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Abstract

This article describes an iterative algorithm for rel-
ative motion estimation from 2-D range images. The
matching is achieved in the geometric feature domain
represented by straight lines and ellipsoidal clusters.
Using infinite length straight lines instead of line seg-
ments as features, the algorithm attempts to achieve
robustness to partial occlusions. The motion estimates
and the feature correspondence measures are deter-
mined in order to minimize a cost function. The per-
formance of this algorithm was evaluated with exper-
iments carried out in real cluttered indoor environ-
ments.

1 Introduction

During the last decade, map-based positioning
techniques using laser range sensors have been exten-
sively studied to solve the problem of autonomous mo-
bile robot navigation in indoor environments. Abso-
lute localization methods are generally based on the
matching of a current local map provided by the sen-
sor with a stored 2-D global reference map. When a
correct match is found, the actual position and orien-
tation of the robot are computed. A more complete
review on map-based absolute localization approaches
for mobile robots is presented in [1]. The same pose
estimation methods may be applied to the relative mo-
tion estimation problem. In this paper, we are inter-
ested in matching two consecutive range images by
using geometric features.

The general approach used for position estima-
tion by geometric features matching is the Extended
Kalman Filter (EKF'). The EKF is used to track fea-
tures in consecutive range images, resulting in a local
matching procedure. Using linearization around the
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current predicted pose, the FKF may be very sensitive
to non-linear aspects of the measurement model and
may give suboptimal estimates. Furthermore, mea-
surement errors are assumed to have Gaussian distri-
bution and the error covariance matrices have a strong
influence on the filter convergence. Alternative ap-
proaches for position estimation by features matching
in range scan images use dynamic programming [2]
and clustering techniques [3].

Matching techniques of range images can be clas-
sified according to the kind of feature used to solve
the correspondence problem: measured points [4], line
segments [2], and geometric beacons like corners [5, 6].
As indoor environments are rich in polygonal objects,
line segments characterized by end-points are often
used as basic features. However, as partial occlusions
frequently occur in real cluttered environments, the
length of the line segments may change considerably,
or new line segments can appear. Thus, if no match is
found the problem becomes ill-conditioned. We be-
lieve that features like infinite length straight lines
are less sensitive to partial occlusion. These features
have a polar representation given by their inclination
and the distance to the local frame origin. However,
the polar parameters of short length straight lines,
as those generated by small polyhedral obstacles, are
very sensitive to the robot’s pose. We decided to label
these short lines as ellipsoidal features, described by
the coordinates of their center of gravity.

The method presented in this paper matches two
consecutive range images using the above fundamental
features in an iterative manner. As in EKF-based ap-
proaches, the proposed algorithm starts from an initial
motion estimate and its associated uncertainty given
by dead-reckoning. The problem is formulated so as
to minimize a cost function incorporating feature cor-
respondence measures and motion estimates. Using
the alternative optimization approach, the feature cor-
respondence measures and the motion estimates are



updated at each iteration. Experiments carried out
in real cluttered indoor environments show the good
performance of the proposed algorithm.

This paper is organized as follows. Section 2 de-
scribes the relative motion estimation problem and
the features representation. The motion estimation
algorithm is presented in Section 3, and the imple-
mentation aspects are discussed in Section 4. Section
5 presents the experimental results and Section 6 con-
tains the conclusions.

2 Problem Statement

We consider that a robot equipped with a laser
radar moves on a flat ground in a structured indoor en-
vironment. All acquired 2-D range images are formed
by a sequence of points in the Cartesian coordinate
system (Xp,,Y}) of the sensor. They are represented
in the polar form I = {p,,p,}N_,. p, is the distance
between the origin of (Xy,,Y7) and the nearest obsta-
cle in the scanning direction given by the angle ¢, with
respect to X. For convenience, all motion estimates
are referred to the (X, Yr) coordinate system.

As the vehicle moves, a sequence of 2-D range im-
ages are acquired by the ladar at different absolute
poses. The problem stated in this work is to find
the vehicle’s motion between two consecutive abso-
lute poses P_; and Py, by matching the corresponding
range images I, and I;. Due to the robot’s move-
ment, a static point in the absolute system is observed
in images Ip_; and I} at the cartesian coordinates
(zk—1,yr—1) and (zg,yr), respectively. We establish
that the motion is given by a translation t = (t,,t,)
and a rotation angle w such that
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The matching of images I_1 and I is achieved
using linear (straight lines) and ellipsoidal features. As
these features are extracted from range images in the
form of sets of points with a special organization, they
are treated as clusters. A linear cluster is represented
by the polar parameters p; and «; of the line that best
fits the set of points (see Fig. 1). Let {z;,y;}1, a
set of points in the Cartesian coordinate system. The
straight line parameters that best fit these points are
given by [4]

p, = Zcosap + gsinay, (3)
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Figure 1: Features description.
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Ellipsoidal clusters are defined by the components
ze = and y, = ¢ of their center of gravity (Fig. 1).

