

Curso de Pós-Graduação em Engenharia Elétrica Departamento de Engenharia Elétrica Universidade de Brasília

Tópicos em Controle de Processos 2

Controle ótimo

Geovany A. Borges gaborges@ene.unb.br

Modelos de processo

• Modelo em espaço de estados (contínuo)

$$d\mathbf{x}(t) = \mathbf{A}(t)\mathbf{x}(t)\cdot dt + \mathbf{B}(t)\mathbf{u}(t)\cdot dt + d\mathbf{v}_c(t)$$
(1)

$$y(t) = \mathbf{C}(t)\mathbf{x}(t) + \mathbf{e}(t)$$
(2)

• Modelo em espaço de estados (discreto)

$$\mathbf{x}(k+1) = \mathbf{F}(k)\mathbf{x}(k) + \mathbf{G}(k)\mathbf{u}(k) + \mathbf{v}(k)$$
(3)

$$\mathbf{y}(k) = \mathbf{C}(k)\mathbf{x}(k) + \mathbf{e}(k)$$
(4)

com $\mathbf{v}(k) \in \mathbf{e}(k)$ sendo processos Gaussianos com média nula e

$$E\{\mathbf{v}(k)\mathbf{v}^{T}(k)\} = \mathbf{R}_{\mathbf{v}}(k), \quad E\{\mathbf{e}(k)\mathbf{e}^{T}(k)\} = \mathbf{R}_{\mathbf{e}}(k), \quad E\{\mathbf{e}(k)\mathbf{v}^{T}(k)\} = \mathbf{R}_{\mathbf{ev}}(k)$$
$$E\{\mathbf{x}(0)\} = \mathbf{x}_{0}, \quad E\{\mathbf{x}(0)\mathbf{x}^{T}(0)\} = \mathbf{R}_{\mathbf{x}_{0}},$$

- Objetivos de controle
 - Abordagem controle polinomial: Alocação dos pólos e zeros (SISO)

- Objetivos de controle
 - Abordagem controle ótimo: Critério de custo (MIMO, variante no tempo)
 - Critério (contínuo)

$$J = E\{\int_{0}^{NT} [\mathbf{x}^{T}(t)\mathbf{Q}_{1c}\mathbf{x}(t) + 2\mathbf{x}^{T}(t)\mathbf{Q}_{12c}\mathbf{u}(t) + \mathbf{u}^{T}(t)\mathbf{Q}_{2c}\mathbf{u}(t)]dt + \mathbf{x}^{T}(NT)\mathbf{Q}_{0c}\mathbf{x}(NT)\}$$
(5)

com \mathbf{Q}_{0c} , \mathbf{Q}_{1c} e \mathbf{Q}_{2c} sendo matrizes simétricas e definidas positivas. \mathbf{Q}_{12c} não precisa das mesmas exigências.

- Objetivos de controle
 - Critério (discreto)

$$J = E\{\sum_{k=0}^{N-1} [\mathbf{x}^{T}(k)\mathbf{Q}_{1}\mathbf{x}(k) + 2\mathbf{x}^{T}(k)\mathbf{Q}_{12}\mathbf{u}(k) + \mathbf{u}^{T}(k)\mathbf{Q}_{2}\mathbf{u}(k)] + \mathbf{x}^{T}(N)\mathbf{Q}_{0}\mathbf{x}(N)\}$$
(6)

com

$$\mathbf{Q}_1 = \int_{kT}^{(k+1)T} \mathbf{F}^T \mathbf{Q}_{1c} \mathbf{F} \, ds$$
(7)

$$\mathbf{Q}_{12} = \int_{kT}^{(k+1)T} \mathbf{F}^T \left[\mathbf{Q}_{1c} \mathbf{G} + \mathbf{Q}_{12c} \right] ds$$
(8)

$$\mathbf{Q}_2 = \int_{kT}^{(k+1)T} \left[\mathbf{G}^T \mathbf{Q}_{1c} \mathbf{G} + 2\mathbf{G}^T \mathbf{Q}_{12c} + \mathbf{Q}_{2c} \right] ds$$
(9)

■ Simplificação do critério

Usando $\tilde{\mathbf{u}} = \mathbf{u} + \mathbf{M}^T \mathbf{x}$, com $\mathbf{M} = \mathbf{Q}_{12} Q_2^{-1}$, o sistema discreto se torna

$$\mathbf{x}(k+1) = \tilde{\mathbf{F}}(k)\mathbf{x}(k) + \mathbf{G}(k)\tilde{\mathbf{u}}(k) + \mathbf{v}(k)$$
(10)

$$\mathbf{y}(k) = \mathbf{C}(k)\mathbf{x}(k) + \mathbf{e}(k)$$
(11)

 $\operatorname{com} \tilde{\mathbf{F}}(k) = \mathbf{F}(k) - \mathbf{G}(k)\mathbf{M}^{T}.$

O critério se transforma em

$$J = E\left\{\sum_{k=0}^{N-1} [\mathbf{x}^{T}(k)\tilde{\mathbf{Q}}_{1}\mathbf{x}(k) + \tilde{\mathbf{u}}^{T}(k)\mathbf{Q}_{2}\tilde{\mathbf{u}}(k)] + \mathbf{x}^{T}(N)\mathbf{Q}_{0}\mathbf{x}(N)\right\}$$
(12)

 $\operatorname{com} \tilde{\mathbf{Q}}_1 = \mathbf{Q}_1 - \mathbf{Q}_{12}\mathbf{Q}_2^{-1}\mathbf{Q}_{12}^T.$

Objetivo de controle: determinar $\mathbf{u}^*(k)$ tal que

 $\mathbf{u}^*(k) = \arg\min_{\mathbf{u}(k)} J$

sendo $\mathbf{u}(k) = -\mathbf{L}(k)\mathbf{x}(k)$.

