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Abstract

This paper introduces a decoupled approach of con-
current mapping and localization for mobile robots.
Its theoretical aspects rely on recent techniques for
correct uncertainty handling using stochastic mod-
els: covariance intersection and unscented trans-
form. Further, stochastic constraints are considered
as a way to minimize map incoherence with respect to
the real environment. FExperimental results obtained
from multisensory data acquired in a large real en-
vironment illustrate the performance of the proposed
method.

1 Introduction

Concurrent mapping and localization (CML) is a
very difficult ill-conditioned problem, on which a
global environment map is updated using local ex-
teroceptive sensor measurements acquired by mobile
robots. Actually, there exist a number of approaches
for solving CML, aimed at different map represen-
tations, as [13] dealing with occupancy grid maps.
This paper concerns the stochastic map paradigm,
which represents structured environments by geo-
metrical primitives in a global map M%. In this
context, the most used approach for CML relies on
the Extended Kalman Filter (EKF'), which keeps a
stochastic state vector containing the robot pose and
map features estimates, as well as its full-covariance
matrix. Predictions of the state vector and its co-
variance matrix are obtained by dead-reckoning and
updated by the FKF when exteroceptive measure-
ments represented in a local map MP® are available
[5]. However, this solution to CML has some limita-
tions. The first one comes from the maintenance of
a full-covariance matrix, which results in most time
consuming map update, as well as in large memory
requirements. These effects are reduced by the de-
coupled stochastic mapping approach [12], which di-
vides the environment into multiple overlapped local
maps. The second limitation comes from the use of
the EKF for full-covariance map building. This filter

may not perform well in presence of non-linearities,
and presents long term divergence [11]. A common
solution is to add artificial noise in the linearized
models in order to cope with approximation uncer-
tainties. This solution does not solve completely the
problem since it can lead the EKF to converge to a
biased state [8].

An interesting solution has been investigated by
Julier and Uhlmann in [14], by using the extended
covariance intersection (ECT) filter to separate pose
estimation and individual map structures update.
The ECI is a linearized version of covariance inter-
section filter (CT). CI guarantees conservative esti-
mation given conservative prediction and measure-
ments, even in the presence of unknown covariances.
However, model linearization in the ECI can lead
to incorrect non-conservative uncertainty handling.
Motivated by recent advances on stochastic estima-
tion, we present a new approach for CML, which
separates pose estimation and map updating.

This paper is organized as follows. Section 2 in-
troduces the environment map structures. Map up-
dating requires an explicit local map representation,
constructed as explained in section 3. Section 4
presents the theoretical aspects of this approach,
summarized in section 5. Finally, section 6 presents
experimental results carried out in a large real envi-
ronment.

2 Map structures

In this work, map structures are composed of 2-D
primitives: infinite lines, represented in polar para-
metric form 1 = (p,a)”, and points, given by their
Cartesian coordinates p = (z,y). These primitives
are supposed to be perturbed by zero mean Gaussian
noise, with covariance matrices A; and Ay, associated
to 1 and p, respectively. We further give a high-level
identity to the map structures (Fig. 1):

e Semiplanes correspond to walls and other pla-
nar obstacles. They are represented by (i) an



e YR

Semiplane
Edge— P
n T xE~
(a) Semiplane (b) Edge
R R
Y Semiplanes Y
1

Corner_~* P Photometric edge

- X T xE

(c) Corner (d) Photometric edge

Figure 1: Map structures.

infinite line 1, (ii) two end-points and (iii) one
flag indicating the visibility side of the obstacle;

e Fdges correspond to the extremities of walls.
They are represented by a point p;

e Corners correspond to the intersection of two
walls or two consecutive planar faces, and are
represented by a point p;

e Photometric edges correspond to artifacts ob-
served as vertical lines in video images, and
that correspond neither to edges nor to corners.
They are represented by a point p.

