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RESUMO tion and environment mapping system in a real mobile robot.
From laser rangefinder images, some local map structures are
Esse artigo apresenta uma técnica de cartografia logMserved as geometric features and a first instance of local
baseada na fusdo de caracteristicas extraidas de imageRp is built. Video image features are used as complimen-
fornecidas porlaser rangefindere visdo monocular. O tary observations of the previous local map to improve its
método proposto € parte de um sistema de cartografia e lcuracy. Feature uncertainty is also estimated usinigtstat
calizagdo simultaneos implantado em um robd moével realal techniques. The paper presents examples obtained from

A partir de imagens deangefinder algumas estruturas do real data only. The satisfactory performance of this apgroa
ambiente local sao observadas sob a forma de caractesistifgs lead to consistent results as part of a simultaneous loca

geomeétricas, as quais sdo usadas para construir uma @rimeigtion and map building system.

instancia do mapa local. Caracteristicas da imagem de video

s&o usadas com observacgdes complementares das caract§F¥WORKS: Local environment mapping, multisensor data
ticas da primeira instancia de mapa local, que ¢ atualizafigsion, feature extraction, uncertainty modeling, mobile
levando a uma maior precisdo na representacio espacialroleotics.

estruturas do ambiente. Incertezas nos parametros das car-

acteristicas séo também estimadas por meio de ferramerjas INTRODUCTION

estatisticas. Exemplos obtidos a partir de dados reaisséo a

resentados. O desempenho satisfatério dessa abordagem¢®Acurrent Mapping and Localizatio©KIL) is an impor-
contribuido para a obtencéo de resultados consistente®do tant and difficult research topic in robotics. G@ML, ex-
sistema de cartografia e localizagao simultaneos. teroceptive sensor data gathered at a given time is used to

. . .. build a local environment representation, the local malp, re
PALAVRAS-CHAVE : Cartografia local de ambientes, fuséo

de dad i . tracio d teristi ative to the robot sensory system reference frame. In the
€ dados multisensoriais, extracao de caracteris Icam'mocontext of geometrical maps (Estrada et al., 2005), thd loca
lamento de incertezas, robds moveis.

map is used for robot pose estimation and global map updat-
ing. In this process, any error in local mapping is propagjate
ABSTRACT to pose estimation and map updating (Borges, 2002). Thus,
the construction of local environment maps is a primary task
This paper presents a local mapping technique based on #ae simultaneous localization and environment mapping sys
fusion of laser rangefinder and monocular vision imagegems in mobile robotics. For instance, Arresal. (Arras
This system is currently used as part of a concurrent lagalizet al., 2001) utilize environmental geometrical featuras-c
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tured by a 2D laser rangefinder and a video camera for pose pointp, and the associated semiplanes indexes are kept
estimation of a mobile robot. A similar approach has been for record;

followed by Neiraet al. (Neira et al., 1999), but using a

3D rangefinder. However, when exploring complimentary or ® Photometric edgesorrespond to artifacts observed as
multiple informations about environment structures cegru vertical lines in video images, and that correspond nei-
by different sensors, more accuracy in robot positioniny ca  ther toedgesnor tocorners They are represented by a
be obtained. In (Lallement et al., 1998), the authors halve fo pointp.

lowed this direction, and applied data fusion techniques in
robot equipped with 2D laser rangefinder and video came

for detection of local environment corners. [I%e above structures allow a rich representation for indoor

environments, and the following relations apply to them: (i

This paper describes a geometrical local mapping strate§yeryedgeis associated to semiplanei.e., the point prim-
based on the fusion of 2D laser rangefinder and video caméti€ of the edgeis over the line primitive of thesemiplane
images. This system is the basis of the local mapping modui# every corner is associated to two adjacesémiplanes

of a successful simultaneous localization and global envir i-€. the point primitive of thecorneris on the intersection
ment mapp|ng stra‘[egy presented previous|y in (Borges a@é the lines of the aSSOCiatmmiplaneSSUCh relations are
Aldon, 2004a)(Borges and Aldon, 2002), and is described i#sed as prior information to constrain map updating. Fur-
more detail in this paper. It differs from most approachethermore, given the map structures uncertainty, consgrain
by the use of more than one map structures. Map Structur@l@OU'd be satisfied in the stochastic sense: the uncertainty
are more Comp|ex than low-level sensor featureS, such trgtthe constrained features should also be taken into atcoun
used in (Arras et al., 2001), being useful in representingtmoFor instance, asdgemight not be exactly over the line of the
structures found in indoor environments. Its reduced con®ssociatedemiplanelt may be close to theemiplangbut at
puting time has made this strategy a strong component in tRedistance which should compatible with the uncertaintfes o

navigation system of a mobile platform, the Omni robot.  both structures. The propagation of such constraints gurin
environment mapping process has been shown to minimize

