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Structural Properties and Classification of Kinematic 
and Dynamic Models of Wheeled Mobile Robots 

Guy Campion, Georges Bastin, and Brigitte D’ AndrCa-Novel 

Abstract-The structure of the kinematic and dynamic models 
of wheeled mobile robots is analyzed. It is shown that, for a large 
class of possible configurations, they can be classified into five 
types, characterized by generic structures of the model equations. 
For each type of model the following questions are addressed: 
(ir)reducibility and (non)holonomy, mobility and controllability, 
configuration of the motorization, and feedback equivalence. 

I. INTRODUCTION 

HEELED Mobile Robots (WMR) constitute a class of 
mechanical systems characterized by kinematic con- 

straints that are not integrable and cannot therefore be elimi- 
nated from the model equations. The consequence is that the 
standard planning and control algorithms developed for robotic 
manipulators without constraints are no more applicable. This 
has given rise recently to an abundant literature dealing with 
the derivation of planning and control algorithms especially 
dedicated to specific simplified kinematic models of “trailer- 
like” or “car-like’’ rigid WMR (see, for instance and among 
many other relevant publications, [ 11-[SI). However, com- 
mercial wheeled mobile robots available on the market have 
generally a constructive structure which is much more complex 
than the simple models usually considered (for instance, robots 
with three or four motorized steering wheels) and for which 
the modeling issue (which is often a prerequisite to motion 
planning and control design) is still a relevant question. 

The aim of the present paper is to give a general and 
unifying presentation of the modeling issue of WMR. Several 
examples of derivation of kinematic and/or dynamic models 
for WMR are available in the literature, for particular proto- 
types of mobile robots (see, for instance, [9]-[ll] and [l]), 
as well as for general robots equipped with wheels of several 
types. A systematic procedure for model derivation can be 
found in [12] and [13]. In this paper we also consider a 
general WMR, with an arbitrary number of wheels of various 
types and various motorizations. Our purpose is to point 
out the structural properties of the kinematic and dynamic 
models, taking into account the resh-iction to the robot mobility 
induced by the constraints. By introducing the concepts of 
degree of mobility and of degree of steeribility, we show that, 
notwithstanding the variety of possible robot constructions and 
wheel configurations, the set of WMR can be partitioned in 5 

Manuscript received February 2, 1993; revised June 15, 1995. 
G. Campion and G. Bastin are with the Centre for Systems Engineering and 

Applied Mechmcs (CESAME), Universit6 Catholique de Louvain, B-1348 
Louvain-la-Neuve, Belgium. 

B. D’Andr6a-Novel is with the Centre Automatique et Systkmes-Ecole 
des Mines de Paris, F-77300 Fontainebleau, France. 

Publisher Item Identifier S 1042-296X(96)00497-6. 

classes. This analysis is carried out in Section I1 and illustrated 
in Section 111 with practical examples of robots belonging to 
the five classes. 

We then introduce four different kinds of state space models 
that are of interest for the understanding of the behavior of 
WMR. 

The posture kinematic model (Section IV) is the simplest 
state space model able to give a global description of 
WMR. It is shown that within each of the five classes, 
this model has a particular generic structure which allows 
to understand the maneuverability properties of the robot. 
The reducibility, the controllability, and the stabilizability 
of this model are also analyzed. 
The conjiguration kinematic model (Section V) allows to 
analyze the behavior of WMR within the framework of 
the theory of nonholonomic systems. 
The conjiguration dynamical model (Section VI) is the 
more general state space model. It gives a complete 
description of the dynamics of the system including the 
generalized forces provided by the actuators. In particular, 
the issue of the configuration of the motorization is 
addressed: a criterion is proposed to check whether the 
motorization is sufficient to fully exploit the kinematic 
mobility. 
The posture dynamical model (Section VII) which is 
feedback equivalent to the configuration dynamical model 
and useful to analyze its reducibility, its controllability, 
and its stabilizability properties. 

11. KINEMATICS OF WHEELED MOBILE ROBOTS 

A. Robot Position 
A wheeled mobile robot is a wheeled vehicle which is 

capable of an autonomous motion (without extemal human 
driver) because it is equipped, for its motion, with motors 
that are driven by an embarked computer. We assume that the 
mobile robots under study in this paper are made up of a rigid 
frame equipped with nondeformable wheels and that they are 
moving on a horizontal plane. The position of the robot on 
the plane is described as follo_ws_(see Fig. 1). An arbitrary 
orthonormal inertial basis {O,Il,Iz} is fixed in the plane of 
the motion. An arbitrary reference point P on the frame and 
an arbitrary basis {x;, x’;} attached to the frame are defined. 
The position of the robot is then completely specified by the 
3 variables x,y,O: 
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Fig. 1. Posture definition. 

* 2, y are the coordinates of the reference point P in the 
inertial basis, i.e., 

* 6' is the orientation ,Of the basis {xi) &} with respect to 

We define the 3-vector E describing the robot posture: 
the inertial basis { 11 ) A}.  

We also define the following orthogonal rotation matrix: 

cos8 sin0 80 
(2) 

B. Wheels Description 

We assume that, during the motion, the plane of each wheel 
remains vertical and the wheel rotates around its (horizontal) 
axle whose orientation with respect to the frame can be fixed or 
varying. We distinguish between two basic classes of idealized 
wheels: the conventional wheels and the Swedish wheels. In 
each case, it is assumed that the contact between the wheel 
and the ground is reduced to a single point of the plane. 

For a conventional wheel, the contact between the wheel 
and the ground is supposed to satisfy the pure rolling without 
slipping condition. This means that the velocity of the contact 
point is equal to zero and implies that the components of this 
velocity parallel and orthogonal to the plane of the wheel are 
equal to zero. 

For a Swedish wheel, only one component of the velocity of 
the contact point of the wheel with the ground is supposed to 
be equal to zero along the motion. The direction of this zero 
component of the velocity is a priori arbitrary but is fixed with 
respect to the orientation of the wheel. 

We now derive explicitly the expressions of the constraints 
for conventional and Swedish wheels. 

1) Conventional Wheels: 

- 

Fixed wheels: The center of the wheel, denoted A, is a 
fixed point of the frame (Fig. 2). The position of A in the 
basis {& ) x>} is characterized using polar coordinates by the 
distance P A  = 1 and the angle a. The orientation of the plane 
of the whe 71 with respect to P A  is represented by the constant 

P 

Fig. 2. Fixed and conventional centered orientable wheels. 

angle /3. The rotation angle of the wheel around its (horizontal) 
axle is denoted p(t) and the radius of the wheel is denoted T .  