The above structures allow a rich representation for
indoor environments, and the following relations ex-
ist among them : (i) every edge is associated to a
semiplane, i.e., the point primitive of the edge is over
the line primitive of the semiplane; (ii) every corner
is associated to two adjacent semiplanes, i.e., the
point primitive of the corner is on the intersection
of the lines of the associated semiplanes. Such rela-
tions are used as prior information to constrain map
updating. Furthermore, given the map structures
uncertainty, constraints should be satisfied in the
stochastic sense: the uncertainty of the constrained
features should also be taken into account. For in-
stance, an edge might not be exactly over the line
of the associated semiplane. It may be close to the
semiplane, but at a distance which should compatible
with the uncertainties of both structures. We believe
that respecting such constraints can minimize map
divergence.

3 Local map building

The local map MP® is obtained from a pair of syn-
chronized exteroceptive sensor images (£,7). L is
the range image provided by a 2-D laser rangefinder.
7 is the video image provided by a monochrome cam-
era. Multisensor data fusion consists in registering
vertical edges extracted from the video image with
the range image map. To do that, we estimate the
observation angle ¢ from the rangefinder of any ver-
tical edge observed at column u of the video image.
An off-line calibration procedure has been applied to
estimate the following relation:

¢ = d(u). (1)

3.1 Image segmentation

From £, we extract a set Q2 of line segments by us-
ing the fast split-and-merge fuzzy algorithm [2]. Fur-
ther, laser scan breakpoints are detected using an ex-
tended Kalman filter-based approach [4], and stored
in QF. Breakpoints correspond to important discon-
tinuities in the laser scan sequence, and may indicate
the extremities of local environment surfaces. From
image Z, similarly to [1], a set QY of vertical line
segments is extracted, which correspond to strong
vertical contours in the image. .

3.2 Sensor data fusion

Given the sets Q° and QF obtained from the range
image, an initial local map is built. Such a map
is composed of semiplanes, edges and corners only.
Semiplanes are obtained from all line segments of
0°. Edges are computed from scan points which are
(i) support points of line segments, and (ii) break-
points. FEdges are the projections on the support
line segment of all scan points which satisfy (i) and
(ii). Corners are the intersection of all line segments
supported by consecutive scan points which are not
breakpoints.

The second phase of local map uses the vertical lines
extracted from the video image to update the ini-
tial local map structures. This procedure concerns
only edges, which are also observed by the cam-
era. Thus, the classical EKF is used to update the
point coordinates of all edges whose observation an-
gle ¢; = arctan(y;/x;) is in correspondence with the
measurement qAbj = ®(u;) (eq. (1)) Correspondences
are verified using the classical x2-hypothesis test.

For last, photometric edges are estimated from all
vertical lines which did not have correspondences in
the initial local map. Since these structures are com-
posed of a point, and the camera can only capture
their observation angle gZ), they are estimated using
100 bootstrap samples [6], obtained from the distri-
bution of all scan points which lie, according to the
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Figure 2: Local map building example. (a) Range image and features (line segments and breakpoints). (b)
Video image and features (vertical lines). (c) Local map (S: Semiplanes, E: FEdges, C: Corners, and P:

Photometric edges

Mahalanobis distance test, in the vertical line angle
of view. Photometric edges presenting large covari-
ance matrices are discarded. Such a phenomena may
arrive if the local region is very cluttered. In this
way, we obtain reliable photometric edges. Figure 2
shows a local map M obtained from laser and video
images.

4 Support for global map consistency

4.1 Theoretical tools

In order to achieve consistent map building, the pro-
posed method relies on the following techniques :

1. The use of the Unscented Transform [9] to
achieve consistent propagation of mean and co-
variance of map structures in all coordinate
transformations involved in matching or fusing
these features. Consistency of the stochastic
variables is a necessary condition for consistent
state estimation with linear filters;

2. The use of the linear covariance intersection [10]
(CI) filter for all map structures fusion and con-
straint satisfaction. Since these procedures are
governed by stochastic linear models, this filter
guarantees conservative estimates of map fea-
tures if they are at least consistent. The same
can be done with Kalman filtering, but only
if the prediction and measurement errors are
non-correlated, or if their correlation is known.
Since the proposed decoupled approach does not
maintain map cross-covariances, even if they ex-
ist, Kalman filter cannot guarantee features con-
sistency for the fusion and constraint satisfac-

tion procedures. On the other hand, CI pro-
vides conservative estimates even in the presence
of unknown correlations [10].