Critério modificado (caso determinístico)

$$J' = E\{\sum_{k=0}^{N-1} [\mathbf{x}^{T}(k)\tilde{\mathbf{Q}}_{1}\mathbf{x}(k) + \tilde{\mathbf{u}}^{T}(k)\mathbf{Q}_{2}\tilde{\mathbf{u}}(k)] + \mathbf{x}^{T}(N)\mathbf{Q}_{0}\mathbf{x}(N) + \lambda^{T}(k+1)[-\mathbf{x}(k+1) + \tilde{\mathbf{F}}(k)\mathbf{x}(k) + \mathbf{G}(k)\tilde{\mathbf{u}}(k)]\}$$
(13)

com λ sendo multiplicadores de Lagrange.

■ Condições de ótimalidade

Sendo J' uma função quadrática positiva, o mínimo se caracteriza por

$$\frac{\partial J'}{\partial \mathbf{x}(k)} = \mathbf{0}, \quad \frac{\partial J'}{\partial \mathbf{\tilde{u}}(k)} = \mathbf{0}, \quad \frac{\partial J'}{\partial \lambda(k+1)} = \mathbf{0}.$$

$$\frac{\partial J'}{\partial \mathbf{x}(k)} = \mathbf{x}^T(k)\tilde{\mathbf{Q}}_1 - \lambda^T(k) + \lambda^T(k+1)\tilde{\mathbf{F}} = \mathbf{0} \text{ (se } k \neq N)$$
(14)

$$= \mathbf{x}^{T}(N)\tilde{\mathbf{Q}}_{0} - \lambda^{T}(N) = \mathbf{0} \text{ (se } k = N)$$
(15)

$$\frac{\partial J'}{\partial \lambda(k+1)} = -\mathbf{x}(k+1) + \mathbf{\tilde{F}}\mathbf{x}(k) + \mathbf{G}\mathbf{\tilde{u}}(k) = \mathbf{0}$$
(16)

$$\frac{\partial J'}{\partial \tilde{\mathbf{u}}(k)} = \tilde{\mathbf{u}}^T(k)\mathbf{Q}_2 + \lambda^T(k+1)\mathbf{G} = \mathbf{0}$$
(17)

Derivação da lei de controle

Da eq. (14) tem-se

$$\lambda(k) = \tilde{\mathbf{Q}}_1 \mathbf{x}(k) + \tilde{\mathbf{F}}^T \lambda(k+1)$$
(18)

bem como de (15) estabelece-se a condição final de λ :

$$\lambda(N) = \tilde{\mathbf{Q}}_0 \mathbf{x}(N) \tag{19}$$

implicando que $\lambda(k+1) = 0$ para $k \ge N$, ou seja, o controle não se interessa pelo que ocorre depois do horizonte de tempo.

Da equação (17), obtem-se

$$\tilde{\mathbf{u}}^{T}(k) = -\lambda^{T}(k+1)\mathbf{G}\mathbf{Q}_{2}^{-1}$$

ou ainda

$$\tilde{\mathbf{u}}(k) = -\mathbf{Q}_2^{-1} \mathbf{G}^T \lambda(k+1)$$
(20)

Derivação da lei de controle

Da equação (18), extrai-se

$$\lambda(k+1) = \tilde{\mathbf{F}}^{-T}\lambda(k) - \tilde{\mathbf{F}}^{-T}\tilde{\mathbf{Q}}_1\mathbf{x}(k)$$
(21)

Para este problema, dispõe-se de $\mathbf{x}(0)$ e $\mathbf{\tilde{u}}(0)$, mas nada se sabe de $\lambda(0)$, estando apenas a condição final definida por (19). Este é conhecido como problema de dois valores, que pode ser simplificado se for definida uma matriz $\mathbf{S}(k)$ tal que

$$\lambda(k) = \mathbf{S}(k)\mathbf{x}(k). \tag{22}$$

Aplicando esta relação na eq. (20), resulta em

$$\mathbf{Q}_{2}\tilde{\mathbf{u}}(k) = -\mathbf{G}^{T}\lambda(k+1)$$

= $-\mathbf{G}^{T}\mathbf{S}(k+1)\mathbf{x}(k+1)$
= $-\mathbf{G}^{T}\mathbf{S}(k+1)\{\mathbf{\tilde{F}}\mathbf{x}(k)+\mathbf{G}\mathbf{\tilde{u}}(k)\}\$

Derivação da lei de controle

Reorganizando os termos desta equação resulta em

$$\tilde{\mathbf{u}}(k) = \{\mathbf{Q}_2 + \mathbf{G}^T \mathbf{S}(k+1)\mathbf{G}\}^{-1} \mathbf{G}^T \mathbf{S}(k+1) \tilde{\mathbf{F}} \mathbf{x}(k)$$

que é uma lei de controle da forma

$$\tilde{\mathbf{u}}(k) = -\mathbf{L}(k)\mathbf{x}(k) \tag{23}$$

com

$$\mathbf{L}(k) = \{\mathbf{Q}_2 + \mathbf{G}^T \mathbf{S}(k+1)\mathbf{G}\}^{-1}\mathbf{G}^T \mathbf{S}(k+1)\mathbf{\tilde{F}}$$
(24)

Portanto, para se calcular a lei de controle (23), é preciso determinar S(k+1). Aplicando $\lambda(k) = S(k)x(k)$ à eq. (18),

$$\mathbf{S}(k)\mathbf{x}(k) = \tilde{\mathbf{F}}^T \mathbf{S}(k+1)\mathbf{x}(k+1) + \tilde{\mathbf{Q}}_1 \mathbf{x}(k)$$
(25)
$$\tilde{\mathbf{T}}^T \tilde{\mathbf{T}}(k-1) \cdot \tilde{\mathbf{T}}^T \mathbf{x}(k) = \tilde{\mathbf{T}}^T \tilde{\mathbf{T}}(k) \cdot \tilde{\mathbf{T}}^T \mathbf{x}(k)$$
(25)

$$= \tilde{\mathbf{F}}^T \mathbf{S}(k+1) \{ \tilde{\mathbf{F}} \mathbf{x}(k) + \mathbf{G} \tilde{\mathbf{u}}(k) \} + \tilde{\mathbf{Q}}_1 \mathbf{x}(k)$$
(26)