The position of the wheel is thus characterized by 4 con- 
stants, cr, @, I, ?-, and its motion by a time varying angle p(t). 
With this description, the components of the velocity of the 
contact point are easily computed and we can deduce the 2 
following constraints: 

along the wheel plane 

I- sin(cr + p) cos(a + p) 1 C O S P ] R ( O ) ~  + r+ = o (3) 

orthogonal to the wheel plane 

[cos(cr + 0) sin(cr + 0) I sin P]R(Q)( = 0. (4) 

Centered orientable wheels: A centered orientable wheel 
is such that the motion of the wheel plane with respect to the 
frame is a rotation around a vertical axle passing through the 
center of the wheel (Fig. 2). The description is the same as for 
a fixed wheel, except that now the angle P( t )  is not constant 
but time varying. The position of the wee1 is characterized by 
3 constants, Z,cr ,~,  and its motion with respect to the frame 
by 2 time-varying angles p(t) and p(t).  The constraints have 
the same form as above: 

[- sin(a + p) cos(a + P )  I cos P I R ( B ) ~  + T+ = o (5)  
[cos(a + /3) sin(a + P )  ZsinP]R(Q)( = 0. (6) 

Off-centered orientable wheels ( "Castor wheels"): An 
off-centered orientable wheel is also a wheel which is ori- 
entable with respect to the frame, but the rotation of the wheel 
plane is around a vertical axle which does not pass through the 
center of the wheel (Fig. 3). In this case, the description of the 
wheel configuration requires more parameters. The center of 
the wheel is now denoted B and is connected to the frame by 
a rigid rod AB of constant length d which can rotate around 
a fixed vertical axle at point A. This point A is itself a fixed 
point of the frame and its position is specified by the 2 polar 
coordinates E and a as above. The plane of the wheel is aligned 
along AB. 

The position of the wheel is described by 4 constants, 
a,  I ,  T ,  d, and its motion by 2 time varying angles @(t) and 
p(t). With these notations, the constraints have the following 
form: 
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Fig. 3. Conventional off-centered orientable wheels. 
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Fig. 4. Swedish wheels. 

2)  Swedish Wheels: The position of the wheel with respect 
to the frame is described, as for the conventional fixed wheel, 
by the 3 constant parameters, a,  p, 1 .  An additional parameter 
is required to characterize the direction, with respect to the 
wheel plane, of the zero component of the velocity of the 
contact point represented by the angle y (Fig. 4). The motion 
constraint is expressed as 

C. Restrictions to the Robot Mobility 

We now consider a general mobile robot, equipped with 
N wheels of the 4 above described categories. We use the 4 
following subscripts to identify quantities relative to these 4 
classes: f for conventional fixed wheels, c for conventional 
centered orientable wheels, oc for conventional off-centered 
orientable wheels, and sw for Swedish wheels. The numbers 
of wheels of each type are denoted N f ,  N,, No,, Ns, with 

The configuration of the robot is fully described by the 
Nf f Nc + No, + Ns, = N .  

following vectors of coordinates. 

Posture coordinates: [( t )  k y(t) for the position (:Ili) 
coordinates in the plane. 
Angular coordinates: P,(t)for the orientation angles of the 
centered orientable wheels and poc(t) for the orientation 
angles of the off-centered orientable wheels. 

Rotation coordinates: cp(t) A ( i:,!)) for the rotation 

angles of the wheels around their horizontal axle of 
rotation. 

’ The whole set of posture, angular, and rotation coordinates 
E ,  Pc, Po,, and cp is called the set of configuration coordinates 
in the sequel. The total number of configuration coordinates 
is clearlyNf + 2Nc + 2N0, + N,, + 3. 

With these notations the constraints can be written under 
the general matrix form: 

(10) 
(11) 

VSU, (4 

Ji(Pc, Poc)R(0)i + Jz+ = 0 

Cl(PC, Poc)R(Q)i + C Z B O C  = 0 

with the following definitions. 
a) 

Jlf 

J 1 ( P c , P o c )  A ( Jloc(P0c) J;;:) ) 
where J l f  , JI,, J,,, JSw are respectively an ( N f  x 3), an 
( N, x 3) ,  an (No, x 3) ,  and an (N, ,  x 3) matrix whose 
forms derive readily from the constraints (3), (5 ) ,  (7), 
and (9). Jlf and J,, are constant, while Jlc  and J1,, 
are time varying respectively through &(t) and P,,(t). 
Jz is a constant ( N  x N )  matrix whose diagonal entries 
are the radii of the wheels, except for the radii of the 
Swedish wheels which are multiplied by cosy. 

b) 
Cl f 

~ l o c ( P 0 c )  

C l ( P C , P O C )  2 ( ClC(P,) ) ,  c, f (c!oc) 

where C1f,C1c,C~oc are 3 matrices respectively of 
dimension (Nf x 3), ( N ,  x 3), (Not x 3) whose rows 
derive from the constraints (4), (6), and (8). Clf is 
constant while Clc and Clot are time varying. CZ,, is 
a diagonal matrix whose diagonal entries are equal to d 
for the No, off-centered orientable wheels. 

We introduce the following assumption concerning the 
configuration of the Swedish wheels. 

AI: For each Swedish wheel: y # f. The value y = 5 
would correspond to the direction of the zero component of 
the velocity being orthogonal to the plane of the wheel. Such 
a wheel would be subjected to a constraint identical to the 
nonslipping constraint of conventional wheels, hence loosing 
the benefit of implementing a Swedish wheel. 

Consider now the ( N f  + N,)  first constraints from (1 1) and 
written explicitly as 

C l f R ( 0 ) i  = 0 (12) 
c l c ( P c ) w i  = 0. (13) 

These constraints imply that the vector R(0)i  belong to the 
null space of the following matrix Cy(,&): 
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Fig. 5. Instantaneous center of rotation. 

W)i  E J w w c ) l .  (15) 
Obviously rank [CT(Pc)] 5 3.  If rank [CT(Pc)] = 3, then 
R(6’)i = 0 and any motion in the plane is impossible! More 
generally, the limitations of the mobility of the robot are 
related to the rank of Cy. This point will be discussed in 
detail hereafter. 

Before that, it is important to notice that conditions (12) 
and (13) have an interesting geometrical interpretation. At 
each instant the motion of the robot can be viewed as an 
instantaneous rotation around the instantaneous center of ro- 
tation (ICR) whose position with respect to the frame can be 
time-varying. Hence at each instant the velocity vector of any 
point of the frame is orthogonal to the straight line joining 
this point and the ICR. In particular this is true for the centers 
of the conventional fixed and centered orientable wheels. This 
implies that at each time instant, the horizontal rotation axles 
of all the conventional fixed and centered orientable wheels 
are concurrent at the ICR. This fact is illustrated in Fig. 5 and 
is equivalent to the condition that rank [CI(Pc)] 5 2. 

Obviously the rank of the matrix CT(Pc) depends on the 
design of the mobile robot. We define the degree of mobility 
6, of a mobile robot as 

6, = dimN[C,*(P,)] = 3 - rank[C,*(P,)]. 

Let us now examine the case rank[Clf] = 2 which implies 
that the robot has at least 2 fixed wheels and, if there are 
more than 2, that their axles are concurrent to the ICR whose 
position with respect to the frame is fixed. In such a case, 
it is clear that the only possible motion is a rotation of the 
robot around a fixed ICR. Obviously this limitation is not 
acceptable in practice and we thus assume that rank[Clf] 5 1. 
We assume moreover that the robot is nondegenerate in the 
following sense. 

