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Comment on “A New Method for the Nonlinear
Transformation of Means and Covariances in

Filters and Estimators”

Tine Lefebvre, Herman Bruyninckx, and Joris De Schutter

Abstract—The above paper generalizes the Kalman filter to nonlinear
systems by transforming approximations of the probability distributions
through the nonlinear process and measurement functions. This comment
derives exactly the same estimator by linearizing the process and measure-
ment functions by a statistical linear regression through some regression
points (in contrast with the extended Kalman filter which uses an analytic
linearization in one point). This insight allows: 1) to understand/predict
the performance of the estimator for specific applications, and 2) to make
adaptations to the estimator (i.e., the choice of the regression points and
their weights) in those cases where the original formulation does not assure
good results.

Index Terms—Statistical linear regression, unscented Kalman filter.

I. INTRODUCTION

The above paper1 describes the so-calledunscented Kalman filter
(UKF) as a new minimum mean squared error (MMSE) state estimator
for a nonlinear system

xxx(k + 1) =fff [xxx(k); uuu(k); k] (1)

zzz(k+ 1) =hhh[xxx(k + 1); uuu(k+ 1); k + 1] +www(k+ 1) (2)

wherexxx(k) is the state of the system at time stepk, uuu(k) is the input
vector,zzz(k) is the observation vector, andwww(k) is additive measure-
ment noise.fff [:] andhhh[:] are the nonlinear system and measurement
functions. The UKF formulas of the paper1 assume that the state vector
xxx(k) is augmented with the process noise vectorvvv(k) (see Remark 4
of the aforementioned paper1). This explains whyvvv(k) is not explicitly
mentioned in (1). It is also assumed that the process noisevvv(k) and the
measurement noisewww(k) are zero mean and

E vvv(k)vvvT (j) = �kjQQQ(k) (3)

E www(k)wwwT (j) = �kjRRR(k); 8 k; j (4)

E vvv(k)wwwT (j) =0: (5)

The Kalman filter update equations compute then-dimensional state
estimatex̂xx(kjj) at time stepk, given all observations up to and in-
cluding time stepj, and the covariance matrixPPP (kjj) of this estimate

x̂xx(k + 1jk + 1) = x̂xx(k + 1jk) +WWW (k + 1)���(k + 1) (6)

PPP (k + 1jk + 1) =PPP (k + 1jk)�WWW (k + 1)

� PPP ��(k + 1jk)WWWT (k + 1) (7)
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���(k + 1) =zzz(k+ 1)� ẑzz(k+ 1jk); (8)

WWW (k + 1) =PPP xz(k + 1jk)PPP�1�� (k + 1jk) (9)

PPP ��(k + 1jk) =RRR(k + 1) + PPP zz(k + 1jk): (10)

Different Kalman filter variants for nonlinear systems propose other
ways of computinĝxxx(k + 1jk), ẑzz(k+ 1jk), their covariance matrices
PPP (k + 1jk) and PPP zz(k + 1jk) and their cross covariance matrix
PPP xz(k + 1jk).

The UKF formalism chooses2n + 1 regression pointsXXX i in state
space with weightsWi (i = 1; . . . ; n)

XXX 0(kjj) = x̂xx(kjj); W0 = 2�=f2(n+ �)g (11)

XXX i(kjj) = x̂xx(kjj) + (n+ �)PPP (kjj)
i

Wi =1=f2(n+ �)g (12)

XXX i+n(kjj) = x̂xx(kjj)� (n+ �)PPP (kjj)
i

Wi+n =1=f2(n+ �)g (13)

where ( (n+ �)PPP (kjj))i is the ith row or column of
(n+ �)PPP (kjj). � is a degree of freedom in the choice of the

regression pointsXXX i [1], [2], [3]. This sample set is chosen to have
the same mean and covariance as the distribution ofxxx(k)

x̂xx(kjj) =

2n

i=0

WiXXX i(kjj) (14)

PPP (kjj) =

2n

i=0

WifXXX i(kjj)� x̂xx(kjj)g

� fXXX i(kjj)� x̂xx(kjj)gT : (15)

