DESIGN OF AN OUTPUT FEEDBACK TRAJECTORY CONTROLLER
FOR AN AUTOMATED GUIDED VEHICLE
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Abstract—  This paper presents the design of an output feedback trajectory controller for a Automated Guided Vehicle (AGV)
differential drive. Its control architecture assumes that the two drive wheels are not coupled and the vehicle dynamics is not
taken into account. It employs two independent velocity controllers that ensure the wheels’ velocities referenced by the trajectory
controller. The reference trajectory is painted on the ground and is composed only by line segments and soft arcs. Simulation and
experimental results show the satisfactory tracking performance of the proposed controller.
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1 Introduction

The problem of trajectory control of mobile plat-
forms has been extensively reported in the literature
during this decade and different solutions for auto-
mated guided vehicles (AGVs) or autonomous vehi-
cles (AVs) have been investigated. In general, this
kind of problem does not depend upon the manner in
which the vehicle trajectory is specified. The trajec-
tory may be either physically marked on the floor to
serve as a guide or may be defined in terms of elapsed
time intervals since the initiation of the vehicle move-
ment. However, the propulsion method employed in
the vehicle has a decisive influence in the design and
implementation of the trajectory control scheme.

In order to follow a given trajectory, a mobile
robot must be equipped with a trajectory controller
and a sensor for measuring the vehicle deviation from
the marked trajectory. Its main purpose is to reduce
the vehicle’s measured deviation from the marked
trajectory to zero. This deviation can be defined
in terms of linear displacement and angular devia-
tion from the marked trajectory. The control ac-
tion should, in principle, be dependent on the vehi-
cle speed. It is well established that smooth PID
controllers or those based on state feedback do not
guarantee stability for non-holonomic systems (Zhang
et al., 1997) and differential drive-based vehicles be-
long to this class of systems. However, for simpler
trajectories composed of only linear segments and
soft arcs which are commonly employed for AGVs,
these kind of controllers should yield satisfactory re-
sults (Cox, 1991). For ensuring global stability for
any arbitrary trajectory, it becomes necessary to em-

ploy nonlinear control techniques. The more often
employed control strategies are based on nonlinear
state feedback (Zhang et al., 1997; d’Andréa Novel
et al., 1995; Aguilar et al., 1998), adaptive control
(Colbaugh et al., 1998; Mazur and Hossa, 1997) and
fuzzy logic (Tso et al., 1996; Fung and Tso, 1998).

The trajectory controller presented in this paper
has been designed for an AGV which should track a
marked trajectory consisting of soft arcs and linear
segments. Its design is original in the sense that the
controller parameters are analytically determined as a
function of the vehicle parameters and of the desired
trajectory error behaviour.

This paper is organized as follows. The kinemat-
ics of a differential drive vehicle is presented in Sec-
tion 2. Section 3 presents the variables used to quan-
tify the trajectory deviation and the sensor used to es-
timate such variables. Section 4 presents the design of
the control system. Simulations and experimental re-
sults are presented in Sections 5 and 6, respectively.
The conclusion of this investigation is presented in
Section 7.

2 Vehiclekinematics

The AGV used in the present investigation is a pro-
totype assembled in our laboratory that employs dif-
ferential traction which consists of drive wheels cou-
pled to two independent dc motors (see Figure 1). Two
other caster wheels are provided for ensuring stability
of the vehicle. The AGV was designed to track a fixed
route. An optical marking in the form of a strip painted
on the floor is the route guide or the marked trajectory.
The color of the painted strip contrasts against that of



Y Reference trajectory

v(t)

Heading line

Caster wheels

Figure 1. Defining trajectory error variables

the floor. In the experimental system, the route guide
is painted black on the white floor.

The vehicle position P is defined to be (xp,Yp) in
the cartesian X —Y plane where P is the mid-point po-
sition on the imaginary axle which connects the two
drive wheels. The vehicle direction is measured in
terms of the angle ¢ , between the X axis and a line or-
thogonal to the drive wheels axle. Therefore, the vehi-
cle position on the X —Y plane is completely specified
in terms of (xp,Yp,¢,). The drive wheels are referred
as the right wheel and left wheel, in conformity with
its location with respect to the line orthogonal to the
drive wheels axle.

