no tempo
 - Meio de gravação (disco magnético ou ótico)
- Equipamentos:
 - Antenas
 - Amplificadores
 - Cabeça de gravação magnética

Canal (2/2)

- O canal atenua o sinal
- O canal distorce o sinal
 - Linearmente
 - Não linearmente
- O canal acrescenta ruído ao sinal
 - Ruído é um sinal aleatório aditivo
 - Possíveis fontes de ruído:
 - Interferência de outras fontes de transmissão
 - Interferência de equipamentos elétricos
 - Relâmpagos, radiação solar
 - Ruído térmico
 - Arranhões e impurezas (em meios de armazenamento)
 - ...

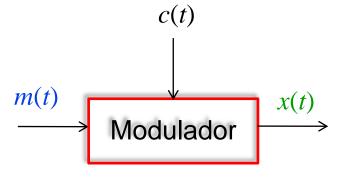

Enlace - Receptor

- Processa o sinal eletromagnético recebido do canal
 - Desfaz operações do transmissor
 - demodulação,
 - decodificação,
 - Demultiplexação
 - •
 - Compensa distorções do canal
 - Filtragem,
 - Estimação de canal,
 - equalização,
 - sincronização
 - . . .
- Entrega estimativa do sinal mensagem

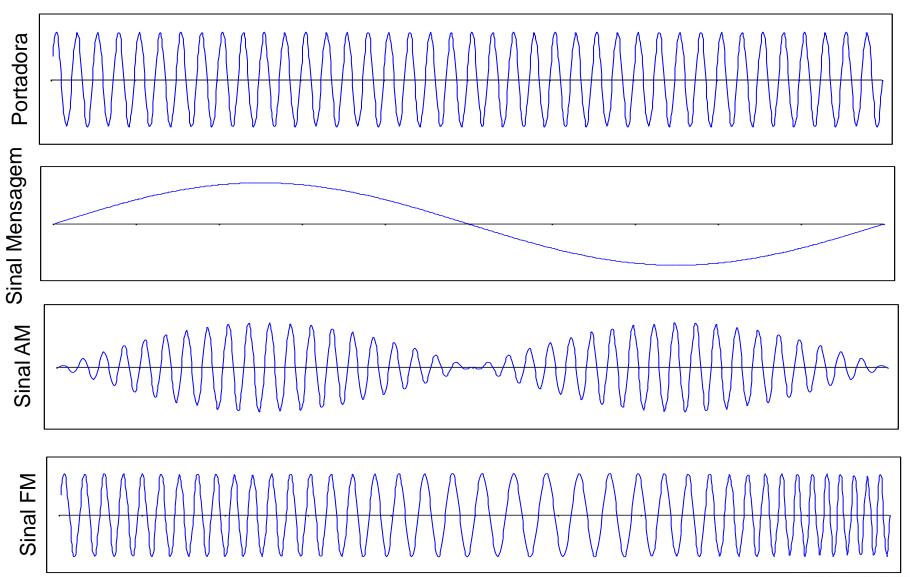
Tempo x Frequência

- Sinal: variação do campo eletro-magnético ao longo do tempo g(t)
- Qualquer sinal no tempo pode ser representado no domínio da frequência
 - Transformada de Fourier

- É muitas vezes mais fácil analisar o sinal no domínio da frequência!
- Espectro é a representação do sinal na frequência
- Conceito amplamente utilizado
 - Ex.: frequência de um canal de TV/rádio, largura de banda de um sinal de áudio, etc.
 - Espectro é um conceito matemático!