Derivação da lei de controle

Como $\tilde{\mathbf{u}}(k) = -\mathbf{L}(k)\mathbf{x}(k)$,

$$\mathbf{S}(k)\mathbf{x}(k) = \tilde{\mathbf{F}}^T \mathbf{S}(k+1)\tilde{\mathbf{F}}\mathbf{x}(k) - \tilde{\mathbf{F}}^T \mathbf{S}(\mathbf{k}+1)\mathbf{GL}(k)\mathbf{x}(k) + \tilde{\mathbf{Q}}_1\mathbf{x}(k)$$
(27)

que se escreve como

$$\left\{\mathbf{S}(k) - \tilde{\mathbf{F}}^T \mathbf{S}(k+1)\tilde{\mathbf{F}} + \tilde{\mathbf{F}}^T \mathbf{S}(k+1)\mathbf{GL}(k) - \tilde{\mathbf{Q}}_1\right\}\mathbf{x}(k) = \mathbf{0}$$
(28)

Como $\mathbf{x}(k)$ não pode ser identicamente **0** para todo *k*, então faz-se

$$\mathbf{S}(k) = \mathbf{\tilde{F}}^{T} \mathbf{S}(k+1)\mathbf{\tilde{F}} - \mathbf{\tilde{F}}^{T} \mathbf{S}(\mathbf{k}+1)\mathbf{GL}(k) + \mathbf{\tilde{Q}}_{1}$$

= $[\mathbf{\tilde{F}} - \mathbf{GL}(k)]^{T} \mathbf{S}(k+1)[\mathbf{\tilde{F}} - \mathbf{GL}(k)]$
+ $\mathbf{L}^{T}(k)\mathbf{G}^{T} \mathbf{S}(k+1)\mathbf{\tilde{F}} - \mathbf{L}^{T}(k)\mathbf{G}^{T} \mathbf{S}(k+1)\mathbf{GL}(k) + \mathbf{\tilde{Q}}_{1}$ (29)

Derivação da lei de controle
 Da equação (24) obtem-se

$$\mathbf{Q}_{2}\mathbf{L}(k) = \mathbf{G}^{T}\mathbf{S}(k+1)\mathbf{\tilde{F}} - \mathbf{G}^{T}\mathbf{S}(k+1)\mathbf{GL}(k)$$

Assim

$$\mathbf{S}(k) = [\mathbf{\tilde{F}} - \mathbf{GL}(k)]^T \mathbf{S}(k+1) [\mathbf{\tilde{F}} - \mathbf{GL}(k)] + \mathbf{\tilde{Q}}_1 + \mathbf{L}^T(k) \mathbf{Q}_2 \mathbf{L}(k)$$
(30)

que é a famosa equação de Riccati no tempo discreto (ERTD). Sabendo que $\lambda(N) = \tilde{\mathbf{Q}}_0 \mathbf{x}(N)$ e $\lambda(k) = \mathbf{S}(k)\mathbf{x}(k)$, tem-se assim a condição final para S:

$$\mathbf{S}(N) = \tilde{\mathbf{Q}}_0. \tag{31}$$

Desta forma, o problema que antes era de dois valores terminais foi simplificado para apenas um valor terminal em S.

Valor mínimo do critério (sem incertezas)

O mínimo valor da função de custo é obtido pela aplicação das equações (14)-(17) a J':

$$\min J' = \sum_{k=0}^{N-1} [\mathbf{x}^{T}(k) \tilde{\mathbf{Q}}_{1} \mathbf{x}(k) + \tilde{\mathbf{u}}^{T}(k) \mathbf{Q}_{2} \tilde{\mathbf{u}}(k)] + \mathbf{x}^{T}(N) \mathbf{Q}_{0} \mathbf{x}(N) + \lambda^{T}(k+1) [-\mathbf{x}(k+1) + \tilde{\mathbf{F}} \mathbf{x}(k) + \mathbf{G} \tilde{\mathbf{u}}(k)]$$
(32)

com

$$\mathbf{\tilde{u}}^{T}(k)\mathbf{Q}_{2} = -\lambda^{T}(k+1)\mathbf{G}$$

$$\mathbf{x}^{T}(k)\mathbf{\tilde{Q}}_{1} = \lambda^{T}(k) - \lambda^{T}(k+1)\mathbf{\tilde{F}}$$

$$\mathbf{x}(k+1) = \mathbf{\tilde{F}}\mathbf{x}(k) + \mathbf{G}\mathbf{\tilde{u}}(k)$$

Valor mínimo do critério (sem incertezas)
 Tem-se então

$$\min J' = \sum_{k=0}^{N-1} [\lambda^T(k)\mathbf{x}(k) - \lambda^T(k+1)\mathbf{\tilde{F}}\mathbf{x}(k) - \lambda^T(k+1)\mathbf{G}\mathbf{\tilde{u}}(k)] + \mathbf{x}^T(N)\mathbf{Q}_0\mathbf{x}(N)$$

$$= \sum_{k=0}^{N-1} [\lambda^T(k)\mathbf{x}(k) - \lambda^T(k+1)\mathbf{x}(k+1)] + \mathbf{x}^T(N)\mathbf{Q}_0\mathbf{x}(N) \qquad (33)$$

$$= \lambda^T(0)\mathbf{x}(0) - \lambda^T(N)\mathbf{x}(N) + \mathbf{x}^T(N)\mathbf{Q}_0\mathbf{x}(N) \qquad (34)$$

Com a condição final (19) $\lambda(N) = \tilde{\mathbf{Q}}_0 \mathbf{x}(N)$,

$$\min J' = \lambda^T(0)\mathbf{x}(0) = \mathbf{x}^T(0)\mathbf{S}(0)\mathbf{x}(0).$$
(35)