4.2 Map constraints satisfaction strategy

As discussed in section 2, there exist constraints
which apply to map structures. Such constraints of
the type “a point p is constrained by lines 11,15,...7,
should be satisfied in the stochastic sense since map
structures are stochastic variables. Thus, these con-
straints can written as a linear stochastic model:

(2)

with w ~A(0, Aw) representing constraint uncer-
tainty, and

y=H-p+w,

cos(ay)
cos(az)

sin(a;y)
sin(asz)

P1

| H= 3)

y:

In a recent study [7], Kalman filter formalism has
been used for constraint satisfaction in stochastic
models. However, as stated before, unknown cor-
relations exist between p and 1y,15,.... Thus, the
covariance intersection formalism is used to provide
conservative update of the point primitive after con-
straint application. Ay is computed considering the
uncertainties propagated from p and 1, 1o, .. ..

5 Decoupled pose estimation and global
map updating
5.1 Map matching

Fast map matching is performed by the well known
local matching procedure based on Mahalanobis dis-



tance. Prior pose information is provided by dead-
reckoning for pose estimation. In the case of map
updating, the prior is the corrected pose computed
by the pose estimator.

For each pair of global map and local map semiplanes
S% and S*, respectively, we compute the global rep-
resentation S¢ of S®. The correspondence is con-
firmed if the following conditions are satisfied : (i)
the Mahalanobis distance between S¢ and S¢ is
in the 95% confidence interval of the x3 distribu-
tion; (ii) they are both visible from the prior robot
pose; and (iii) they have at least a minimum common
length.

For edges, corners and photometric edges, 95% confi-
dence interval of the Mahalanobis distance between
their point primitives is the necessary condition to
establish a correspondence. Thus, an edge and a cor-
ner may be in correspondence, even if the associated
semiplanes are not in correspondence.

5.2 Pose estimation

In the evaluations presented in this paper, pose es-
timation is accomplished by one of the following es-
timators: an extended Kalman filter (EKF)-based
approach [1], or an optimal weighted least-squares
(WLS) estimator [3]. In both approaches, robot pose
is represented by z = (z,,6)”, where z and y are the
robot coordinates, and € its heading. For large en-
vironments, less biased pose prediction Zj;_; is ac-
complished by gyrodometry, a dead-reckoning tech-
nique which fuses high precision laser gyrometer
readings and odometry. Periodically, a correction
cycle is performed after multisensory data acquisi-
tion, segmentation and local map building (as previ-
ously described). Local map structures are matched
against global map ones using the map matching pro-
cedure of the previous section. Map correspondences
are used to correct the pose prediction using the EKF
or the iterative re-weighted WLS estimator ([3], eq.
(39)). Nevertheless, some improvements were done
on the WLS estimator: (i) all matrix inversions are
performed using singular value decomposition, and
(ii) the estimates are fused with the predicted ones
by means of a linear Kalman filter. These procedures
avoid some limitations regarding to the completeness
of solutions, where only a solution subspace can be
estimated. In the case of EKF, conservative estima-
tion was possible after adjusting the filter parame-
ters. In the theoretical point of view, the proposed
map building approach requires conservativeness on
pose estimation.

5.3 Map update

Map update is based on correspondences between the
local and global maps. Using the current robot pose

Figure 3: Transition diagram of map structures.

estimate, we apply the procedure of section 5.1 to
establish such correspondences. Global map struc-
tures having at least a local map correspondence are
denoted observed, whilst the local ones are supported
features. Then, the following steps are performed.

New map structures inclusion. All local non-
supported structures are systematically included in
the global map. Their global parameters are com-
puted from the local ones by using the unscented
transform. Local feature relationships are also prop-
agated. For instance, as a local edge is always asso-
ciated to a local semiplane, in the global map such
an edge is associated (i) to the global representation
of the local semiplane if it is not supported, or (ii) to
the global correspondence of the local semiplane if it
is supported.