A2: A mobile robot is nondegenerate if: 
i) rankClf 5 1; 
ii) rank[CT(P,)] =rankC~f+rankC~,(P,) 5 2. 

This assumption is equivalent to the following conditions. 
If the robot has more than one conventional fixed wheel 
(i.e., N j  > I), then they are all on a single common 
axle. 
The centers of the conventional centered orientable 
wheels do not belong to this common axle of the fixed 
wheels. 
The number rankClc(Pc) 5 2 is the number of conven- 
tional centered orientable wheels that can be oriented 

independently in order to steer the robot. We call this 
number the degree of steeribility 6, : 

6, = rankG,(P,). 

The number and the choice of these 6, steering wheels 
is obviously a privilege of the robot designer. If a 
mobile robot is equipped with more than 6, conventional 
centered orientable wheels (i.e., N,  > 6,), the motion 
of the extra wheels must be coordinated to guarantee 
the existence of the Instantaneous Center of Rotation at 
each time instant. 

It follows that onlyjve nonsingular structures are of prac- 

1) the degree of mobility 6, satisfies the following inequal- 

15 6, 5 3.  (16) 

(The upper bound is obvious. The lower ound means that 
we consider only the case where a motion is possible, 
i.e., 6, # 0.); 

2) the degree of steeribility 6, satisfies the following in- 
equalities: 

tical interest and such that: 

ities: 

0 _ < s s < 2 .  (17) 

(The upper bound can be reached only for robots without 
fixed wheels (Nf = 0), the lower bound corresponds to 
robots without centered orientable wheel ( N ,  = O).); 
and 

3) the following inequalities are satisfied: 

(The case 6, + 6, = 1 is not acceptable because it 
corresponds to the rotation of the robot around a fixed 
ICR as we have seen above. The cases (6, 2 2,Ss  = 2) 
are excluded because, according to Assumption A2-ii, 
6, = 2 implies that 6, = 1). 

Hence, there cxist only five types of wheeled mobile robots, 
corresponding to the five pairs of values of 6, and 6, 
that satisfy inequalities (16), (17), and (18) according to the 
followirng table: 

6, 3 2 2 1 1 
6, 0 0 1 1 2 

In the sequel, we shall designate these types of structures 
by using a denomination of the form: “mobile robot of Type 

The main design characteristics of each type of mobile robot 

Type (3,O). 6, = dimJ\/(CT(P,)) = 3 , S ,  = 0. These 
robots have no conventional fixed wheels ( N f  = 0) 
and no conventional centered orientable wheels (N,  = 
0). Such robots are called omnidirectional because they 
have a full mobility in the plane which means that they 
can move at each instant in any direction without any 
reorientation. In contrast, the other four types of robots 

(L,  &).” 

are now briefly presented. 
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have a restricted mobility (degree of mobility less than 
3). Examples of omnidirectional robots are the URANUS 
robot [9] and the UCL robot [l]. 
Type (2,O). 6, = dimN(Cf(P,)) = dimN(C1f) = 
2,6, = 0. These robots have no conventional centered 
orientable wheels (N,  = 0). They have either one 
conventional fixed wheel or several conventional fixed 
wheels but with a single common axle (otherwise Rank 
[Cl,] would be greater than 1). The mobility of the 
robot is restricted in the sense that, for any admissible 
trajectory [( t ) ,  the velocity E(t) is constrained to belong 
to the two-dimensional distribution spanned by the vector 
fields RT(0)sl and RT(0)sz,  where s1 and sz are two 
constant vectors spanning N (  Cif). The well known robot 
HILARE [4] belongs to this class. 
Type (2,l). 6, = dim(C;(P,)) = dimN(C1,(PC)) = 
2,6, = 1. These robots have no conventional fixed 
wheel ( N f  = 0) and at least one conventional centered 
orientable wheel ( N ,  2 1). If there are more than one 
centered wheel, their orientations must be coordinated in 
such a way that rank Clc(Pc) = 6, = 1. The velocity 
( ( t )  is constrained to belong to the two-dimensional 
distribution spanned by the vector fields RT(B)sl (P,) and 
RT(O)s2(Pc) where and s2(Pc) are two vectors 
spanning N(ClC@,)) and parametrized by the angle Pc 
of one arbitrary chosen conventional centered orientable 
wheel. 
Type (1,l). 6, = dimN(Cf(P,)) = 1,6, = 1. These 
robots have one or several conventional fixed wheels 
with a single common axle. They have also one or 
several conventional centered orientable wheels, with the 
condition that the center of one of them is not located on 
the axle of the conventional fixed wheels (otherwise the 
structure would be singular) and that their orientations are 
coordinated in such a way that rank C,,(P,) = 6, = 1. 
The velocity i(t) is constrained to belong to a one- 
dimensional distribution parametrized by the orientation 
angle of one arbitrarily chosen conventional centered 
orientable wheel. Mobile robots that are built on the 
model of a conventional car (often called car-like robots) 
belong to this class. Examples from the literature are the 
HERO 1 and the AVATAR robots (see 1141 and [151). 
Type (1,2). 6, = dimN(CT(Pc)) = dimN(C1,(/3,)) = 
1, 6, = 2 .  These robots have no conventional fixed wheels 
( N f  = 0). They have at least two conventional centered 
orientable wheels (N,  >_ 2 ) .  If there are more than 2 
centered wheels, their orientations must be coordinated in 
such a way that rank Cl,(P,) = 6, = 2 .  The velocity [ ( t )  
is constrained to belong to a one-dimensional distribution 
parametrized by the orientation angles of two arbitrarily 
chosen conventional centered orientable wheels of the 
robot, A typical example is the KLUDGE robot ([161). 

111. EXAMPLES 

We present in this section six concrete examples of mobile 
robots .to illustrate the five types of nonsingular structures that 

X l  

Fig. 6. Omnidirectionnal robot-Type (3,O). Three sweedish wheels. 

have been presented above. We restrict our attention to robots 
with three wheels. 

As we have shown in Section 11-B, the wheels of a mobile 
robot are described by (at most) six characteristic constants: 

1) three angles a,  ,f3, y; and 
2) three lengths I, T ,  d. 
For each example, we give successively a table with the 

numerical values of these characteristic constants and a pre- 
sentation of the various matrices J and C involved in the 
mathematical expresions (10) and (11) of the constraints. 

However, we shall assume that the radii T and the distances 
d are identical for all the wheels of all the examples. Hence, 
we will specify only the values of a,  p, y, 1. 

Example 1: Omnidirectional Robots with Swedish Wheels 
(Type (3,O)): The considered robot (see Fig. 6) has three 
Swedish wheels located at the vertices of the frame that has 
the form of an equilateral triangle (see for instance, [l]): 

Wheels a P 7 1 
L l sw  4 3  0 0 

2sw lr 0 L 
3sw 5lr /3  0 0 L 

The constraints have the form (10) where 

& $ L  
51 = [JlSw] = ($ -+l E), 52  = diag(r). 