Valor mínimo do critério (com incertezas)

Considerando $\mathbf{v}(k) \neq \mathbf{0}$, e

$$E\{\mathbf{x}(0)\} = \mathbf{x}_0, \quad E\{\mathbf{x}(0)\mathbf{x}^T(0)\} = \mathbf{R}_{\mathbf{x}_0},$$

$$E\{\mathbf{v}(k)\} = \mathbf{0}, \quad E\{\mathbf{v}(k)\mathbf{v}^T(k)\} = \mathbf{R}_{\mathbf{v}}(k),$$

pode-se mostrar que a lei de controle $\tilde{\mathbf{u}}(k) = -\mathbf{L}(k)\mathbf{x}(k)$ também minimiza o critério *J*' e que seu mínimo (estatístico) é dado por

$$\min J' = \mathbf{x}_0^T \mathbf{S}(0) \mathbf{x}_0 + tr(\mathbf{S}(0)\mathbf{R}_{\mathbf{x}_0}) + \sum_{k=0}^{N-1} tr(\mathbf{S}(k+1)\mathbf{R}_{\mathbf{v}}(k))$$
(36)

- Algoritmo de controle linear quadrático
 - Dados de entrada: Estado inicial x(0); Horizonte de tempo N ; Matrizes de ponderação Q₀, Q₁, Q₂ e Q₁₂.

Algoritmo de controle linear quadrático

• Preparação (offline ou em
$$k = 0$$
)
I. Calcular $\tilde{\mathbf{F}}(k) = \mathbf{F}(k) - \mathbf{G}(k)\mathbf{M}^T$ e $\tilde{\mathbf{Q}}_1 = \mathbf{Q}_1 - \mathbf{Q}_{12}\mathbf{Q}_2^{-1}\mathbf{Q}_{12}^T$.
II. Iniciar $\mathbf{S}(N) = \mathbf{Q}_0$ e $\mathbf{L}(N) = \mathbf{0}$.
III. $k = N - 1$.
IV. Calcular

$$\mathbf{L}(k) = \{\mathbf{Q}_2 + \mathbf{G}^T \mathbf{S}(k+1)\mathbf{G}\}^{-1}\mathbf{G}^T \mathbf{S}(k+1)\mathbf{\tilde{F}}$$
(37)
$$\mathbf{S}(k) = [\mathbf{\tilde{F}} - \mathbf{GL}(k)]^T \mathbf{S}(k+1)[\mathbf{\tilde{F}} - \mathbf{GL}(k)] + \mathbf{\tilde{Q}}_1 + \mathbf{L}^T(k)\mathbf{Q}_2\mathbf{L}(k)$$
(38)

- V. Armazenar L(k).
- VI. k = k 1.
- VII. Retornar ao passo IV enquanto $k \ge 0$.

- Algoritmo de controle linear quadrático
 - Realização (online)
 No k-ésimo instante de amostragem, calcular a lei de controle como

$$\mathbf{u}(k) = \tilde{\mathbf{u}}(k) - \mathbf{Q}_2^{-T} \mathbf{Q}_{12}^T \mathbf{x}(k)$$
(39)

 $\operatorname{com} \tilde{\mathbf{u}}(k) = -\mathbf{L}(k)\mathbf{x}(k).$

Exemplo 1. Controle LQ de motor de corrente contínua acionado por corrente O modelo do motor é dado por

$$\mathbf{x}(k+1) = \begin{pmatrix} e^{-h} & 0\\ 1-e^{-h} & 1 \end{pmatrix} \mathbf{x}(k) + \begin{pmatrix} 1-e^{-h}\\ h-1+e^{-h} \end{pmatrix} \mathbf{u}(k)$$
(40)

com *h* sendo o período de amostragem, e $\mathbf{x} = (\omega, \theta)^T$ com ω sendo a velocidade angular do eixo e θ é o ângulo.

Escolheu-se minimizar o critério

$$J = \sum_{k=0}^{N-1} [\mathbf{x}^T(k)\mathbf{Q}_1\mathbf{x}(k) + \mathbf{u}^T(k)\mathbf{Q}_2\mathbf{u}(k)] + \mathbf{x}^T(N)\mathbf{Q}_0\mathbf{x}(N)$$
(41)

com

$$\mathbf{Q}_0 = \left(\begin{array}{cc} \rho_0 & 0 \\ 0 & 0 \end{array} \right), \quad \mathbf{Q}_1 = \left(\begin{array}{cc} \rho_1 & 0 \\ 0 & 0 \end{array} \right), \quad \mathbf{Q}_2 = \rho_2.$$

Exemplo 1. Controle LQ de motor de corrente contínua acionado por corrente Caso1: fixando $\rho_0 = 1$ e $\rho_1 = 1$, e com $\rho_2 = 1$, 10 ou 200.

Exemplo 1. Controle LQ de motor de corrente contínua acionado por corrente Caso1: fixando $\rho_0 = 1$ e $\rho_1 = 1$, e com $\rho_2 = 1$, 10 ou 200.

Exemplo 1. Controle LQ de motor de corrente contínua acionado por corrente Caso1: fixando $\rho_0 = 1$ e $\rho_1 = 1$, e com $\rho_2 = 1$, 10 ou 200.

Exemplo 1. Controle LQ de motor de corrente contínua acionado por corrente Caso 2: fixando $\rho_1 = 0$ e $\rho_2 = 10^{-3}$, e com $\rho_0 = 1$, 10^{-1} ou 10^{-3} .

Exemplo 1. Controle LQ de motor de corrente contínua acionado por corrente Caso 2: fixando $\rho_1 = 0$ e $\rho_2 = 10^{-3}$, e com $\rho_0 = 1$, 10^{-1} ou 10^{-3} .