A common quality measure for all clusters is the
empirical standard deviation of the points set with
respect to the principal direction line. This parameter
is given by
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3 Motion Estimation

The motion estimation algorithm assumes that ini-
tial estimates t and & of t and w are given by a
dead-reckoning method. It is well known that dead-
reckoning has errors that grow with time. Therefore,
for short periods of time, systematic errors can be well
modeled and error bounds could be directly obtained
from uncertainty ellipses. Our approach attempts to
track features between two consecutive range images
I;.—1 and I}, given initial estimates to and &g and error
bounds Atg and Awg.



We formulate the motion estimation and the fea-
ture tracking as an optimization problem. In this con-
text, we iteratively reduce a cost function which in-
corporates the feature correspondence measures and
evaluates the motion estimates. This type of criterion
is extensively used by the pattern recognition commu-
nity for the development of robust clustering methods.
Therefore, we have chosen a cost function derived from
the Possibilistic C-Means algorithm (PCM) [7], and
given by
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where y1;; and d(f;, f; ,t, ) are the correspondence and
distance measures between the features f; and f;, given
the current estimates t and . In order to minimize
the effects due to non-normalization, the representa-
tion of each extracted line is changed to 1 = (z7, )7,
with z; = p;cos(oq) and y; = p;sin(oy) (see Fig. 1).
This allows us to have a uniform cluster representa-
tion in the Euclidian space in the form f, = (z,,y,)".
Np_1 and Ny, are the number of features in I,_; and
I, respectively, and 5, is a parameter which is feature
dependent.

The distance function d(f;, f;, t, %) must be zero for
two corresponding features f; and f; related by the
real motion t = t and & = w. Two corresponding
features are defined as being generated by the same
static object in the environment. Therefore, given a
feature f; = (z;, yi)T in image I_1 and its correspond-
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ing f; = (zj,y;)" in image I}, we can show from eq.
(1) that their parameters are related by
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In this approach, we do not consider correspon-
dence between a linear and an ellipsoidal feature. For
two corresponding linear clusters, we have a; = cos o,
b; = sinq; and ¢; = a;b;, where a; is given by eq.
(4). For ellipsoidal clusters, a; = b; = 1 and ¢; = 0.
Therefore, a suitable choice for the distance function
between two features is
A(f, £,0)

d(f;, £;,t,0) = ||f - ) (12)

where ||| is the vector norm.

In the same way as in the PCM algorithm, mini-
mization of J is achieved using the alternative opti-
mization approach. Firstly, we consider the current
estimates £ and & as constants, and we determine Hij

such that
oJ

— =0. (13)
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Thus, p;; is given by a Gaussian function:
d(£;, £, t,0)
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It can be pointed out that d is a real-valued function
and 0 < p;; < 1 for p; > 0. As shown by eq. (14),
the parameter n; controls the width of the Gaussian
function. So, it is important to determine suitable
values for n;. If n; < d*(f;,f;,t,&), two corresponding
straight lines f; and f; that have a small value for
the distance measure d°(f;, f;, £,&) will receive a small
correspondence measure j;;. If n; is great enough such
that n; > d*(f;,f;,t,&) for two straight lines that do
not correspond, p;; will be close to 1.0. This kind
of mistake is not suitable and 7, must be carefully
chosen. This issue is discussed in Section 4.

The estimates € and & are determined by consider-
ing that u,;; is constant and by solving
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From egs. (16) and (17) we have

B'PMTINB+B (r+PM) =0. (23)



Eq. (23) may be transformed in a fourth order
polynomial in z = sinw. Using a numerical method
for finding polynomial roots, four candidates for @
are determined. We can select m < 4 solutions zg,
g=1,...,m, such that -1 < 2z, <1 and 2, € R.
As sin@ = sin(m — @), from the selected z, we have
2m candidates for @. The final choice for @ is the one
which minimizes .J. t is given by eq. (16).

4 Implementation

The final motion estimation algorithm is written as:

1. Initialization:

(a) The laser radar provides two range images
I, 1 and Ij taken at consecutive absolute
poses Pp_q and Py;

(b) Dead-reckoning provides initial estimates to
and @o of the motion between P,_; and Py,
as well as the associated error bounds Atg
and Awp.

(c) Extract features from images I,_; and I;

(d) Initialize the iteration number n := 0.

2. Evaluate the distance functions as given by eq. (12)
and the current estimates t,, and w,.

3. Determine suitable values for ;.
4. Update the correspondence measures p;; (eq. 14).
5. n:=n+1.

6. From equations (16) and (17), determine the new
estimates t,, and wy.

7. Test for the algorithm stabilization: if
[En —En-1]| < & and |lon —@noa < e
or if n > nmax. Go to step 2 if the stabilization
test fails;

8. The final motion estimates are given by &, and &y.

As explained in section 3, the convergence of this
algorithm depends on ;. We propose to determine n;
in order to have small values of p;; for features with
related motion out of the bound limits. From dead-
reckoning, it is known that the real motion parameters
belong to the validity intervals t—At<t<t+At
and @ — Aw < © < & + Aw. Thus, given the motion
validity intervals and the feature f;, we must deter-
mine the maximum allowable value for d, called dmax.
In order to avoid a search procedure in the motion va-
lidity interval, we assume that such a maximum is on
its limits. Hence,

dmax = ||A(f17£7d)) - A(flaE + At,d) + Aw)” - (24)

Eq. (24) suggests that the real motion param-
eters are t and &, the feature corresponding to f;
is A(f;, t,@), and the maximum error corresponds to
t + At and & + Aw. We define 5, as

- dr2nax (25)
= Tog0.5

which means that p;; < 0.5 for d(f;,f;,t,©) > dmax-

The algorithm presented above keeps the motion
bounds At and Aw constant. It may be also inter-
esting to update the motion bounds at each iteration
n. Thus, we propose to update the motion bounds by
the following rule:

A, =

{ Apexp(—n/7) if n <ng, (26)

A, elsewhere.