Example 2: Omnidirectional Robots with Off-Centered Ori- 
entable Wheels (Type (3,O)): The robot has three conventional 
off-centered orientable wheels as shown in Fig. 7. 

The constraints have the form (10) and (11) where 

J1 = [Jloc(Po,)] 
- sin P o c l  cos P o c l  L cos P o d  

sin Pocz - cos Paca L cos Paca = (  cos Po& sin Poc3 L cos poc3 

52 = diag(r) 
c1 = [c loc(POc) l  

cos Pocl sin Pocl d + L sin PoCl 
= - cos POcz - sin Poc2 d + L sin Paca ( sin POc3 - cos Docs d + L sin POc3 

CZ = [CzOc] = diag (d ) .  
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Fig. 7. 
wheels. 

Omnidirectional robot-Qpe (3,O). Three off-centered orientable 

Fixed 

Fig. 8. Robot of Type (2,O). 

Wheels a P 1 

3 0 C  3n/2  - 

L 
L 
L 

- loc  0 
20c 7r - 

Example 3: Type (2,O): Robot with two conventional fixed 
wheels on the same axle and one conventional off-centered 
orientable wheel, Fig. 8. 

Wheels a! P I 
If 0 0 L 

?r 0 L 
L 

2 f  
- 3oc 3n/2 

The constraints have the form (10) and (11) where 

J1 = (2) 

cl = (2TC) 
1 0 0 

= [ -1 0 0 
sin POc3 - cos POc3 d + L sin POc3 

Fig. 9. Robot of Type (2,l). 

c 2 =  t). 
We note that the nonslipping constraints of to the 2 fixed 
wheels are equivalent (see the first 2 rows of Cl). Hence, 
the matrix Cy has a rank equal to 1 as expected. 

Example 4: Type (2,l): Robot with one conventional cen- 
tered orientable wheel and two conventional off-centered ori- 
entable wheels, Fig. 9. 

The constraints have the form (10) and (1 1) where 

Example 5: Type (1,l): Robot with two conventional fixed 
wheels on the same axle and one conventional centered 
orientable wheel (like the tricycles of the kids), Fig. 10. 

Wheels o! P 1 
I f  0 0 L 

?r 0 L 
L 

2f 
- 3c 3 ~ / 2  

The constraints have the form (10) and (1 1) where 

0 1 = [  0 -1 
cos Pc3 sin Pc3  L cos p c 3  
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Fig. 10. Robot of Type (1,l). 

Stwrina " 

2 

Fig. 11. Robot of Qpe (1,2). 

5 2  = diag(r) 

c1 = (2) 
1 0 

= ( -1 0 
sin PC3 - cos Pc3 L sin PC3 

c2 = 0. 

Example 6: Type (1,2): Robot with two conventional cen- 
tered orientable wheels and one conventional off-centered 
orientable wheel, Fig. 11, 

1 
L 
L 
L 

Wheels a P 

3oc 3 ~ / 2  - 

- I C  0 
2c R - 

The constraints have the form (10) and (11) where 

Iv. l%E POSTURE KINEMATIC MODEL 
In this section, the analysis of the mobility, as discussed in 

Section 11-C, is reformulated into a state space form which 
will be useful for our subsequent developments. 

We have shown (see (15)) that, whatever the type of mobile 
robot, the velocity ( ( t )  is restricted to belong to a distribution 
A, defined as 

( ( t )  E A, g span {col RT(6)C(P,)} V t  

where the columns of the matrix E(@,) form a basis of 
~JIC,*(Pc>l: 

N J[CY ( P C ) ]  = span{ COlC(PC) 1 
This is trivially equivalent to the following statement: for all 
t, there exists a time varying vector q(t)  such that 

i = R T ( W ( P C > r l .  (23) 

The dimension of the distribution A, and hence of the vector 
q(t)  is the degree of mobility 6, of the robot. Obviously, in the 
case where the robot has no conventional centered orientable 
wheels (6, = O), the matrix C is constant and the expression 
(23) reduces to 

( = RT(6)Cq. (24) 

In the opposite case (6, 2 1) , the matrix C explicitely depends 
on the angular coordinates Pc and the expression (23) can be 
augmented as follows: 

i = RT(6)C(Pc)17 (25) 
Pc = s. (26) 

This representation (24) or (25) and (26) can be regarded as 
a state space representation of the system (called the posture 
kinematic model), with the posture coordinates E and (possibly) 
the angular coordinates Pc as state variables while q and 
(that are homogeneous to velocities) can be interpreted as 
control inputs entering the model linearly. This interpretation 
must however be taken with some care since the true physical 
control inputs of a mobile robot are the torques provided by 
the embarked motors: the kinematic state space model is in 
fact only a subsystem of the general dynamical model that 
will be presented in Section VI. 

In the next subsections we derive the posture kinematic 
models corresponding to the examples of Section 111, and show 
that these models are generic and irreducible. This will allow to 
discuss the controllability and the stabilizability of the posture 
kinematic models of all WMR. 

A. The Five Generic Models of Wheeled Mobile Robots 

compact form: 
We rewrite the posture kinematic model in the following 

i = B(z)u  (27) 

with either (when N, = 0) 

z g t  B ( z )  g P ( 6 ) C  u g q  
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TABLE I 
THE 5 GENERIC POSTURE KLNEMHTC MODELS OF WHEELED MOBILE ROBOTS 

or (when N, 2 0) B. Mobility, Steeribility, and Maneuverability 

We give in Table I the particular form of z ,  C(Pc) or C and 
the equations of the posture kinematic models for the examples 
that have been presented in Section III. 

A natural question arises: for each class of WMR, is this 
posture kinematic model generic for all the robots belonging to 
this class ? The answer is affirmative: for any nondegenerate 
robot it is always possible to select the reference point P 
and the basis {xi, x i }  attached to the robot frame in such 
way that the posture kinematic model takes exactly the form 
corresponding to the type of the robot, as given in Table I, 
as follows. 

For a Type (3,O) robot, the reference point P and the basis 
{xi,&} can be chosen arbitrarily. 
For a Type (2,O) robot, P is chosen as a point of the axle 
of the fixed wheels, with & aligned along this axle. See, 
for example, Fig 8. 
For a Type (2,l) robot, we select one of the centered 
wheels and P is choosen as the center of this wheel, with 
{ x i ,  x>} chosen arbitrarily. See, for example, Fig 9. 
For a Type (1,l) robot we select one of the centered 
wheels. P is the foot of the perpendicular drawn, from 
the center of the selected centered wheel onto the com- 
mon axle of the fixed wheels. L is the length of this 
perpendicular. See, for example, Fig 10. 
For a Type (1,2) robot, we select 2 centered orientable 
wheels. P is chosen as the mid-distance point between 
the centers of these 2 wheels, with xi aligned along the 
line joining their centers; L is the half distance between 
these centers. See, for example, Fig 11. 