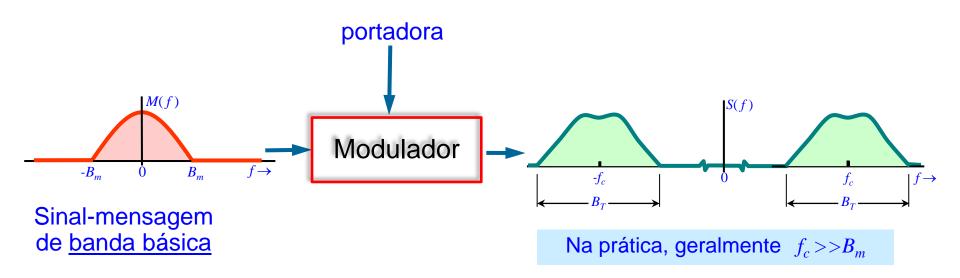


Modulação


• Uma portadora é um sinal sinusoidal de alta frequência f_c

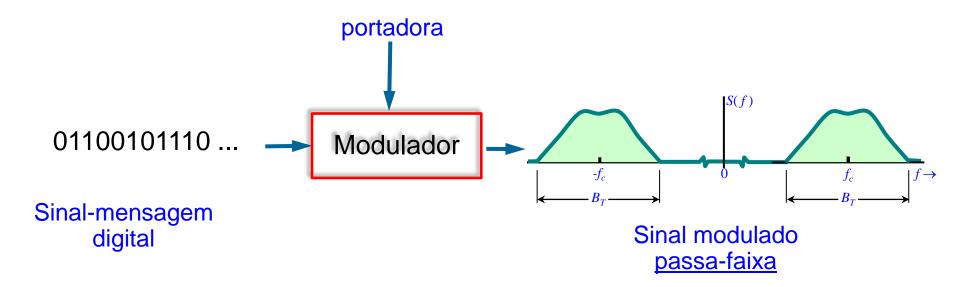
$$c(t) = A \cos(2\pi f_c t + \theta)$$

 Modulação é o processo em que algum parâmetro de uma portadora é modificado de acordo com um sinal mensagem, gerando um sinal modulado


Exemplos de Modulação

Modulação Analógica

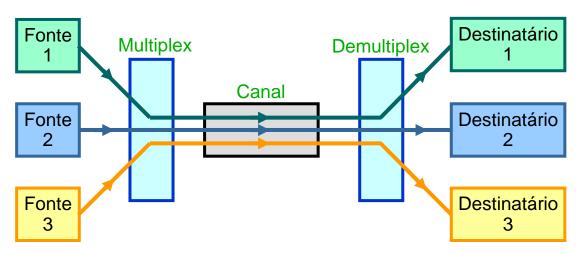
 Converte um sinal-mensagem analógico de banda básica em um sinal analógico de alta frequência em banda passante



Sinal modulado passa-faixa

Modulação Digital

 Converte um sinal-mensagem digital (sequência de bits) em um sinal analógico de alta frequência em banda passante



Por quê modular?

- Para facilitar a transmissão no meio físico
 - Em transmissão sem fio, Tamanho de antenas limitado pelo comprimento de onda
 - Em fibras ópticas, para gerarmos sinais na frequência da luz visível (entre 4,3 x 10¹⁴ e 7.5 x 10¹⁴ Hz)

Para transmitirmos vários sinais no mesmo meio físico

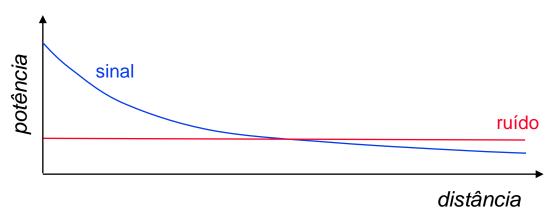
(multiplexação)

Multiplexação

- Transmissão de vários sinais no mesmo canal
- FDM (Frequency Division Multiplexing)
 - Diferentes sinais em banda base modulados em portadoras diferentes
 - Todos os sinais transmitidos simultaneamente
- TDM (Time division multiplexing)
 - Uma só portadora para todos os sinais em banda base
 - Diferentes sinais transmitidos em intervalos de tempo diferentes
 - Aplica-se à transmissão digital
- Podemos combinar os dois métodos

Medidas de quantidade de informação

- Mensagens analógicas:
 - largura da banda básica ocupada pelo sinal-mensagem
 - Ex. sinal de vídeo tem banda maior que sinal de áudio
- Para mensagens digitais:
 - a taxa de bits ou largura de banda digital (bit/s or bps) não é exatamente uma medida da quantidade de informação contida em um fluxo de bits,
 - mensagem pode ter redundância
 - mas geralmente está relacionada com essa quantidade.