Observed structures update. In this phase, ob-
served structures updating is accomplished by fus-
ing them with the global representation of the local
supported structures. Semiplanes are fused first, fol-
lowed by edges, corners and photometric edges. It
should be pointed out that, according to the robot
point of view, an environment corner can be cap-
tured as an edge or as a photometric edge in the local
map. This is why map matching takes into account
only low-level geometric information for edges, cor-
ners and photometric edges. Thus, the high-level in-
terpretation of these structures may change depend-
ing of the local observation, according to the transi-
tion diagram of Figure 3. In this diagram, P, C and E
stand for photometric edge, corner and edge, respec-
tively. In the circles we have the type of the global
map structure, and the labeled arrows represent the
structure changing given the local observation type.

When all fusions have finished, map constraints are
applied for all global map edges and corners which
were updated, or which had at least one associated
semiplane updated.

Free space preservation. The free space associ-
ated to a local semiplane is a triangle defined by the
semiplane extremities and the robot position. Thus,
any global map edge, corner or photometric edge
which belong to the free space of a local semiplane



is deleted from the map. If it is a semiplane, only its
part included in the free space is deleted. Some care
should be taken when deleting map semiplanes. In-
deed, when deleting a semiplane, all associated edges
should also be deleted, and the associated corners be-
come edges.

Map auto-fusion. In order to minimize the num-
ber of multiple map structures representing the same
environment artifact, a procedure called map auto-
fusion is performed. To do this, we identify multiple
structures by applying the map matching procedure
within the global map. The difference here is that
high level features of different type cannot be fused.
Two correspondences X and X JG are fused only if
X is the correspondence of X¢ with the smallest
Mahalanobis distance between them, and vice-versa.
This procedure finishes by applying map constraints
to all modified structures.

6 Experimental results

Figure 4(a) presents a global map built from real
data acquired during the exploration of a large envi-
ronment. In this experiment, 162 images pairs were
acquired, at a rate of 0.5 Hz. The total traveled dis-
tance was 133 meters, with maximum translational
and rotational speeds of 58 m/s and 25 °/s, respec-
tively. The maximum time required for the map up-
dating cycle was 135 ms.

One may argue that, given the precision of the laser
gyrometer, gyrodometry could be used as pose esti-
mator, without being necessary to use a map-based
method. This is particularly true for short trav-
eled distance map building experiments, on which
gyrodometry provides accurate pose estimates. How-
ever, considering the traveled distance of this exper-
iment, gyrodometry presents divergence after some
traveled distance. We propose a comparison of the
same decoupled framework in two different config-
urations: UTC (Unscented Transform-based co-
variance propagation and Constraints propagation),
and LNC (Linearization-based covariance propaga-
tion and No Constraints propagation). Further,
these map building configurations are combined with
the pose estimators of section 5.2, resulting in UTC-
EKF, UTC-WLS, LNC-EKF and LNC-WLS. In-
deed, the map of Figure 4(a) is obtained when using
the configuration UTC-WLS, which presented the
best results in this experiment, and in all others we
have done. When using EKF' for pose estimation,
we have noticed map incoherence with respect to the
environment after some experimentation time. This
can be seen in the zone of interest of Figure 4(a),
which is magnified in Figure 4(b) for both UTC and
LNC configurations. Nevertheless, we remark that

UTC presented less biased map building than LNC.
Figure 4(c) shows the same zone of interest when us-
ing WLS for pose estimation. The map incoherences
of the previous results are not verified, in most part
due to a more accurate pose estimation provided by
the WLS estimator. In this case, the benefits of the
UTC configuration are verified when using the con-
structed map for absolute navigation experiments,
where the number of failures (i.e., the robot gets
lost) is far lower that when using the map built with
the LNC' configuration.

7 Conclusion

In this paper, we described a decoupled approach
of simultaneous mapping and robot localization. It
has been applied for consistent construction of a high
level environment map by a mobile robot equipped
with a laser rangefinder and a monochrome cam-
era. The results obtained do not imply that the pro-
posed approach guarantees a long term consistent
map building. However, we claim that its strong
theoretical support reduces the risk of map diver-
gence. This is reinforced by a comparison, where
map divergence has been noticed by the same decou-
pled framework using classical uncertainty handling
methods and different pose estimation approaches.
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