This kinematic posture model allows to discuss further the 
maneuverability of WMR. The degree of mobility 6, is a first 
criterion of the maneuverability: it is equal to the number of 
degrees of freedom that can be directly manipulated from 
the inputs q, without reorientation of the centered wheels. 
Intuitively, it corresponds to how many “degrees of freedom” 
the robot could have instantaneously from its current config- 
uration, without steering any of its wheels. This 6, is not 
equal to the overall number of “degrees of freedom” of the 
robot that can be manipulated from the inputs 7 and C. In 
fact this number is equal to the sum SM = 6, + 6, that 
we could call degree of maneuverability. It includes the 6, 
additional degrees of freedom that are accessible from the 
inputs 5. But the action of 5 on the posture coordinates 
is indirect, since it is achieved only through the coordinates 
/3,, that are related to 5 by an integral action. This reflects 
the fact that the modification of the orientation of a centered 
wheel can not be achieved instantaneously. 

The maneuverability of a WRM depends on SM, but also 
on the way how these SM degrees of freedom are partitionned 
into 6, and 6,. Therefore 2 indices are needed to characterize 
the maneuverability: SM and S,, or, equivalently, 6, and S,, 
which are the 2 indices identifying the five classes of robots 
in Table I. 

Two robots with the same value of SM, but different S,, 
are not equivalent. For robots with 6, = 3, it is possible to 
freely assign the position of the ICR, either directly from 7,  
for the Type (3,O) robots, or by orientation of 1 or 2 centered 
wheels for the Type (2,l) and (1,2) robots. For robots with 
SM = 2, the ICR is constrained to belong to a straight line (the 
axle of the fixed wheel). Its position on this line is assigned 
either directly for Type (2,O) robots, or by the orientation of 
a centered wheel for Type (1,l) robots. 
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Similarly, two WRM with the same value of S,, but 
different S M ,  are not equivalent: the robot with the largest S M  
is more manoeuvrable. Compare, for instance, a Type (1,l) and 
a Type (1,2) robots, with 6, = 1, and, respectively, SM = 2 
and 6~ = 3. The position of the ICR for the Type (1,2) robot 
can be assigned freely in the plane, just by orienting 2 centered 
wheels, while for the Type (1,1), the ICR is constrained to 
belong to the axle of the fixed wheels, its position on this axle 
being specified by the orientation of the centered wheel. Since 
the steering directions of the centered wheels can usually be 
changed very quickly, especially for small indoor robots, it 
results, from a practical veiwpoint, that the Type (1,2) robot 
is more manoeuvrable than the Type (1,l). 

Obviously, the ideal situation is that of omnidirectional 
robots where 6, = SM = 3. 

C. Irreducibility of the Posture Kinematic Model 

In this section, we address the question of the reducibility 
of the posture kinematic model (27). A state space model is 
reducible if there exists a change of coordinates such that some 
of the new coordinates are identically zero along the motion of 
the system. For a nonlinear dynamical system wihout drift like 
(27), the reducibility is related to the involutive closure A of 
the following distribution A, expressed in local coordinates as: 

A(z) k span{col(B(x))}. 

It is a well known consequence of Frobenius Theorem that the 
system is reducible only if d imA < dimz. 

In this section, we shall prove that the posture kinematic 
model of nondegenerate mobile robots (see Assumption A2) 
is always irreducible. To establish this result, we proceed by 
first analyzing in details the particular case of the robot of 
Type (1,1) whose posture kinematic model is as follows (see 
Table I): 

Y 

t Bb) 

In this particular case, a basis of A(.) is as follows: 

A(x) = sPan{bl(x), b2(x), b 3 ( z ) ,  b4(x)) 

with bl ( z )  , b2 (2) the columns of B( z )  : 

and 

/Lcos 0 )  

\ o /  

We see that rank B( x) = 6, + 6, = 2 and dim A(.) = 
dimx = 4 everywhere in the state space. It follows that the 
kinematic state space model (28) of a robot of Type (1,l) is 
irreducible. 

Furthermore, the same line of reasoning that has been 
followed for Type (1,l) can be followed easily for any Type 
of mobile robot. It appears that all posture kinematic models 
of Table I are irreducible. We summarize this analysis in a 
Property. 

Property 1: 
1) For the posture kinematic model i = B(z)u of wheeled 

mobile robots: 
a) the input matrix B(x) has full rank: 

rank B(x)  = S, + S, for all z .  

b) the involutive distribution A@) A inv span 
{col B(z ) }  has constant maximal dimension: 

dimA(x) = 3 + 6, for all z .  

2) Consequently, the posture kinematic model of wheeled 
mobile robots is irreducible. This is a coordinate free 
property. U 

D. Controllability, Feedback Linearizability, 
and Stabilizability 

In this section, we summarize the main controllability and 
feedback stabilizability properties of the posture kinematic 
model of wheeled mobile robots. We first examine the linear 
approximation around an arbitrary equilibrium state 2 4 
([, De) .  Equilibrium means that the robot is at rest somewhere, 
with a given constant posture f and a given constant orien- 
tation pc of the orientable centered wheels. Obviously, the 
velocities are zero: fi = 0. 

Property 2: The controllability rank of the linear approxi- 
mation of the posture kinematic model i = B(z)u around an 
equilibrium state is 6, + 6,. 

Indeed, the linear approximation around (Z ,G  = 0) is 
written: 

d 
d t  
- ( z  - z) = B(2)u. 

It follows that the controllability matrix reduces to B(2) whose 
U 

This implies that the linear approximation of the posture 
kinematic model of omnidirectional robots (Type (3,O)) is 
completely controllable since 6, is precisely the state di- 
mension in this case while it is not controllable for restricted 
mobility robots (Types (2,0), (2,1), (l,l),  (1,2), 6, <_ 2 )  since 
6, + Ss < 3 + Ss = dimz. 

This property, however, does not prevent restricted mobil- 
ity robots from being controllable, in accordance with the 
physical intuition. 

Property3: The posture kinematic model ,2 = B(z)u of 
wheeled mobile robots is controllable. 

This follows from the fact that the involutive distribution 
A( z )  has constant maximal rank which implies controllability 

U 

rank is S, + Ss for all Z by Property 1. 

for driftless systems (see e.g., [17], ch. 3). 
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Practically, this property means that a mobile robot can 
always be driven from any initial posture to any final one 
[f, in a finite time, by manipulating the velocity control input 

Let us now consider the question of the existence of a 
feedback control U(.) able to linearize a mobile robot at a 
particular state z*. 

For omnidirectional robots, the answer to that question is 
obvious. For example: 

U = (7,s)'. 

U(.) = B(z) - lA(z  - z* )  

with A an arbitrary Hurwitz matrix, is clearly a linearizing 
smooth feedback control law that drives the robot exponen- 
tially to z*.  Indeed, the closed loop is described by the freely 
assignable linear dynamics: 

d 
d t  
- ( z  - x*) = A(. - z*). 