Qualidade em Sinais Analógicos

- Razão Sinal-Ruído (RSR)
 - Signal-to-Noise-Ratio (SNR)
- Razão entre potência do sinal (P) e a potência do ruído (N)

$$RSR = \frac{P}{N}$$

 Na maior parte dos canais, potência do sinal cai com distância, mas do ruído não ⇒ RSR diminui

Normalmente medido em dB

Decibel (dB)

• Razão entre potências: $RSR_{dB} = 10\log_{10}RSR = 10\log_{10}\frac{P}{N}$ $= 10\log_{10}P - 10\log_{10}N = P_{dB} - N_{dB}$ $RSR = 10^{RSR_{dB}/10}$

- dB é adimensional
- Algumas unidades de potência: $P_{\text{dBW}} = 10 \log_{10} \left(\frac{P}{1 \text{W}} \right)$

$$P_{\rm dBm} = 10 \log_{10} \left(\frac{P}{1 \text{mW}} \right)$$

• porém, para amplitudes A_S e A_N

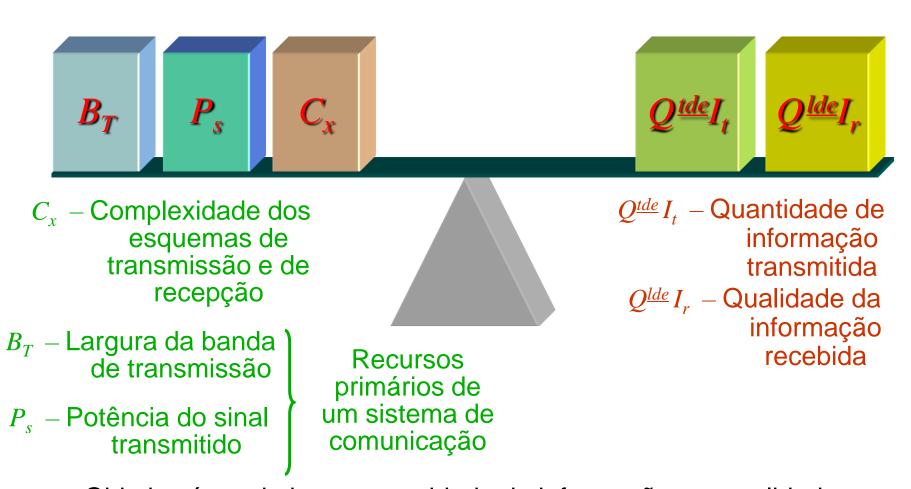
$$P = A^2$$

$$RSR_{dB} = 10 \log_{10} \left(\frac{A_S^2}{A_N^2} \right) = 20 \log_{10} \left(\frac{A_S}{A_N} \right)$$

Qualidade em Sinais Digitais

Taxa de erro de bit (bit error rate – BER)

$$BER = \frac{n\'umero de bits recuperados com erro}{n\'umero total de bits recebidos}$$


- Bits são usualmente agrupados em pacotes
- Taxa de erro de pacotes ou quadros
 - (packet error rate PER, frame error rate- FER ou block error rate BLER)

$$FER = \frac{\text{número de quadros com erro}}{\text{número total de quadros recebidos}}$$

- Um bit errado já inviabiliza pacote
- BER/PER desejada depende do serviço
- BER depende da RSR do sinal analógico modulado

Critérios para escolha de um esquema de transmissão

Objetivo é maximizar a quantidade de informação e a qualidade, utilizando poucos recursos e com baixa complexidade....