Starting from the regression pointsXXX i(kjk), obtained by (11)–(13),
the UKF-specific process update equations compute the sample mean
and covariance of the regression points passed through the nonlinear
process function

XXX i(k + 1jk) =fff [XXX i(kjk); uuu(k); k] (16)

x̂xx(k + 1jk) =

2n

i=0

WiXXX i(k + 1jk) (17)

PPP (k + 1jk) =

2n

i=0

Wi fXXX i(k + 1jk)� x̂xx(k + 1jk)g

� fXXX i(k + 1jk)� x̂xx(k + 1jk)gT : (18)

Starting from the regression pointsXXX i(k+1jk), obtained by (11)–(13),
the UKF-specific measurement update equations compute the sample
mean and covariance of the regression points passed through the non-
linear measurement function2 :

ZZZi(k + 1jk) =hhh[XXX i(k + 1jk); uuu(k+ 1); k + 1] (19)

ẑzz(k+ 1jk) =

2n

i=0

WiZZZi(k + 1jk) (20)

PPP zz(k + 1jk) =

2n

i=0

Wi fZZZi(k + 1jk)� ẑzz(k + 1jk)g

� fZZZi(k + 1jk)� ẑzz(k + 1jk)gT (21)

PPP xz(k + 1jk) =

2n

l=0

Wi fXXX i(k + 1jk)� x̂xx(k + 1jk)g

� fZZZi(k + 1jk)� ẑzz(k + 1jk)gT : (22)

2The paper does not write down these formulas explicitly, but they can be
found in the companion publications [1]–[3].
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The motivation behind the aforementioned paper1 is to avoid the lin-
earization of the process and measurement functionsfff andhhh, however,
(16)–(22) are the same as for an estimator whichlinearizesthese func-
tions by statistical linear regression and which we will refer to as the
linear regression Kalman filter (LRKF). The LRKF has the following
properties:

1) it linearizes the process and measurement functions by statistical
linear regression of the functions through some regression points
in state space;

2) it defines the uncertainty due to linearization errors on the lin-
earized process or measurement function as the covariance ma-
trix of the deviations between the function values of the nonlinear
and the linearized function in the regression points.

II. EQUIVALENCE OF THE UKF AND THE LRKF

Section II-A describes the linear regression formulas. Sections II-B
and II-C define the LRKF and show that the UKF is a LRKF for both
the process and the measurement update.

A. Statistical Linear Regression of a Nonlinear Function

Consider a nonlinear functionyyy = ggg(xxx) evaluated inr points (XXX i,
YYYi) whereYYYi = ggg(XXX i). Define

xxx =
1

r

r

i=1

XXX i yyy =
1

r

r

i=1

YYYi (23)

PPP xx =
1

r

r

i=1

(XXX i � xxx)(XXX i � xxx)T (24)

PPP xy =
1

r

r

i=1

(XXX i � xxx)(YYYi � yyy)T (25)

PPP yy =
1

r

r

i=1

(YYYi � yyy)(YYYi � yyy)T : (26)

They-regressionis thelinear regressionyyy = AAAxxx + bbb that minimizes
the sum of the squared errors

min
AAA;bbb

r

i=1

eee
T
i eeei (27)

with eeei = YYYi � (AAAXXX i + bbb), i.e., the deviations between the function
values of the nonlinear and linearized functions in the regression points.

The solution to (27) is [4]

AAA = PPP
T
xy PPP

�1

xx bbb = yyy �AAAxxx: (28)

The covariance matrix of the deviationseeei is

PPP ee =
1

r

r

i=1

eeeieee
T
i

=
1

r

r

i=1

f(YYYi � yyy)�AAA(XXX i � xxx)g

� f(YYYi � yyy)�AAA(XXX i � xxx)gT

=PPP yy �AAA PPP xy � PPP yx AAA
T +AAA PPP xx AAA

T

=PPP yy �AAA PPP xx AAA
T
: (29)