Hence, omnidirectional mobile robots are full state feedback 
linearizable and therefore quite similar to fully actuated robotic 
manipulators. 

For restricted mobility robots, the situation is less favorable 
since it appears from Property 2 that they are certainly 
not full state linearizable (the controllability of the linear 
approximation is necessary for that, see e.g., [18], ch. 4). But 
we can address the question of the dimension of the largest 
subsystem which is linearizable by static state feedback or 
the question whether the posture kinematic model is full state 
linearizable by dynamic feedback. 

We have the following properties. 
Property 4: 

The dimension of the largest feedback linearizable sub- 
system of the posture kinematic model Z = B(z)u 
by static state feedback is 6, + 6, . This result is a 
straightforward application of the algorithm of Marino 
U91. 
The posture kmematic model X = B(x)u of restricted 
mobility robots is a "differentially flat system" in the 
sense of [7] and 1201. This implies that it is full state 
linearizable by dynamic state feedback provided the 77- 
part of the input vector U is nonzero. A discussion 
of this property including an explicit derivation of the 
linearizing outputs for each type of robot can be found 
in [21]. 

Another interesting problem is that one of designing a 
smooth feedback control driving the robot from any state 
zo = ([o,Pco)' to a given equilibrium state 2 = (c,,@T, 
and making this equilibrium stable and attractive. Here again, 
for omnidirectional robots the solution is trivial while for 
restricted mobility robots we have the following properties. 

Property 5: 
a) For restricted mobility robots the posture kinematic 

model i = B(z)u  is not stabilizable by a continuous 
static time invariant state feedback U(.). 

Indeed the necessary condition of Brockett [22] is 
not satisfied: the map ( z , u )  + B(z)u  is not onto on 
a neighborhood of the equilibrium Z = (5, U = 0. 

b) The posture kinematic model is stabilizable by a contin- 
uous time varying static state feedback u(x,  t ) .  

This result is a special case of a general stabilizability 
result for driftless systems presented by Coron in [23]. A 
systematic procedure for the design of such stabilizing 
time varying feedback controls has been proposed by 
Pomet [24]. It is applicable to all the posture kinematic 
models because in each case (see Table I) one column 
of the matrix B ( z )  is of the form (0,. . . , O ,  l)T. 

V. THE CONFIGURATION KINEMATIC MODEL 
So far, we have used only a subset of the constraints (10) 

and (1 I): namely that part of the constraints which is relative 
to the fixed and centered orientable wheels, expressed by (12) 
and (13). The remaining constraints are now used to derive the 
equations of the evolution of the angular and rotation velocities 
Doc and i;, not involved in the posture kinematic model (25) 
and (26). 

It results directly from (10) and (1 1) that 

Boc = - ~ , - , ' , c l o c ( P O c > ~ ( q i  (29) 
i;, = - J ; l J l ( P c , P o c ) R ( e ) i .  (30) 

Combining these equations with the posture kinematic model 
(25) the state equations for POc and cp are written as 

Po, = ~ ( P o c ) ~ ( P c ) v -  (3  1) 
i;, = E(Pc, P O C ) C ( P C ) ,  (32) 

with the following definition of D(Poc) and E(/?,, Pot): 

W o e )  42 -~;;',cloc(Poc) 

E ( P c , P o c )  e - J ; l J l ( P c , P o c ) .  

We note also that these matrices satisfy the following equa- 
tions: 

(33) 
(34) 

Defining q as the vector of the configuration coordinates, i.e., 

J l ( P C ,  P o c )  + JzE(Pc, Doc) = 0 
' , c l O C ( P O C )  + ~ 2 " , D ( P O , )  = 0. 

(35) 

the evolution of the configuration coordinates can be described 
by the following compact equation, resulting from (25), (26), 
(31), and (32) called the conjiguration kinematic model 

i = S(dU (36) 

where 

Equation (36) has the standard form of the kinematic model 
of a system subjected to independent velocity constraints. We 
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now connect this formulation with the standard theory of 
nonholonomic mechanical systems (see, e.g., [25]-[27]). 

The reducibility of (36) is directly related to the dimension 
of the involutive closure of the distribution A1 spanned in 
local coordinates q by the columns of the matrix S(q),  i.e., 

A l ( d  SPan{COl (S(q) ) .  (38) 

It results immediately that 

6, + N, = dim(A1) 5 dim(inv(A1)) 5 dim(q) 
= 3 + N ,  + No, + N .  

We define the degree of nonholomy M of a mobile robot as 

M = dim(inv(A1)) - (6, + N,) .  

This number M represents the number of velocity constraints 
that are not integrable and cannot therefore be eliminated 
whatever the choice of the generalized coordinates. It must be 
pointed out that this number depends on the particular structure 
of the robot and therefore has not the same value for all the 
robots belonging to a given class. 

On the other hand, for a particular choice of generalized 
coordinates, the number of coordinates that can be eliminated 
by integration of the constraints is equal to the difference 
between dim(q) and dim(invA1). 

Property 6: 
a) The configuration kinematic model 4. = S(s)u of WMR 

is nonholonomic i.e., M > 0 for all types of mobile 
robots. 

b) The configuration kinematic model q = S(q)u of 
wheeled mobile robots is reducible, i.e., dim(q) > 

This property is not contradictory with the irreducibility of 
the posture kinematic state space model (25) and (26), as 
discussed in Section IV-A: the reducibility of (36) means that 
there exists at least one smooth function of (I, pc, Po,, cp), 
involving explicitely at least one of the variables (Doc,  cp) that 
is constant along the trajectories of the system compatible with 
all the constraints (10) and (11). 

dim(inv(A1)) for all types of mobile robots. 

This discussion is illustrated with two examples. 
Example I :  Type (3,O): Omnidirectional robot with 3 

For this robot, 6, = 3 and the configuration coordinates are 
Swedish wheels (Fig. 6.). 

q = (. Y 0 cp1 (P2 ( P 3 r  

The configuration model is characterized by S(q) ,  defined as 

S(q)=[?$ -sin0  COS^ ; 1). 0 
 COS^ sin0 0 

_ _  - 
r r  

2r  2r r 
&3 L l i  

It is easy to check that 

dim(A1) = 3 and dim(inv (A,)) = 5 .  

It results that the degree of nonholonomy is equal to 5 - 3 = 
2, while the number of coordinates that can be eliminated is 

equal to 6 - 5 = 1. In fact, the structure of the configuration 
model implies that 

3 L .  
@1+ $2 + @3 = ---8. r 

This means that (PI+  ( p 2  + (p3 + Fie) is constant along any 
trajectory compatible with the constraints. It is then possible 
to eliminate one of the four variables cp1, cp2, cp3,0. 

Example 3: Type (2,O): Robot with 2 fixed wheels and one 
off-centered orientable wheel (Fig. 8). 

For this robot, 6, = 2 and the configuration coordinates are 

4 = (. 9 e DOC3 91 (P2 ( p 3 ) T .  

