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7.3.1 Soft Sensors

One of the common probiems shared by many industrial processes is the inability to measure key
process variables noninvasively and in real time, especially the compositions of process streams and
product properties. The development of improved sensors, based on new techniques of analytical
chemistry and modern electronic devices using fiber optics and semiconductors, has been an active
area {cf. Appendix A). As an alternative, the use of easily measured secondary variables to infer val-
ues of unmeasured process variables is now receiving great interest; the term virtual soft sensors or sen-
sors {Martin, 1997) is often used to denote this approach. Chemonmnetrics is a term related to soft
sensors that describes how data from process analyzers (e.g., spectra) can be analyzed and modeled for
use in process monitoring and control (Broswn, 1998).

Soft sensors have become an attractive alternative to the high cost of accurate on-line measure-
ments for applications where empirical models can accurately infer (that is, predict) unmeasured
variables. For example, the environmental regulatory agency in Texas now permits NN models to
be used for monitoring emissions from various process units such as power boilers. The NN models
use measurements of selected input and output variables to predict poliutants at the parts per
billion level (Martin, 1997). In materials manufacturing, the real-time detection of cracks, inclu-
sions, porosity, dislocations, or defects in metallurgical or electronic materials would be highly de-
sirable during processing, rather than after processing is completed and defective products are
shipped. Use of virtual sensor models to predict quality control measures, such as the formation
and location of defects, can greatly reduce the stringent requirements imposed on hardware-based
Sensors.

7.4 DEVELOPMENT OF DISCRETE-TIME DYNAMIC MODELS

A digital compitter by its very nature deals internally with discrete-time data or numerical values of
functions at equally spaced intervals determined by the sampling period. Thus, discrete-time models
such as difference equations are widely used in computer control applications. One way a continuous-
time dynamic model can be converted to discrete-time form is by employing a finite difference approx-
imation (Hanna and Sandall, 1995). Consider a nonlinear differential equation,
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where y is the output variable and u is the input variable. This equation can be numerically integrated
(though with some error) by introducing a finite difference approximation for the derivative. For ex-

ample, the first-order, backward difference approximation to the derivative atf = kAt is
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where At is the integration interval specified by the user and y(k) denotes the value of y(t) att = kAs
Substituting Eq. 7-26 into (7-27) and evaluating f{y, 1) at the previous values of y andu (e, ylk — 1)
and u{k — 1)) gives:
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Equation 7-29 is a first-order difference equation that can be used to predict y(k) based on infor-
mation at the previous time step (k — 1). This type of expression is called a recurrence relation. It
can be used to numerically integrate Eq. 7-26 by successively calculating y(k) for & = 1,2, 3, ...
starting from a known initjal condition y(0) and u(k). In general, the resulting numerical solution
becomes more accurate and approaches the correct solution y(f) as At decreases. However, for
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extremely smali values of At, computer roundoff can be a significant source of error (Hanna and
Sandall, 1995).

For the first-order differential equation,

201y = ku(y (1-30)
derive a recursive relation for y(k) using a first-order backwards difference for dy/dt.
SOLUTION The corresponding difference equation after approximating the first degivative is
I(J@# +y(k — 1) = Ku(k — 1) (7-31)
Rearranging gives
Yy = (1 - %)y(k — 1)+ K81 (7-32)

The new value y(k) is a weighted sum of the previous value y{k — 1) and the previous input
u(k — 1). Bquation 7-32 can also be derived directly from (7-29). ]

As shown in numerical analysis textbooks, the accuracy of Eq. 7-32 is influenced by the integra-
tion interval. However, discrete-time models involving no approximation errors can be derived for
any linear differentiat equation under the assumption of a piecewise constant input signal, that is,
the input variable u is held constant over Ar. Next, we develop discrete-time modeling methods that
introduce no integration error for piecewise constant inputs, regardless of the size of At, Such mod-
els are important in analyzing computer-controlled processes where the process inpufs are piece-
wise constant.