The differential equations that describe the depen-
dence of the vehicle position with the angular speed of
the drive wheels are as follows:

Xp(t) = v(t)coso(t), @)
Yp(t) = v(t)sino(t), 2
o) = 2090, ®

where for the prototype vehicle r = 0.0325m is the
radius of the drive wheels (assumed to be identical),
b = 0.275m is the distance between the drive wheels
and o, and w, are the angular velocities of the right
and left drive wheels respectively. The speed of the
vehicle v(t) is given by:

v(t) = Mn 4)

3 Deviation from the marked trajectory

The deviation of the vehicle from the marked trajec-
tory is specified in terms of two variables: linear or-
thogonal displacement I" and angular deviation © as
shown in Figure 1. The desired position of the vehicle
on the reference trajectory is represented by the point
P* = (x*,y*). P* is the intersection point between the
reference trajectory and the imaginary axle that con-
nects the wheels. The orthogonal displacement I" rep-
resents the distance P — P*, being negative if P* is to

the right side of P on the imaginary axle. The angu-
lar deviation @ is the angle between the tangent to the
trajectory at P* and the line orthogonal to the wheels
baseline and that passes through P.

An optical sensor to measure these deviation vari-
ables has been reported by Borges et al. (Borges
et al., 1998). In this report the effectiveness of the
sensor performance has been determined using a spe-
cially designed test-platform. This effectiveness was
evaluated using geometrical algorithms and one neural
network-based algorithm. The neural algorithm gave
the most accurate estimates for I" and O, but its exe-
cution time is little higher than that of the purely ge-
ometrical algorithms. However, if the sensor’s image
acquisition time is taken into account the neural algo-
rithm offers advantages over the other algorithms. The
use of this optical sensor requires that I" and © be re-
stricted to

0.0478 — ||
|®| < arctan (W) , (5)
and
IT| < 0.0478 m. (6)

4 Trajectory control

4.1 Controller architecture

In the applications related with the transport of ma-
terials on a shop floor, sudden changes in the vehicle
speed may cause undesirable movement of the items
being transported, due to inertial forces and the skid-
ding of the vehicle. Thus one of the important at-
tributes of a trajectory controller is to maintain the
vehicle speed constant or should produce rather soft
variations in the speed. To obtain constant speed on
a curvilinear portion of the trajectory, the drive wheel
angular speeds o, and w, of the right and left wheels
respectively should be of the form:

o (t) = "—r" +Ao(T(),0(1)), )

o) = L -a0),00),  @©

Thus as per Eq. (4), the vehicle speed v(t) is con-
stant and given by v(t) = vp. The differential term
Aw(T'(t),0(t)) should correspond to curvilinear tra-
jectory of the moving vehicle with an instantaneous
curvature radius R (t) given by:

__oto)b_ vp b
RO =m0 2~ derm.0mz O

Thus Aw(T'(t),O(t)) can be considered as the
control variable in the AGV and is determined from
variables T'(t) and ©(t) describing the vehicle’s de-
viation from the marked trajectory. The convention
adopted in the present paper is that a left turn (w, (t) >
(1)) implies R¢(t) < 0.
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Figure 2. AGV’s Hierarchical control organization.

The hierarchical organization of the controller op-
erations is shown in Figure 2. There are three con-
trol levels: the navigation level (Level 2), the trajec-
tory control level (Level 1), and the speed control level
(Level 0). At first level the vehicles’s desired cruising
speed is defined or specified. At the second level, the
reference speeds of the drive wheels are determined
in order to keep the vehicle along a given trajectory.
These reference angular speeds are given as per Egs.
(7) and (8) or by

i (t) = "T" +An(T(1),0(t)), (10)
of (1) = 2 -Ao(N®),00). @Y

At the lowest level two speed controllers are em-
ployed to make the drive wheels rotate at the reference
speeds supplied by the immediately higher level. The
wheels speed controller are based on the MRAC strat-
egy and were designed via Lyapunov theory (Astrom
and Wittenmark, 1995). These controllers are not dis-
cussed in this report.

4.2 Proportional controller

For the proportional controller it is assumed that the
reference trajectory can be decomposed in the X —Y
plane in terms of straight-line segments and arcs. In
the first case that is illustrated in Figure 3, a X —Y
plane is shown in which the reference trajectory is the
X axis itself and the vehicle is initially at (Xp,Yp,®).
Whenever the reference trajectory is a straight-line
segment, the vehicle position can be expressed in
terms of the coordinates of Figure 3 and then the cor-
recting control signal can be computed as shown be-
low.