Exemplo 1. Controle LQ de motor de corrente contínua acionado por corrente Caso 2: fixando $\rho_1 = 0$ e $\rho_2 = 10^{-3}$, e com $\rho_0 = 1$, 10^{-1} ou 10^{-3} .

- Características da regulação:
 - Horizonte infinito: $N \rightarrow \infty$
 - O ganho de controle L(k) tende a ser constante: L_{∞}

■ Solução pelas equações (problemas simples):

$$L_{\infty} = \{\mathbf{Q}_2 + \mathbf{G}^T \mathbf{S}_{\infty} \mathbf{G}\}^{-1} \mathbf{G}^T \mathbf{S}_{\infty} \mathbf{\tilde{F}}$$
(42)

$$\mathbf{S}_{\infty} = [\mathbf{\tilde{F}} - \mathbf{G}\mathbf{L}_{\infty}]^T \mathbf{S}_{\infty} [\mathbf{\tilde{F}} - \mathbf{G}\mathbf{L}_{\infty}] + \mathbf{\tilde{Q}}_1 + \mathbf{L}_{\infty}^T \mathbf{Q}_2 \mathbf{L}_{\infty}$$
(43)

Geralmente, mais de uma solução é encontrada para L_{∞} . Escolhe-se aquela para a qual S_{∞} é positiva definida.

- Solução pelo método dos autovalores:
 - O critério de tempo finito é minimizado quando são satisfeitas as seguintes relações:

$$\tilde{\mathbf{u}}^{T}(k)\mathbf{Q}_{2} = -\lambda^{T}(k+1)\mathbf{G}$$
(44)

$$\mathbf{x}^{T}(k)\tilde{\mathbf{Q}}_{1} = \lambda^{T}(k) - \lambda^{T}(k+1)\tilde{\mathbf{F}}$$
(45)

$$\mathbf{x}(k+1) = \tilde{\mathbf{F}}\mathbf{x}(k) + \mathbf{G}\tilde{\mathbf{u}}(k)$$
(46)

Aplicando (44) em (46), estas equações se transformam em

$$\mathbf{x}(k+1) = (\mathbf{\tilde{F}} + \mathbf{G}\mathbf{Q}_2^{-1}\mathbf{G}^T\mathbf{\tilde{F}}^{-T}\mathbf{Q}_1)\mathbf{x}(k) - \mathbf{G}\mathbf{Q}_2^{-1}\mathbf{G}^T\mathbf{\tilde{F}}^{-T}\lambda(k)$$
(47)
$$\lambda(k+1) = -\mathbf{\tilde{F}}^{-T}\mathbf{\tilde{Q}}_1\mathbf{x}(k) + \mathbf{\tilde{F}}^{-T}\lambda(k)$$
(48)

Solução pelo método dos autovalores:

que pode ser escrito sob a forma

$$\begin{pmatrix} \mathbf{x}(k+1) \\ \lambda(k+1) \end{pmatrix} = \mathbf{H}_c \begin{pmatrix} \mathbf{x}(k) \\ \lambda(k) \end{pmatrix}$$
(49)

com \mathbf{H}_c sendo chamada Hamiltoniano e dado por

$$\mathbf{H}_{c} = \begin{pmatrix} \mathbf{\tilde{F}} + \mathbf{G}\mathbf{Q}_{2}^{-1}\mathbf{G}^{T}\mathbf{\tilde{F}}^{-T}\mathbf{Q}_{1} & -\mathbf{G}\mathbf{Q}_{2}^{-1}\mathbf{G}^{T}\mathbf{\tilde{F}}^{-T} \\ -\mathbf{\tilde{F}}^{-T}\mathbf{\tilde{Q}}_{1} & \mathbf{\tilde{F}}^{-T} \end{pmatrix}.$$
 (50)

 $\mathbf{x}(N) \in \lambda(N)$ podem ser obtidos a partir de $\mathbf{x}(0) \in \lambda(0)$ pela seguinte fórmula:

$$\begin{pmatrix} \mathbf{x}(N) \\ \lambda(N) \end{pmatrix} = \mathbf{H}_c^N \begin{pmatrix} \mathbf{x}(0) \\ \lambda(0) \end{pmatrix}.$$
 (51)

Solução pelo método dos autovalores:

A solução para o problema LQR pode ser obtida quando $N \rightarrow \infty$. Pode-se mostrar que \mathbf{H}_c possui 2n autovalores, dos quais n deles são estáveis e os outros n autovalores restantes são instáveis. Na verdade, para cada autovalor z_i existe um outro autovalor dado por $1/z_i$. Assim, definindo-se \mathbf{E} como sendo a matriz diagonal dos n autovalores instáveis, define-se

$$\mathbf{H}_{c}^{*} = \mathbf{V}^{-1}\mathbf{H}_{c}\mathbf{V} = \begin{pmatrix} \mathbf{E}^{-1} & \mathbf{0} \\ \mathbf{0} & \mathbf{E} \end{pmatrix}$$
(52)

com V sendo a matrix de autovetores de H_c :

$$\mathbf{V} = \begin{pmatrix} \mathbf{X}_i & \mathbf{X}_o \\ \mathbf{L}_i & \mathbf{L}_o \end{pmatrix}$$
(53)

com o indice *i* (resp. *o*) indicando as componentes dos autovetores estáveis (resp. instáveis).