741 Exact Discrete-Time Models

For a process described by a linear differential equation, the corresponding discrete-time model can be
derived from the analytical solution for a piecewise constant input, This analytical approach eliminates
the discretization error inherent in finite-difference approximations. Consider a first-order model in
Eq. 7-30 with previous output y[(k — 1}Ar] and a constant input u(f) = «[(k — 1)Af] over the time inter-
val (k — 1) At = ¢ < kAf. The analytical solution to Eq. 7-30at ¢ = kAris

y(kd) = (1 — e~ 8 Ku[(k — 1AL + e 3y[(k — 1AL (7-33)
Equation 7-33 can be written more compactly as
y(k) = e~ y(k ~ 1) + K(1 — e 2")u(k — 1) (7-34)

EBquation 7-34 is the exact solution to Eq. 7-30 at the sampling instants provided that u(t) is constant
over each sampling interval of length Ar. Note that the continuous output y{f) is not necessarily con-
stant between sampling instants, but (7-33) and (7-34) provide an exact solution for y(¢) at the sam-
pling instants, k= 1,2,3,....

In general, when a linear differential equation of order p is converted to discrete time, a linear dif-
ference equation of order p results. For example, consider the second-order model:

Y(s) __ Ks+1)
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G(s) = (7-35)
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The analytical solution for a constant input provides the corresponding difference equation, which is
also referred to as an autogressive model with external (or exogenous) input, or ARX model (Ljung,

1999}
(k) = asy(k — 1) + azy(ke — 2) + bun(k — 1) + bau(k - 2) (7-36)
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In Eq. 7-36 the new value of y depends on the vatues of y and  at the two previous sampling instants;
hence, it is a second-order difference equation. If 12 = 12 = 0 in Eqs. 7.36 through 7-40, the first-order
difference equation in (7-33) results.

The steady-state gain of the second-order difference equation model can be found by considering
steady-state conditions. Let 7 and ¥ denote the new steady-state vahies after a step change in . Substi-
tuting these values into Eq. 7-36 gives

y=my t+ayt b + bau {7-41)

Because y and u are deviation variables, the steady-state gain is simply y/&, the steady-state change in
y divided by the steady-state change in u. Rearranging Eq. 7-41 gives

_ z _ b1 + b2 :
i o l-—a-a (7-42)
Substitution of Egs. 7-37 through 7-40 into (7-42) gives K, the steady-state gain for the transfer func-
tion model in Eq. 7-33.

Higher-order linear differential equations can be converted to a discrete-time, difference equation
model using a state space analysis (Astrom and Wittenmark, 1997).

7.5 IDENTIFYING DISCRETE-TIME MODELS
FROM EXPERIMENTAL DATA

If a linear discrete-time model is desired, one approachistofita continuous-time mode! to experimen-
tal data (cf. Section 7.2) and then to convert it to discrete-time form using the above approach. A more
attractive approach is to estimate parameters in a discrete-time model directly from inplt-output data
based on linear regression. This approach is an example of system identification (Ljung, 1999). As a
specific example, consider the second-order difference equation in (7-36). It can be used to predict y(k)
from data available at time (k — 1)Af and (k — 2)At. In developing a discrete-time model, model para-
meters ai, az, b1, and bs are considered to be unknown. They are estimated by applying linear regres-
sion to minimize the error criterion in Eq. 7-8 after defining

pl=lmmbb), Xi= yk—1), Xz= ylk=2), Xa= u(k —1), and Xy=ulk—2)

Consider the step response data y(k) in Table 7.2, which were obtained from Example 7.3 and
EXAMPLE7.5 Fig, 7.8 for At = 1. Initially, the system is at rest, At s = 0 a unit step change in u occurs, but the
first output change is not observed until the next sampling instant. Bstimate the model
parameters in the second-order difference equation (7-36) from the input-output data.
Compare this model with the models obtained in Example 7.3 using nonlinear regression.