The linear orthogonal displacement T" and angular
deviation © can be determined from the actual vehicle

Left wheel

Figure 3. Trajectory deviation for straight-line segments.

position by:
G(t) = _q)p(t))
_ ¥
re = coqu)p(t)'

Using the above relationships together with the
vehicle kinematic model Egs. (1), (2) and (3), the
following differential equations can be derived to de-
scribe the behaviour of the vehicle deviation:

I) = - <rr(t) (o () —n (t) +v(t)> tane(t)

b
r(or (t) — o (1)
5 :

Using Eqgs. (7) and (8) and considering v(t) = vy,
we can write

o) = —

i) = <2rF(t)Aw(F(L),G)(t)) +bvp> —
o) = —%Aw(l‘(t),@)(t)).

The above model can be further simplified by re-
writing it in terms of g(t) = I'(t) cosO(t) = yp(t). The
simplified model is given by:

g(t) = vpsinO(t), (12)
o(t) = —%Am(l"(t),@(t)). (13)

The proportional control law may be defined as:
Ao(T'(t),0(t) = Ke(t)e(t) + KeO(t) (14)

in which K (t) = K/ cos©(t). By placing the propor-
tional control law into the simplified model given by
(12) and (13) we find that

g(t) = vpsinO(t),

O(1) = 21 (Ke(t)e(t) + Ko®(1).

which represents an autonomous dynamic and non-
linear system that has (g,0) = (0,0), (g,0) =
(—Kem/Kr,n) and (g,0) = (Ken/Kr, —7) as attrac-
tors. The first attractor (¢,@) = (0,0) is stable in the
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sense of Lyapunov for Kg and Kr being positive con-
stants. The other two attractors imply that the vehicle
is following the reference trajectory with a constant
orthogonal displacement but in the opposite direction.
However, considering that the initial condition is re-
stricted to |©| < w/2 then the vehicle had to make an
u-turn in order to move in the opposite direction and
eventually ® becomes m/2 which would result in a
failure of the trajectory detecting sub-system and will
stop the vehicle.

Supposing that the vehicle is sufficiently aligned
with the reference trajectory sin® = 0, K¢ ~ Kr, then
the system dynamics can be described by

et) ) _ 0 Vp g(t)
o) ) \ —2rKr/b —2rKg/b o) )
The transient response in this case is determined
by the roots of

2rK Vp2rK
2 © p I
S+ ——5 =0.

T ST
It is desired that the vehicle movement toward the
marked trajectory be smooth, fast and without over-
shoot. To achieve these specifications Kg > 0 and

2vpKrb
Ko = +1/ =2 (15)

which implies that the closed-loop is stable with two
equal roots given by

S12 = —%K@. (16)

From Egs. (15) and (16), the gains Kr and Kg

can be determined to provide the desired dynamic re-
sponse. However, this design procedure can result in a
controller which may not provide satisfactory perfor-
mance while the vehicle is moving along the curvilin-
ear paths. Thus the design of the controller should also
take into account the performance along the curved
paths with constant radius R as shown in Figure 4.
Considering the vehicle has attained the steady-state,

the radius of the curve traversed by the vehicle is given
by (9). It can be easily verified that for the vehicle to
track the radius of curvilinear trajectory it is required
that Aw(T'(t),0(t)) # 0 but in steady-state ©(t) = 0.
However, during its movement along the curve the
proportional controller would provide a constant and
non-zero orthogonal displacement. Intuitively we can
find that such displacement I'c > 0 will be positive
for the curve to the left and, according to Figure 4,
I'c = — (Rc +R). Using Eq. (9) this displacement can
be expressed by

vp b

e=—+> __— R 17
‘T Ao(T,0)2r n

with
Ao(T,0) = KrT%.
Then, the orthogonal displacement I in steady-
state is given by the solution of
vpb
P —o.

rg +IeR - 2rKr o

Since I'c > 0, the physically acceptable solution

1 vpb
Ie=>|-R+/R2+2-22 .
¢ 2< + + rKr>

and thus Kr can be determined in terms of the devia-
tion from curvilinear trajectory by:

is

_ 2vpb
- r((R+2I¢)?—R?)’

Kr (18)

Thus the design of the proportional controller
needs the specification of the permissible deviation

from the curved trajectory. Moreover, from (18) and
(15) the values of K- and Kg can be determined.