Solução pelo método dos autovalores:

A seguinte transformação de variáveis

$$\begin{pmatrix} \mathbf{x}^*(k) \\ \lambda^*(k) \end{pmatrix} = \mathbf{V}^{-1} \begin{pmatrix} \mathbf{x}(k) \\ \lambda(k) \end{pmatrix}$$
(54)

resulta em

$$\begin{pmatrix} \mathbf{x}^*(N) \\ \lambda^*(N) \end{pmatrix} = \begin{pmatrix} \mathbf{E}^{-N} & \mathbf{0} \\ \mathbf{0} & \mathbf{E}^N \end{pmatrix} \begin{pmatrix} \mathbf{x}^*(0) \\ \lambda^*(0) \end{pmatrix}$$
(55)

Quando $N \to \infty$, $\mathbf{x}^*(N)$ deve ir para **0** enquanto $\lambda^*(N)$ deve ir para o infinito (\mathbf{E}^N é instável). A única solução para se ter $\lambda^*(N)$ finito é quando $\lambda^*(0) = \mathbf{0}$, levando $\lambda^*(N) = \mathbf{0}$. Assim sendo, a solução finitita para $\mathbf{x}(N)$ e $\lambda(N)$ é

$$\mathbf{x}(N) = \mathbf{X}_i \mathbf{x}^*(N) + \mathbf{X}_o \lambda^*(N) = \mathbf{X}_i \mathbf{E}^{-N} \mathbf{x}^*(0)$$
(56)

$$\lambda(N) = \mathbf{L}_i \mathbf{x}^*(N) + \mathbf{L}_o \lambda^*(N) = \mathbf{L}_i \mathbf{E}^{-N} \mathbf{x}^*(0)$$
(57)

Solução pelo método dos autovalores:

Dado que $\mathbf{x}^*(0) = \mathbf{E}^N \mathbf{X}_i^{-1} \mathbf{x}(N)$, tem-se

$$\lambda(N) = \mathbf{L}_i \mathbf{E}^{-N} \mathbf{E}^N \mathbf{X}_i^{-1} \mathbf{x}(N) = \mathbf{L}_i \mathbf{X}_i^{-1} \mathbf{x}(N)$$

Sabendo que $\lambda(k) = \mathbf{S}(k)\mathbf{x}(k)$, isto leva a $\mathbf{S}(k) = \mathbf{L}_i \mathbf{X}_i^{-1}$. Portanto,

$$\mathbf{S}_{\infty} = \mathbf{L}_i \mathbf{X}_i^{-1}. \tag{58}$$

$$\mathbf{L}_{\infty} = \{\mathbf{Q}_2 + \mathbf{G}^T \mathbf{S}_{\infty} \mathbf{G}\}^{-1} \mathbf{G}^T \mathbf{S}_{\infty} \tilde{\mathbf{F}}$$
(59)

Filtro de Kalman

• Seja o seguinte modelo linear estocástico:

$$\mathbf{x}(k+1) = \mathbf{F}(k)\mathbf{x}(k) + \mathbf{G}(k)\mathbf{u}(k) + \mathbf{w}(k)$$
(60)

$$\mathbf{y}(k) = \mathbf{H}(k)\mathbf{x}(k) + \mathbf{v}(k)$$
(61)

com $\mathbf{w}(k) \sim \mathcal{N}(\mathbf{0}, \mathbf{Q}(k))$ e $\mathbf{v}(k) \sim \mathcal{N}(\mathbf{0}, \mathbf{R}(k))$ sendo processos gaussianos representando incertezas na evolução das variáveis de estado $\mathbf{x}(k)$ e na medição $\mathbf{y}(k)$, respectivamente.

Filtro de Kalman

Sendo x(k) também um processo gaussiano, entre medições, sua estimativa x̂(k|k−1) é obtida por predição:

$$\hat{\mathbf{x}}(k|k-1) = \mathbf{F}(k-1)\hat{\mathbf{x}}(k-1) + \mathbf{G}(k-1)\mathbf{u}(k-1)$$
 (62)

$$\mathbf{P}(k|k-1) = \mathbf{F}(k-1)\mathbf{P}(k-1)\mathbf{F}^{T}(k-1) + \mathbf{Q}(k)$$
(63)

com $\mathbf{P}(k|k-1) \stackrel{\Delta}{=} E\{(\mathbf{\hat{x}}(k|k-1) - \mathbf{x}(k)) \cdot (\mathbf{\hat{x}}(k|k-1) - \mathbf{x}(k))^T\}$ sendo a matrix de covariâncias do erro de predição.

Filtro de Kalman

• Quando medições $\mathbf{y}(k)$ são realizadas, estas são usadas para corrigir o processo de predição e obter uma estimativa $\mathbf{\hat{x}}(k)$ pela relação seguinte:

$$\hat{\mathbf{x}}(k) = \hat{\mathbf{x}}(k|k-1) + \mathbf{K}(k) \cdot (\mathbf{y}(k) - \mathbf{H}(k)\hat{\mathbf{x}}(k-1))$$
(64)

$$\mathbf{P}(k) = (\mathbf{I} - \mathbf{K}(k)\mathbf{H}(k))\mathbf{P}(k|k-1)$$

$$= (\mathbf{I} - \mathbf{K}(k)\mathbf{H}(k))\mathbf{P}(k|k-1)(\mathbf{I} - \mathbf{K}(k)\mathbf{H}(k))^{T} + \mathbf{K}(k)\mathbf{R}(k)\mathbf{K}^{T}(k)\mathbf{66})$$
(65)

com $\mathbf{P}(k) \stackrel{\Delta}{=} E\{(\mathbf{\hat{x}}(k) - \mathbf{x}(k)) \cdot (\mathbf{\hat{x}}(k) - \mathbf{x}(k))^T\}$ sendo a matrix de covariâncias do erro de estimação. $\mathbf{K}(k)$ é o chamado ganho de Kalman, e é dado por

$$\mathbf{K}(k) = \mathbf{P}(k|k-1)\mathbf{H}^{T}(k)\left(\mathbf{H}(k)\mathbf{P}(k|k-1)\mathbf{H}^{T}(k) + \mathbf{R}(k)\right)^{-1}$$
(67)

Filtro de Kalman

 As equações do filtro resultam em um estimador recursivo de mínima variância de x(k):

$$\hat{\mathbf{x}}(k) = \arg\min E\{(\hat{\mathbf{x}}(k) - \mathbf{x}(k))^T \cdot (\hat{\mathbf{x}}(k) - \mathbf{x}(k))\}$$
(68)
= $\arg\min Tr(\mathbf{P}(k))$ (69)

ou ainda, para o caso linear, temos o estimador de máximo de verosemelhança:

$$\hat{\mathbf{x}}(k) = \arg \max p(\mathbf{x}(k)|\mathbf{y}(k)).$$
 (70)

• O termo $\mathbf{y}(k) - \mathbf{H}(k)\mathbf{\hat{x}}(k-1)$ é chamado de inovação, e portanto as equações (64)-(66) são denominadas de *formulação inovação*.