Ineq. (26), A, = ( At] Aw, )T represents the
motion error bounds at nt” iteration, n, is the maxi-
mum iteration number for which the error bounds are
allowed to be updated. 7 is a constant which must be
determined as a function of the desired value of A,
for n > ns. It is interesting to have ng < npax, other-
wise the estimates may not stabilize before the ntl
iteration.

5 Experimental Results
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Figure 2: Superposed range images of experiment A.
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Figure 3: Superposed range images of experiment B.

The performance of the motion estimation algo-
rithm was evaluated with two experiments in real in-
door environments including moving obstacles. For
each experiment, our omnidirectional robot Omni
equiped with a laser radar was positioned at different
places following a given trajectory. The corresponding
absolute poses were carefully measured on the ground.
These experiments are referred to as A and B. Figures
2 and 3 show the superposed range images for experi-
ments A and B.

The laser radar, a Ladar 2D30 IBEQO Lasertechnik,
provides range images with an angular view of 270°
and is capable of detecting obstacles at distances up
to 30 m. Its range imprecision was characterized as
having a deterministic component which changes with
the distance and a precision of +5 cm.

To evaluate the robustness of the proposed ap-
proach, the initial values for the motion estimates
were simulated. The initial estimates are given by
to = t+e¢ and &g = w+e,,, where t and w are the mo-
tion parameters measured on the ground and e and
€, are uniformly distributed random variables in the
intervals [—Atg, Atg] and [—Awg, Awg]. Considering
the real motion magnitude, the initial error bounds
were chosen as Atg = (0.3 m,0.3 m) and Awy = 10°.
We then have a greater uncertainty on the initial es-
timates than we would have had by dead-reckoning
for the considered displacements. The algorithm was
configured with nmna. = 10, ny = 5, and 7 was deter-
mined such that A,, = (0.1 m,0.1 m,1°). A, was
empirically chosen considering the ladar imprecision.

For the line extraction procedure, we have devel-

oped an algorithm based on the fuzzy c-means cluster-
ing algorithm [8], but using a different representation
for the linear prototypes. Unfortunately, given the
limited space for this publication, we are not allowed
to give further presentation of this algorithm. The seg-
mentation algorithm extracted lines with o < 0.05 m
and a minimal length of 0.2 m. They include at least
5 scan points, with a maximal distance between two
consecutive points of 0.5 m. Ellipsoidal clusters were
selected from the extracted lines as having a maxi-
mum length of 0.5 m. The extracted lines with length
greater than 0.5 m were selected as linear clusters.
An example of extracted features is shown in Fig. 4.
This figure shows how difficult it can be to interpret
an image where partial occlusions occur.
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Figure 4: Segmentation example: linear clusters (-o-)
and ellipsoidal clusters (+).

The motion estimation errors for experiment A are
shown in Figure 5. As the algorithm estimates rela-
tive motion between poses Pr_1 and Py, the presented
errors are ploted versus the index k. As performance
measures, we use &, &, and &,, the mean absolute
errors in t, , t, and w, respectively. For experiment
A, &, = 289 cm, &, = 4.65 cm and &, = 1.13°.
For images Is — Iy, the algorithm was ill-conditioned.
As we can see in Figure 2, the rotation executed by
the vehicle between these images was very important
(w =90°). As a consequence, there were not enough
corresponding features.

Figure 6 shows the motion estimation errors for
experiment B. In this experiment, the robot moved
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Figure 5: Motion estimation errors for experiment A.

across three different rooms. It is shown that the worst
estimates were obtained for images I1» and I;g, when
the robot changed room. Although the room changes,
the estimates were not strongly affected. The perfor-
mance measures for this experiment were &;, = 2.15
cm, &, = 3.98 cm and €, = 1.13°.

The estimation errors for these experiments are
close to the ladar imprecision.

6 Conclusion

A new method for relative motion estimation of mo-
bile robots from range images was presented in this
article. The algorithm aims to match two consecu-
tive range images in the feature domain. It iteratively
evaluates a feature correspondence measure and cal-
culates motion estimates in order to minimize a cost
function. As a local matching approach, the proposed
solution uses initial motion estimates and associated
uncertainty provided by dead-reckoning. Experiments
carried out in real indoor environments confirm the
good performance of this approach.

Such a method may be also applied to solve the
absolute localization problem with respect to a refence
map. Moreover, we plan to extend the approach by
incorporating a confidence measure for the estimates.
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