The paper is organized as follows. Local map structures angap divergence (Borges and Aldon, 2002).

presented in section 2. The multisensory system of Omni

robot is presented in section 3, where calibration detags aThe symbols used for the structures in the maps are as fol-
described. Section 4 described the procedures used fdr lobWs: ( ) for semiplanes, @) for edges, Q) for cor-

map building, followed by experimental results in section 5ners, &) for photometric edges.

The conclusions are presented in section 6.

3 MULTISENSOR SYSTEM
2 REPRESENTATION OF LOCAL MAPS L

3.1 Description and geometry
In most works on indoor environment modeling, map struc-
tures are given by 2-D geometrica| primitives: infinite Ene Omni is a mobile platform on which a localization and en-
represented in polar parametric fotrs (p, a)”, and points, vironment mapping architecture has been implemented, al-
given by their Cartesian coordinates= (z, y). These prim- lowing it to navigate in indoor environments whilst a map
itives are supposed to be perturbed by zero mean Gaussiarpuilt. It is an omnidirectional robot with six motion
noise, with covariance matricey and A,, associated td axis, each one equipped with absolute and incremental en-
andp, respectively. In this work, extended map structure§oders. A laser gyroscope completes its proprioceptive sen
using other attributes make them more complex and suitab}€ry system. Environment data is captured from two exte-
for indoor environment representation. The map strucfureceptive sensors, a 2D laser rangefinder and a gray-scale

shown in Fig. 1, give higher-level identity to map compo-video camera, as shown in Figures 2(a)-(b). Figure 2(c) de-
nents. These structures are: picts the reference frames of the multisensory system, with

RL: &l x YL x ZL being that of laser rangefinder and
RC: x¢ x Y x ZC refers to the camera.
e Semiplanesorrespond to walls and other planar obsta-
cles. They are represented by (|) an infinite "_né”) The I’angefinder iS a 2D30 m0de| manufacturedlBEO

two end-points and (iii) one flag indicating the visibility Lasertechnik GmbHIt performs eight scans per second in
side of the structure: the ¥* x YL plane and reaching objects placed ugB@m

from the origin ofR”. The measurement principle is based
e Edgescorrespond to extremities of walls. They are repon the time-of-flight of laser impulses. The laser beam car-
resented by a point, and the associated semiplane infying the impulses is generated inside the rangefinder and
dex is kept for record; reflected by a45° rotating mirror in theZ~ axle. The
mirror performs eight rotations per second in the counter-
e Cornerscorrespond to the intersection of two walls orwise sense, allowing the laser beam to cover a vie@76f
two consecutive planar faces. They are represented by-2135° ). The range measurements start every time the laser
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Figura 2: (a) The Omni mobile robot, its (b) exteroceptivdtimansory system and (c) local reference frames.

beam is atp,;, = —135° with respect toX*. From this model for the camera (Jahne and i#aaker, 2000), the opti-
direction, one measurement is done evAry = 0.6°, un-  cal axis is orthogonal to the image plane at metric coordinat
til the beam direction reaches,,, = 135°. Let ¢, denote (x! yI) of RI. The origin of the camera reference frame
the laser beam direction angle of theh measurement. The R is at distancé of (z,y!), wheref is the focal distance.
range measurement takengat is denoted as,,. The entire  The X andx'! are parallel and in opposite directions, such
set of measurements is referred as a 2D range image: as)® and)?!. 2L andY“ are parallel and share the same

direction.
L=A{(rn,¢,)n=1,...,N}. (1)