The matrix S(q)  is as follows: 

- sin 0 0 
cos 0 0 

S(q)  = i c f t c 3  - $ ( d  +!cn@0c3) 1 . 
- -- 
r r 

L - 7 cos pOc3 
1 - ; sin ,bod 

It can be checked that 

dim(A1) = 2 and dim(inv AI)  = 6. 

It results that the degree of nonholonomy is equal to 6 - 2 = 4, 
and the number of coordinates that can be eliminated is equal 
to 7 - 6 = 1. It results from the configuration model that 

- 2 L .  
$1 + $ 2  = -0. 

This means that the variable (91 + cp2 + %0) has a constant 
value along any trajectory compatible with the constraints. 

VI. THE CONFIGURATION DYNAMICAL MODEL 

The aim of this section is the derivation of a general 
dynamical state space model of wheeled mobile robots de- 
scribing the dynamical relations between the configuration 
coordinates I ,  Po,, cp, @, and the torques developed by the 
embarked motors. 

This general state space model will be called “configuration 
dynamical model” and is made up of six kinds of state 
equations: one for each of the coordinates E ,  Po,, cp, pc and 
one for each of the internal coordinates q and 5 that were 
introduced in Section IV. The state equations for E,,Oc,,Boc, 
and (P have been derived in Section V under the form of 
the configuration kinematic model. The state equation for q 
and 5 will be established in Section VI-A using the Lagrange 
formalism. The configuration of the motorisation will be 
discussed in Section VI-B. 

A. Derivation of the Conjiguration Dynamical Model 

We assume that the robot is equipped with motors that can 
force either the orientation of the orientable wheels (angular 
coordinates p, and Doc) or the rotation of the wheels (rotation 
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coordinates p). The torques provided by the motors are 
denoted as follows: 

0 rv for the rotation of the wheels; 
0 roc for the orientation of the off-centered wheels; and 
0 re for the orientation of the centered wheels. 

Using the Lagrange formalism, the dynamics of wheeled 
mobile robots are described by the following (3 + No, + N + 
Ne) Lagrange equations: 

d d T  dT 
-(--) - ~ = CTp+rOc  
d t  dPoc d P o c  

d dT dT 
-(:) - - = J,TX+r, 
d t  dp dp 

where T represents the kinetic energy and X , p  are the La- 
grange coefficients associated with the constraints (IO) and 
(1 l), respectively. 

In order to eliminate the Lagrange coefficients, we proceed 
as follows. The first three Lagrange equations (39)-(41) are 
premultiplied by the matrices CT(Pc)R(B) ,  ZT(pC)D(&,) 
and ZT(,B,)E(pc, Pot), respectively, and then summed up. 
This leads to the two following equations, from which the 
Lagrange coefficients have disappeared owing to (33) and (34): 

c'(Pc)w)[Tlc + D(Poc)[Tlp,, + ~ ( P c , p o c ) [ % J  = 

C T ( P c ) { ~ T ( P o c ) ~ o c  + ET(pc,Poc>.,) (43) 
[TIP, = ( 4 4  

with the compact notation 

a d aT dT 
d t  a+ a$ [TI+ = -(-) - -. 

The kinetic energy of wheeled mobile robots can be expressed 
as follows: 

T = i T R T ( ~ ) [ M ( P o c ) R ( ~ ) i  + 2 v ( p o c ) b o c  + a w b c ]  

+ B o c ~ o c P o c  + 'pI,'p + B C I C B C  

with appropriate definitions of the matrices M(,BOc), 
V(Poc), W, Io,,, I,, I, which are dependent of the mass 
distribution and the inertia moments of the various rigid 
bodies (frame and wheels) that constitute the robot. The 
state equations for 7 and C are then obtained (after rather 
lenghty calculations) by substituting this expression of T 
in the dynamical equations (43) and (44) and eliminating 
the velocities 6, ,&, 'p, ,bc and the accelerations i, Bo,, (2j, jC 
with the aid of the kinematic equations (25), (26), (31), (32), 
and their derivatives. 

The general dynamical state space model of wheeled mobile 
robots then takes the following general form: 

General configuration dynamical model: 

i = R'(e)c(Pc)rl (45) 

with 

3. Configuration of the Motorization 
In the general configuration dynamical model (45)-(50), 

the vectors ~ ~ , r ~ ~ ,  and re represent all the torques that can 
potentially be applied for the rotation and the orientation of 
the wheels of the robot. In practice, however, only a limited 
number of motors will be used, which means that many 
components of ry,roc, and rc are identically zero. 

Our concern in th s  section is to explicit the configurations 
of the motorization that allow a full maneuverability of the 
robots while requiring a number of motors as limited as 
possible. 

First, it is clear that all the centered orientable wheels must 
be provided with a motor for their Orientation (otherwise, these 
wheels would just play the role of fixed wheels). 

Moreover, to ensure a full robot mobility, "additional 
motors (with N, 2 6,) must be implemented for either the 
rotation of some wheels or the orientation of some off-centered 
orientable wheels. The vector of the torques developed by 
these motors is denoted r, and we have 

= Pr, 

where P is a (Noc + I?) x N,  elementary matrix which selects 
the components of (roc, r,) that are effectively used as control 
inputs. 

Using (51) we see that (48) of the general dynamical model 
is rewritten as 

~ l ( P C , P O C ) +  + ~ T ( P c ) v ( P o c ) i  + fl(Pc, Po,, v,5) 
= B(Pc, P0c)PTm 

with B(Pc,Po,) A CT(P,)[DT(Poc) ET(Pc,Poc)l. 
We introduce the following assumption. 
A3: The configuration of the motorization is such that the 

matrix 

w e ,  POJP 

has full rank for all (Pc, pot) E R N c t N o c .  

We now present the minimal admissible motorizations for 
the various types of mobile robots that have been described 
in the Section III. 

wpe (3,0)-Example 1 (Fig. 6). Omnidirectionnal robot 
Bc = 5 (46) with three Swedish wheels. 
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In this case, the matrix B is constant and reduces to The corresponding selection matrices P are as follows: 

which is nonsingular. We conclude that the only admis- 
sible motorization is to equip each wheel with a motor. 
Type (3,O)-Example 2 (Fig. 7). Omnidirectionnal robot 
with three off-centered orientable wheels. 

In this case the matrix B(Poc) is written as follows: 

B(Poc) = xT[oT(Poc) ET(Poc)] with CTDT(Poc)  = 
cos P o c l  - cos Poc2 sin Poc3 

- sin Pocz - cos Doc3 
d + L sin Poci 

with CTET(Poc) = 
d + L sin Poc2 

- sinPOcl sinPoc2 cosPoc3 

d + L sin Poc3 

It appears that there is no set of 3 columns of B(Poc) 
which are independent for any (PoCl, Paca, Poc3) .  It is 
therefore necessary to use (at least) N ,  = 4 motors. 
An admissible configuration is as follows: 2 motors (one 
for the orientation and one for the rotation) on 2 of 
the 3 wheels (the third one being not motorized and 
hence self-aligning). For instance, if the wheels 1 and 
2 are motorized in this way, the selection matrix P is as 
follows: 

P =  

1 0 0 0  
0 1 0 0  
0 0 0 0  
0 0 1 0  
0 0 0 1  1 0 0 0 0  

and the matrix B(&)P has full rank (= 3) for any 
configuration of the robot. 
Type (2,O)-Example 3 (Fig. 8). 