5 Simulation

Two simulation studies were carried out in order to
evaluate the proportional controller design. In doing
so, the proportional controller was designed to give
I'c =0.01lm and I'; = 0.02m, according to Eqgs. (18)
and (15). The corresponding controllers are named on
CP-1 and CP-2, respectively. The simulated trajectory
is shown in Figure 5. In order to allow further com-
parisons, the experimental setup presented on the next
section uses the same reference trajectory. In this sim-
ulation the AGV must follow the trajectory and some
strategic points are marked as A, B, C, D, E, F, G, H
and I. The arcs have a radius of R = 0.3 m. The vehi-
cle cruising speed was v, = 0.1625 m/s and the AGV
parameters are the same of the prototype vehicle. The
AGYV starts with an initial trajectory deviationof I'=1
cmand © =0.

Figures 6 and 7 present the plots of I" and © of the
AGYV for the controllers CP-1 and CP-2, respectively.
In these plots, small circles indicate the instants when
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Figure 6. Simulation results for the proportional controller with
=0.01m: (a) I'and (b) ©.

the vehicle was close to each marked positions from
A to L. It can be seen that the steady-state values for
I (I';) for each controller was correctly verified in the
soft arcs (segments B-F and G-H), and the stabiliza-
tion to zero of I" and © occurred without overshoot for
the straight-line segments (A-B, F-G, and H-1). From
Egs. (18) and (15), it can be verified that for reducing
I'c, the gains Kr and Kg should increase. For large
values of Kr and Kg, the proportional controller may
be very sensitive to noise in the estimation of T" and
©. Moreover, the controller CP-1 is faster than the
controller CP-2. This fact can also be verified from
the real poles given by Eq. (16), once Kg is smaller
for CP-2 than for CP-1. Therefore, a compromise be-
tween convergence speed and noise sensitivity must be
taken into account for the design of this controller.

6 Experimental results

In order to evaluate the trajectory controller, experi-
mental tests were carried out with a trajectory identi-
cal to the one used in the simulation studies (see Fig-
ure 5).The initial trajectory error was I' = 1 cm and
O = 0. The vehicle stops at | when the trajectory fault
is detected. A trajectory fault occurs when the devia-
tion is out of the bounds given by egs. (5) and (6).

O [deg]

Figure 7. Simulation results for the proportional controller with
=0.02m: (a) T and (b) ©.

The proportional controller is designed in order
to have I'c = 0.02m (CP-2 in Section 5) for curvilin-
ear segments. According to Egs. (18) and (15), this
results in Kr = 107.42 and Kg = 17.18. Considering
the size and weight of the AGV, the navigating veloc-
ity is chosen as v, = 0.1625m/s.

The experimental results for the proportional con-
troller are shown in Figure 8. In this figure, I' and ©
of the controlled AGV are plotted versus the time and
the corresponding values when the AGV passed from
mark A to | are represented by small circles. As can be
seen in Figure 8(a), I" remained limited to £0.02m in
the arcs B-C, E-F and G-H. For the arc C-D-E, some
oscillations occurred giving a I" # I'c. However, these
oscillations were not observed in arcs B-C, E-F and
G-H. In fact, this can be explained by the nonlinear-
ities of the right wheel mechanical system. As the
right wheel velocity controller has some difficulty to
stabilize at low velocities, the result is an unstable be-
haviour in the arc C-D-E. Figure 8(b) shows that © has
been kept small for all trajectory with some peaks in
the beginning of the arcs. This same behaviour was
also observed in the simulation as presented in Sec-
tion 5. However, we can verify a small offset in ©
and small oscillations in T". This may be a result of
the sensor misalignment, as it can be verified by a fur-
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Figure 8. Experimental results for the proportional controller: (a) T’
and (b) © of the controlled vehicle.

ther analysis of equations (12) and (13). In doing so,
the control law Aw employs sensor readings I's and O
given by

Is =T 43T,
0s = 04950,

with 8I" and 8O being the sensor error components due
to misalignment. As a consequence the system attrac-
tor and the sensor readings will be different from zero.
It can be observed that the simulations presented in
Section 5 used a perfect sensor model without errors
on the readings of I"and ©, and the controller provided
the ideal steady-state for straight-line segments: ' =0
and © =0.

7 Conclusion

We have presented the design of a proportional output
feedback trajectory controller for a differential drive
Automated Guided Vehicle (AGV). Its control archi-
tecture assumes that the two drive wheels are not cou-
pled and the vehicle dynamics is not taken into ac-
count. It employs two independent velocity controllers
that ensure the wheels velocities defined by the trajec-
tory controller. The reference trajectory is painted on
the ground and consists of only straight line segments
and soft arcs. The controller parameters were analyt-
ically determined as a function of the vehicle param-
eters and of the specified trajectory error behaviour.
Simulated and experimental results have shown the
satisfactory performance of the proposed controller.
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