. 3.2 Calibration
Each(r,, ¢,,) correspond to the polar coordinates of the in-

tersection point between the laser beam and an obstacle atfle positioning between camera and rangefinder allows to
rectiong,,. The great accuracy of directia), is guaranteed egasily relate vertical lines observed in video images aait th

by an absolute encoder. However, each measuremeist gpservation angle in the rangefinder reference frame. §his i
assumed to be contaminated by an additive zero mean Gaysed to relate video and range image features during data fu-
sian noise with variance?, denoted asV'(0,07). A pre-  sjon in the local map building process. In order to to this, th
vious characterization procedure of the rangefinder dedectgeometry between these sensors should be described in more
bias in the range measurements. Such a bias (moving &&tail, as well as calibration is necessary. Firstly, wepssp
erage) is compensated in software after each scan, allowiBg and)C are parallel. This results in a simplified super-
the zero mean noise hypothesis to be assumed. The measittyosed view oft® x Z¢ and X’ x Y~ planes, as shown
ment standard deviation is. = 3 cm. in Figure 3. In order to perform information fusion between

. : . dIhe images of the multisensory system, we are interested in
The video camera acquires gray-scale images represente . . )
obtaining a relationship

_ _ _ _ _ _ ¢ = g(u), 3)
with p(u,v) being the intensity of each pixel at coordinates
(u,v) in theimage planeattached aR’ : X! x V! refer- with u being the column index of a vertical line observed in
ence frame. Considering the simplified pin-hole geométricéhe video imageZ, and¢ is its observation angle from the

Z={pu,v)jlu=1,..., M;v=1,...,N)}. 2
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A yr both extremities were marked by black tires. In this way,
such extremities are easily identified in video images. In
range images, these extremities appear as large discontinu
ities in the scans. Figure 4(a) shows a video image, with
four columns well identified as corresponding to the targets
The observation directions in the corresponding range im-
age are shown in Figure 4(b). From the entire set of images,
152 pairs of corresponding rangefinder observation apgle
and camera vertical indexeswere used in a linear least-
squares regression procedure. The rangesre limited to
0.5m <r <10.5 m. The estimated model is given by:

\E3 - glu)=a-u+b, )

with @ = —0.00162942 andb = 0.32413517. The estima-
tion residualsp,,, — g(u) with respect ta: are shown in Figure
Figura 3: Simplified superposition of laser rangefinder an(C)- It should be pointed out that, despite the nonlinear<h
video camera reference frames. acteristic of the geometric model, the linear approximatio
seems to be satisfactory, since the residual error varisnce
constant for the experiment. In this way, the stochasticehod

@

rangefinder. . .
p=da-ut+b+e, (8)
Considering the rangefinder reference frae x Y=, let

th = (2L, y%) denote the projection point of the origin of is used henceforth, with ~ N(0,02) ando. = 0.412°.
XC¢ x 2€, as well asf5 is the projected angle betweenThis model allows to estimate the variam%of&from the
Z¢ andX™. Thus,(¢£, v, 0¢) characterize misalignment variances? related tou and the model error variance as
between the two sensors in the projected rangefinder refer-

ence frame. Lef” be a range image point with coordinates 02 =a*- 02 + &ﬁ. (9)
pl = (a1, y*)T observed ap direction. Its projection in

the image plane is given hy. Further, letp® = (2¢,2°)T

be the coordinates @ in X x Z¢. Such parameters are4 LOCAL MAP BUILDING

lated b
related by The local mapM % is obtained from the pair of synchronized

c L L L
P =R(0c)- (p B tC) ’ “) exteroceptive sensor images, ). Multisensor data fusion
with consists in using vertical edges extracted from the video im
R(0L) cos(85)  sin(AE) 5) a9 to improve a range image map. In order to accomplish
¢ —sin(0%) cos(A) | this, the following steps are followed: feature extracfion

rangefinder map building and sensor data fusion. These pro-
cedures are described in this section.
From projective geometnyp is observed at image column

L f 4.1 Feature extraction
0T T (6)

uUu=1u
The feature extraction process issues two lists of features

with u, being the column index af?, ., is the metric width

of a pixel. Sincer’ = rcos(¢) andyr = rsin(¢), with e QU ={U | k=1,...,Nqgv} is alist of indexed/;, =

r being the range measurement/f an analytical form of {uy, a'ik} extracted from the video imadgé. For the
equation 3 can be derived from egs. (4)-(6). It can be ver-  k-thfeatureuy, is the index of the column related to the
ified that g(u) can be approximated by an affine function k-thvertical edge, and-, is its variance;

when there is no sensor misalignmehe,, % — 0 and

[tZ]| — 0, which lead toarctan be approximately linearto ~ ® Q% = {Sk | k = 1,...,Ngs} is a list of line