Filtro de Kalman

 As matrizes de covariâncias P(k), Q(k) e R(k) são uma medida do quanto de incerteza está envolvida no processo de estimação. Por analogia, suas inversas são chamadas de matrizes de informação, para as quais a *formulação informação* pode ser aplicada:

$$\hat{\mathbf{x}}(k) = \mathbf{P}(k) \left(\mathbf{P}^{-1}(k|k-1)\hat{\mathbf{x}}(k|k-1) + \mathbf{H}^{T}(k)\mathbf{R}^{-1}(k)\mathbf{y}(k) \right)$$
(71)

$$\mathbf{P}^{-1}(k) = \mathbf{P}^{-1}(k|k-1) + \mathbf{H}^{T}(k)\mathbf{R}^{-1}(k)\mathbf{H}(k)$$
(72)

 Da equação (72), conclui-se que a informação da estimativa é a soma das informações aportadas pela predição e pelas medições. Ou seja, o filtro extrai o necessário de informação do sistema.

Exemplo 2. Fusão sensorial usando o filtro de Kalman

São dados: x_a e x_b medições de uma grandeza x obtidas por dois sensores S_A e S_B , respectivamente. σ_a^2 e σ_b^2 são as variâncias associadas.

Considerando x_a como informação *a priori* (predição) e x_b a informação obtida por medição, a estimativa x_c de mínima variância é obtida pelo uso do filtro de Kalman:

$$x_c = x_a \frac{\sigma_b^2}{\sigma_a^2 + \sigma_b^2} + x_b \frac{\sigma_a^2}{\sigma_a^2 + \sigma_b^2}$$

e sua variância é dada por

$$\sigma_c^2 = \frac{\sigma_a^2 \sigma_b^2}{\sigma_a^2 + \sigma_b^2}$$

ou ainda $(\sigma_c^2)^{-1} = (\sigma_a^2)^{-1} + (\sigma_b^2)^{-1}$, ou seja, as informações se somam.

Exemplo 2. Fusão sensorial usando o filtro de Kalman

Exemplo 5. Detecção de falha em motor de corrente contínua

Exemplo 5. Detecção de falha em motor de corrente contínua

Exemplo 5. Detecção de falha em motor de corrente contínua

49

Exemplo 5. Detecção de falha em motor de corrente contínua

Exemplo 5. Detecção de falha em motor de corrente contínua

- Filtro de Kalman de regime permanente
 - Seja o seguinte modelo de um sistema linear estocástico:

$$\mathbf{x}(k+1) = \mathbf{F}\mathbf{x}(k) + \mathbf{G}\mathbf{u}(k) + \mathbf{w}(k)$$
(73)

$$\mathbf{y}(k) = \mathbf{H}\mathbf{x}(k) + \mathbf{v}(k)$$
(74)

com $\mathbf{w}(k) \sim \mathcal{N}(\mathbf{0}, \mathbf{Q})$ e $\mathbf{v}(k) \sim \mathcal{N}(\mathbf{0}, \mathbf{R})$ sendo processos gaussianos estacionários representando incertezas na evolução das variáveis de estado $\mathbf{x}(k)$ e na medição $\mathbf{y}(k)$, respectivamente.

- Filtro de Kalman de regime permanente
 - Estando este sistema operando em torno de uma condição nominal e seu estado estimado por um filtro de Kalman, o ganho do filtro tende a permanecer constante sendo Q e R também constantes. Assim, sendo P(k) = P(k|k-1):

$$\mathbf{P}(k) = \mathbf{F}\mathbf{P}(k-1)\mathbf{F}^{T} + \mathbf{Q}$$

= $\mathbf{F}[(\mathbf{I} - \mathbf{K}(k-1)\mathbf{H})\mathbf{P}(k-1|k-2)]\mathbf{F}^{T} + \mathbf{Q}$
= $\mathbf{F}[(\mathbf{I} - \mathbf{P}(k-1|k-2)\mathbf{H}^{T}(\mathbf{H}\mathbf{P}(k-1|k-2)\mathbf{H}^{T} + \mathbf{R})^{-1}\mathbf{H})\mathbf{P}(k-1|k-2)]$

- Filtro de Kalman de regime permanente
 - Em regime permanente, $\mathbf{P}(k-1) = \mathbf{P}(k-1|k-2)$

$$\mathbf{P}(k) = \mathbf{F}\left[\left(\mathbf{I} - \mathbf{P}(k-1)\mathbf{H}^{T}\left(\mathbf{H}\mathbf{P}(k-1)\mathbf{H}^{T} + \mathbf{R}\right)^{-1}\mathbf{H}\right)\mathbf{P}(k-1)\right]\mathbf{F}^{T} + \mathbf{Q} \quad (78)$$

e $\mathbf{P}_{\infty} = \mathbf{P}(k) = \mathbf{P}(k-1)$ que resulta em

$$\mathbf{P}_{\infty} = \mathbf{F} \left(\mathbf{I} - \mathbf{K}_{\infty} \mathbf{H} \right) \mathbf{P}_{\infty} \mathbf{F}^{T} + \mathbf{Q}.$$
(79)

O ganho em regime permanente do filtro é portanto dado por

$$\mathbf{K}_{\infty} = \mathbf{P}_{\infty} \mathbf{H}^{\mathbf{T}} \left(\mathbf{H} \mathbf{P}_{\infty} \mathbf{H}^{T} + \mathbf{R} \right)^{-1}.$$
 (80)

- Problema da estimação não-linear ótima
 - Seja o seguinte modelo não-linear estocástico:

$$\mathbf{x}(k+1) = \mathbf{f}_k(\mathbf{x}(k), \mathbf{u}(k)) + \mathbf{w}(k)$$
(81)

$$\mathbf{y}(k) = \mathbf{h}_k(\mathbf{x}(k)) + \mathbf{v}(k)$$
(82)

com $\mathbf{w}(k) \sim \mathcal{N}(\mathbf{0}, \mathbf{Q}(k))$ e $\mathbf{v}(k) \sim \mathcal{N}(\mathbf{0}, \mathbf{R}(k))$ sendo processos gaussianos representando incertezas na evolução das variáveis de estado $\mathbf{x}(k)$ e na medição $\mathbf{y}(k)$, respectivamente.