Robot with two fixed wheels and one off-centered 

The matrix B(Poc) is written 
orientable wheel. 

b, p =  [i 8) 

Type (2,l)-Example 4 (Fig. 9). 
Robot with one centered orientable wheel and two off- 

centered orientable wheels. 
In this case, we first need a first orientation motor for 

the centered orientable wheel. The matrix BJ(Pc ,  Po,) is 
then written as follows: 

B(Pc,  Doc)  = CT(Pc)[DT(Poc) @(Pc, Poc) ]  

-1 with xT(pc)  = 

- cos Poca 

sin Poc2 

d + LsinPocl d + LsinPoca 
COS Pc3 - sin Pocl L sin Po,-:! 

L cos Pocl  L cos Poca 

cos PoCl - cos POc2 

The columns 1 and 3 of B(PC, Doc) are independent 
if d > L A .  The same holds for columns 2 and 3. 
Hence two admissible motorizations are obtained by using 
a second motor for the rotation of the centered wheel 
(number 3) and a third motor for the orientation of either 
wheel 1 or wheel 2. 

The two corresponding matrices P are: 

1 ) P =  ( 0 li) 1 2 ) P =  ( 0 i) 1 . 

Type (1,l)-Example 5 (Fig. 10). Robot with two fixed 
wheels and one centered orientable wheel. 

A first orientation motor for the centered orientable 
wheel is needed. The matrix B(Pc) reduces to the vector 

B = [sin PC3 + cos Pc3 - sin Pc3 + cos pc3 11. 
Several configurations with 2 motors are admissible: Since 6, = 1, A3 will be satisfied if a second motor is 

provided for the rotation of the third wheel. The matrix 
P is written: 

a) 2 rotation motors on wheels 1 and 2: 
b) 1 motor for the orientation of wheel 3 and one for 

the rotation of wheel 2 (or 3), provided d > L$; 

c) 2 motors (orientation and rotation) on the off- 
and P =  (H). 
centered wheel 3, provided d < L. 
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* Type (1,2)-Example 6 (Fig. 11). 
Robot with two centered orientable wheels and one off- 

Two motors are required for the orientation of the two 
centered orientable wheel. 

centered wheels. The matrix B(pc, Doc) is written as 

B ( D C ,  Doc)  = “ c ) [ D T ( P o c )  ET(Dc ,Poc ) l  

-2L sin sin Pc2 

sin(Pc1 + Pcz)  

2 sin Pc2 cos Pel - sin(Pcl + PCz) 

-1 - Ld-’ sin pOc3 

with C(Pc) = 

) cos pCz sin Doc3 . 

Since 6, = 1, it would be sufficient to have one 
column of B(& Doc) being nonzero for all the possible 
configurations. However, there is no such column. It 
is therefore necessary to use 2 additional motors, for 
instance for the rotation of wheels 1 and 2 giving the 
matrix P 

L cos Pel L cos pcz L cos Docs 

/o o \  

Finally the following table summarizes the results: 

VII. THE POSTURE DYNAMICAL MODEL 
The configuration dynamical model of wheeled mobile 

robots can be rewritten in the following more compact form: 

with the following definitions: 

u a  (;) 

(52) 
(53) 

It results from Assumption A3 that the matrix F ( P )  has 
full ra.nk for all ,B. This property is important to analyze the 
behavior of wheeled mobile robots and the design of feedback 
controllers. It is first used to transform the general state space 
model into a simpler and more convenient form, by a smooth 
static state feedback. 

Property 7: The configuration dynamical model of wheeled 
mobile robots ((52) and (53)) is feedback equivalent (by a 
smooth static time-invariant state feedback) to the following 
system: 

(54) 
(55) 

where U represents a set of 6, auxiliary control inputs. 
Indeed it foIlows readily from Property 1 that the following 

smooth static time invariant state feedback is well defined 
everywhere in the state space: 

where Ft denotes an arbitrary left inverse of F(P,  U ) .  R 
We would like to emphasize that a further simplification 

is of interest from an operational viewpoint. In a context 
of trajectory planning or feedback control design, it is clear 
that the user will be essentially concerned by controlling the 
posture of the robot (namely the coordinate E(t)) by using 
the control input U. We observe that this implies that we can 
ignore deliberately the coordinates POc and p and restrict our 
attention to the following posture dynamical model. 

Posture dynamical model: 

i = B(z )u  
,&=U 

where we recall that z i? 
This posture dynamical model fully describes the system 

dynamics between the control input U and the posture E ,  The 
coordinates Doc and cp have apparently disappeared but it is 
important to notice that they are in fact hidden in the feedback 
(56). 

The difference with the posture kinematic model is that now 
the variables U are part of the state vector. This implies the 
existence of a drift term and the fact that the input vector 
fields are constant. 

The posture dynamical model inherits of the structural 
properties of the posture kmematic model discussed in Section 
N-C.  

and U a (7, C ) T .  

Property 8: 
a) The posture dynamical model is generic and irreducible. 
b) The posture dynamical model is Small-Time-Locally- 

Controllable. 
c) For restricted mobility robots, the posture dynamical 

model is not stabilizable by a continuous static time 
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invariant state feedback, but is stabilizable by a time 
varying static state feedback. 

d) The dimension of the largest feedback linearizable sub- 
system of the posture dynamical model by static state 
feedback is 2(6, + 6,). Omnidirectional robots are 
therefore state feedback linearizable. 

e) The posture dynamical model is a differentially flat 
system. 

VIII. CONCLUSION 

It has been shown that, according to the restriction to the 
mobility induced by the kinematic constraints, all WMR can 
be classified into 5 categories, with particular structures of the 
corresponding kinematic and dynamic models. 

Four models have been introduced. 
- The posture kinematic model (Section IV), which is 

sufficient to describe the global motion of the robot. 
This model is generic in the sense that all the robots 
belonging to the same class are described by the same 
posture kinematic model. 

- The conjiguration kinematic model (Section V )  describ- 
ing the evolution of all the configuration variables. 

- The configuration dynamical model (Section VI) taking 
account the dynamics of the robot, including the torques 
provided by the motors 

- The posture dynamical model (Section VII), which is 
feedback equivalent to the configuration dynamical 
model. The equations of this model can be obtained 
from the posture kinematic model just by adding one 
integrator on each input. 

The inputs of the kinematic models are homogeneous to 
velocities, while the inputs of the dynamical models are either 
torques or accelerations. The posture models are generic, 
irreducible, and controllable; they are sufficient for posture 
control purpose. The configuration models are nongeneric, 
reducible, and not controllable; they depend on the particular 
structure of the robot and allow to describe the evolution of 
all the configuration variables. 
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