u — u,. Hence, in order to avoid nonlinear least-squares es- SegmentsSy = {1y, Ay, , Pa,., K, , Pr, 1, } extracted
timation techniques for calibration, sensor misalignners from the rangefinder imag€. For thek-th feature,
been done manually as low as possible. In this way, areason- 1& = (P4, )" represents the polar parameters of ainfi-
able form ofg(u) is a first order polynomial (affine function). nite line, andA,, is its covariance matrixp,, andps,

are points corresponding to the extremities of the line
The calibration procedure consisted of acquiring 50 pdirs o segment.njk and “;rk are flags associated {®,, and
images L£,7) of different positions of the robot with respect P»,, respectively, to indicate whether these extremities
to two targets. The targets are vertical wood boards, whose are strong breakpoints (discussed below);
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Figura 4. Example used for calibration: (a) Vertical linevideo image and (b) projected observation angles in ranggeé.
In (c) obtained calibration residuals for the entire sethadhge pairs.
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Figura 5: Video image feature extraction: (a) raw imagep{bary image with enhanced vertical edges, (c) accumuéatdr
(d) extracted vertical lines.

Feature extraction of video image is based on well knowa first sight, the following statistics can be used:
techniques. Figure 5 gives an example of the application of . uf ,
these procedures. Firstly, a Canny filter (Canny, 1986)4s ap ,, — M, o2 = Zezuy(Um2)"A@)
plied for edge enhancement in both vertical and horizontal Lazug Al@)
directions ofZ (Figure 5(a)), followed by local maxima se- . (10)

A . e . where A(x) is the contents of the Hough accumulator at
lection. Pixels belonging to vertical edges are selected bly 5

column. However,o:, becomes zero for the case of

eliminating pixels with gradient direction greater thapf - resulting in an inconsistent measure of variance
with respect to vertical. A binary image is obtained by apyd = uso g

plying hysteresis thresholding based tis and60% his- given that the pixel Wid.th Is not considergd. Thus, we pro-
togram percentiles of the gradient module, as shown in Fi ose to use do reasonl.ng about uncertainty in the interval
ure 5(b). The main drawback of these procedures is that very'? 0,5), (us +0,5)]

high (or low) levels of image brightness lead to no detec- 1 1 172

tion at all. Other more robust techniques may be employed o2 = [max(uf —u+ -, u—ug+=)-=| . (11)
(Jolion et al., 1991), at the cost of computational comyexi 2 27 3

From the binary image, a specialized Hough accumulator is

applied. The accumulator counts the number of active piXsrom the range image, 0° is extracted by using the fast
els of each column, as shown in Figure 5(c). A column igpjit-and-merge fuzzy algorithm (Borges and Aldon, 2004b)
considered as a valid vertical edges if the number of activenig algorithm uses classic fuzzy clustering for line firglin
pixels is greater thaB0 % of the number of pixels per col- pyt jn a split-and-merge manner. It is well known that most
umn. This fixed threshold is justified, since normalizatioruustering approaches should use a guess of the number of
procedures have been applied in the previous steps. For $gsters exist in a set of support points, which in this case
example, the resulting edges are shown in Figure 5(d).  means to know in advance the number of lines in a range

Since each vertical edge can be composed of more than dWeage' In a split framework, this problem is solved by call-

: . Ing recursively the cl ring algorithm to fin I r
column, starting fromug up to uy, these indexes are also g recursively the clustering algorithm to find two cluste

considered for determining the parametirs= {u, A, }. In every time. If one of the clusters cannot be validated as a
9 P el line feature, the clustering algorithm is applied againhis t

cluster until having only valid line clusters composed of at
least 10 support points. In the merge phase, very close clus-
ters are merged. Laser scan breakpoints are detected using
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an extended Kalman filter-based approach (Castellanos aodion is performed for (i) reducing edges uncertaintied an
Tardds, 1996). Breakpoints correspond to important discofii) extracting photometric edges. This procedure is well i
tinuities in the range image sequence, and may indicate thestrated in Figure 7.

extremities of local environment surfaces. Breakpointedus

in determining line extremitiesp,, or p;, have their corre- Edges found in the local map could be observed by the cam-
spondings} orx; flags set era as vertical line featurég andU; (see Figure 7(a)). Thus,
QA k N

the classical Extended Kalman Filter (EKF) is used to update
the point coordinatese(, y;) of all edges whose observation
angleg, = arctan(y;/z;) in the range image local map is
dn correspondence with the observation aniynle: §(u;) of