- Problema da estimação não-linear ótima
 - **x**(*k*) não pode ser mais considerado um processo gaussiano. Sua distribuição evolui da seguinte forma:

$$p(\mathbf{x}(k)|\mathbf{y}_1,\ldots,\mathbf{y}_k) = \frac{p(\mathbf{y}(k)|\mathbf{x}(k))p(\mathbf{x}(k)|\mathbf{y}(1),\ldots,\mathbf{y}(k-1))}{\int p(\mathbf{y}(k)|\boldsymbol{\xi})p(\boldsymbol{\xi}|\mathbf{y}(1),\ldots,\mathbf{y}(k-1))d\boldsymbol{\xi}}$$
(83)

Na prática, dificilmente pode-se obter uma solução analítica a este problema.

- Filtro de Kalman estendido
 - Para funções f_k e h_k suficientemente suaves, a gaussianidade de x(k) pode ser válida por um certo período de tempo. Assim, entre medições, sua estimativa x(k|k-1) é obtida por predição:

$$\hat{\mathbf{x}}(k|k-1) = \mathbf{f}_{k-1}(\hat{\mathbf{x}}(k-1), \mathbf{u}(k-1))$$
 (84)

$$\mathbf{P}(k|k-1) = \mathbf{F}(k-1)\mathbf{P}(k-1)\mathbf{F}^{T}(k-1) + \mathbf{Q}(k)$$
 (85)

com $\mathbf{F}(k-1) = \partial \mathbf{f}_{k-1} / \partial \mathbf{\hat{x}}(k-1).$

- Filtro de Kalman estendido
 - Quando medições $\mathbf{y}(k)$ são realizadas, estas são usadas para corrigir o processo de predição e obter uma estimativa $\mathbf{\hat{x}}(k)$ pela relação seguinte:

$$\hat{\mathbf{x}}(k) = \hat{\mathbf{x}}(k|k-1) + \mathbf{K}(k) \cdot (\mathbf{y}(k) - \mathbf{H}(k)\hat{\mathbf{x}}(k-1))$$
(86)

$$\mathbf{P}(k) = (\mathbf{I} - \mathbf{K}(k)\mathbf{H}(k))\mathbf{P}(k|k-1)$$
(87)
$$(\mathbf{I} - \mathbf{K}(k)\mathbf{H}(k))\mathbf{P}(k|k-1) (\mathbf{I} - \mathbf{K}(k)\mathbf{H}(k))^{T} + \mathbf{K}(k)\mathbf{P}(k)\mathbf{K}^{T}(k)\mathbf{Q}(k)$$

 $= (\mathbf{I} - \mathbf{K}(k)\mathbf{H}(k))\mathbf{P}(k|k-1)(\mathbf{I} - \mathbf{K}(k)\mathbf{H}(k))^{T} + \mathbf{K}(k)\mathbf{R}(k)\mathbf{K}^{T}(k||\mathbf{88})$

com $\mathbf{H}(k) = \partial \mathbf{h}_k / \partial \mathbf{\hat{x}}(k|k-1)$. O ganho de Kalman $\mathbf{K}(k)$ é dado por

$$\mathbf{K}(k) = \mathbf{P}(k|k-1)\mathbf{H}^{T}(k)\left(\mathbf{H}(k)\mathbf{P}(k|k-1)\mathbf{H}^{T}(k) + \mathbf{R}(k)\right)^{-1}$$
(89)

Controle linear quadrático gaussiano (LQG)

No controle LQG de uma planta (3)-(4), aplica-se um controlador LQ cuja lei de controle é

$$\mathbf{u}(k) = -\mathbf{L}(k)\mathbf{\hat{x}}(k) - \mathbf{Q}_2^{-T}\mathbf{Q}_{12}^T\mathbf{\hat{x}}(k)$$
(90)

com $\hat{\mathbf{x}}(k)$ sendo a estimativa de estado obtida por um filtro de Kalman.

- O caso de regulagem pode ser tratado usando as versões de regime permanente do controle LQ (*i.e.*, LQR) e do filtro de Kalman.
- Para sistemas não-lineares, o controlador usa o modelo linearizado em torno da referência enquanto que o estimador usa o modelo linearizado em torno da predição.

Bibliografia

Para a elaboração deste documento, foram consultadas as seguintes referências: [1], [2], [3], [4] e [5].

Referências

- [1] A. H. Jazwinski. Stochastic Processes and Filtering Theory. Academic Press, 1970.
- [2] C.K. Chui and G. Chen. *Kalman filtering with real-time applications*. Springer-Verlag, 3rd edition, 1999.
- [3] P. Dyer and S.R. McReynolds. *The computation and theory of optimal control*. Academic Press, 1970.
- [4] K.J. Åström and B. Wittenmark. *Computer Controller Systems: theory and design*. Prentice-Hall, Inc., Englewood Cliffs, N.J., 2nd edition, 1990.
- [5] J.D. Powell G.F. Franklin and M.L. Workman. *Digital control of dynamic systems*. Addison Wesley Longman, Inc., 3rd edition, 1997.