In this procedure, a first instance of the local map is buit u ical ed . Such d ified
ing only features extracted from the range image. This ma rtlca edgd’; (eq.Q( ). Suc correspondences are veriiie
ing the classical=-hypothesis test. For instance, Figure

can be composed by semiplanes, edges and corners. Fig Z

6(a) gives an example of line features extracted from a ran b) shows .thte gzs{tlmatﬁd Illnfes ffr(‘;' ght ‘3??02 in the tl.oc?l
image. In order to determine each map structure, the follo nap associated to vertical teatuies and o/, respectively.
ing steps are followed: rom these features, only, is in correspondence with an

edge, as can be seen in more detail in Figure 7(c). Using

the EKF formalism, the edge parameteis, ;) obtained

e Semiplane structures every line segment extracted from range features represent the predicted coordinates of
from the range finder image is converted to a semiplanthe edge, with associated covariance matrix. The angle of
The visibility side of the semiplane is identified by aview ¢, is used to update such coordinates as an observa-
flag. A simple test procedure allows to identify whethetion in the EKF measurement model. The resulting edge is
the coordinates of a point in the local map is on the visishown in Figure 7(d). Even it is not visible in this figure, the
bility side of a semi plane. The visibility side is a impor-updated edge is closer to the line of sight of feailseand
tant feature of a semiplane, since it allows to correctljts associated uncertainty is reduced.

solve matching problems. The default visibility side of

a semiplane is set to the side where the robot observE@' last, photometric edges are estimated from all vertical
it. In the example, see Figure 6(b); lines which did not have correspondences in the initiallloca

map. Since these structures are composed of a point, and
e Edge structuresall line segments extremities markedthe camera can only capture their observation anglibey
as strong breakpoint are candidate to be considered a® estimated usint)0 bootstrap samples (Efron, 1979), ob-
edge structures. However, only those with small agained from the distribution of all scan points which lie; ac
sociated uncertainty are accepted as edges. The edmeding to they2-hypothesis test, in the vertical line angle of
uncertainty is obtained considering the uncertainties agiew ¢. Photometric edges presenting large covariance ma-
sociated to the scan points used in the determination tifces are discarded. Such a phenomena may arrive if the
the line segment extremity, as well as the line segmeitcal region is very cluttered. In this way, we obtain releab
uncertainty (Borges, 2002). In the example, see Figugghotometric edges. In in Figure 7(d), the vertical edge
6(c); has originated a photometric edge in the line of sightof
_ ) __ thelocal map. It can be seen in Figure 7(a) that such a fea-
o Corner structuresall line segments having extremities yre corresponds to the border in the right of a board fixed on
which are two consecutive range scan points are cag-wall. Such features can only be detected using both range
didates to be used for corner determination. These expq video images. They are useful for robot localizatiod, an

tremities should not be classified as strong breakpointghoyid be represented in local maps. In this case, this is a
The crossing point between the line candidates is comotometric edge.

puted as well as its covariance matrix by uncertainty
propagation from line parameters covariance matrices.
Such a point is accepted as corner whether the angle
tween the supporting line features is greater thah . . .
. The previous sections have shown some examples using real
In the example, see Figure 6(d) shows only one corner ~ " . . . .
found: expenmen_tal data acquired ywth Omni. Thus, the experimen-
' tal evaluations shown here illustrate some further progert
of the proposed approach. In Figures 8(a)-(b) laser anavide
4.3 Sensor data fusion image features are used to build the local map of Figure 8(c)
(Borges and Aldon, 2004a). In such example, the robot is
The last procedure in local map building uses the verticdih @ narrow corridor, where features are more difficult to be
lines extracted from the video image to update the initial lodetected.

cal map structures obtained from range image. The sensor_. ) )
In Figure 9(a), a sequence of range images are superimposed

lthe extremities of a line segment are obtained by projectieditst and  to illustrate the need to differentiate between edges,ersrn
the last (in order of acquisition) support points in the line

4.2 Local rangefinder map building

. EXPERIMENTAL EVALUATIONS
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Figura 7: Example of sensor fusion: (a) vertical edges irwiinage, (b) lines of sight of these features in the ranggéma
map, interest zone before (c) and after (d) fusion.
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and C are also observed in some video images, such as Figure
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and a laser rangefinder. It is the the basis of the local mgppin
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and Aldon, 2004a)(Borges and Aldon, 2002). In order to al-
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