B. The UKF Is a LRKF: Process Update

The LRKF evaluates the nonlinear process function inr points
XXX i(kjk). These points have mean̂xxx(kjk) and covariancePPP (kjk).
The updated values of the regression points areXXX i(k + 1jk) =
fff [XXX i(kjk); uuu(k); k]. The LRKF algorithm uses a linearized process

TABLE I
EQUIVALENCE OF THESYMBOLS IN SECTIONSII-A, II-B, AND II-C

function obtained by statistical linear regression through(XXX i(kjk),
XXX i(k + 1jk)), i = 1; . . . ; r

xxx(k + 1) = FFF d(k)xxx(k) + FFF c(k) + vvv
�(k): (30)

The analogy with Section II-A becomes clear by replacing the symbols
according to Table I.
vvv�(k) is the process uncertainty that accounts for the linearization

errors. Its covariance matrixQQQ�(k) is defined as the covariance matrix
of the deviations between the function values of the nonlinear and the
linearized function in the regression points, i.e.,QQQ�(k) = PPP ee of (29).

The LRKF-specific process update equations then follow from the
well-known linear Kalman filter equations

x̂xx(k + 1jk) =FFF d(k)x̂xx(kjk) + FFF c(k)

=
1

r

r

i=1

XXX i(k + 1jk) (31)

PPP (k + 1jk) =FFF d(k)PPP (kjk)FFF d(k)
T +QQQ

�(k)

=
1

r

r

i=1

fXXX i(k + 1jk)� x̂xx(k + 1jk)g

� fXXX i(k + 1jk)� x̂xx(k + 1jk)gT : (32)

These update equations correspond to the UKF equations (16)–(18),
knowing that the UKF definesr = 2(n+�) regression points:n points
XXX i(kjk), n pointsXXX i+n(kjk), and2� pointsXXX o(kjk), (11)–(13).

C. The UKF Is a LRKF: Measurement Update

The LRKF evaluates the nonlinear measurement function inr regres-
sion pointsXXX i(k + 1jk). The points are chosen such that their mean
and their covariance matrix equalx̂xx(k+1jk) andPPP (k+1jk). The func-
tion values of the regression points through the measurement function
areZZZi(k + 1jk) = hhh[XXX i(k + 1jk); uuu(k + 1); k + 1]. The LRKF al-
gorithm uses a linearized measurement function obtained by statistical
linear regression through(XXX i(k + 1jk),ZZZi(k + 1jk)), i = 1; . . . ; r

zzz(k+ 1) = HHHd(k+ 1)xxx(k + 1) +HHHc(k + 1)

+www(k+ 1) +www
�(k+ 1): (33)

The analogy with Section II-A becomes clear by replacing the sym-
bols according to Table I.
www(k + 1) is the measurement noise on the nonlinear measurement

function (2),www�(k + 1) is the extra measurement uncertainty on the
linearized function due to linearization errors. The covariance matrix
of the latter isRRR�(k + 1) and is defined as the covariance matrix of
the deviations between the function values of the nonlinear and the
linearized function in the regression points, i.e.,RRR�(k + 1) = PPP ee

of (29).
The LRKF-specific measurement equations then follow from the

well-known linear Kalman filter equations

ẑzz(k+ 1jk) =HHHd(k+ 1)x̂xx(k + 1jk) +HHHc(k + 1)

=
1

r

r

i=1

ZZZi(k + 1jk) (34)
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PPP ��(k + 1jk) =RRR(k+ 1) +RRR
�(k + 1)

+HHHd(k + 1)PPP (k + 1jk)HHHT

d (k + 1)

=RRR(k+ 1)

+
1

r

r

i=1

fZZZi(k + 1jk)� ẑzz(k+ 1jk)g

� fZZZi(k + 1jk)� ẑzz(k+ 1jk)gT (35)

PPP xz(k + 1jk) =PPP (k + 1jk)HHHT

d (k + 1);

=
1

r

r

i=1

fXXX i(k + 1jk)� x̂xx(k + 1jk)g

� fZZZi(k + 1jk)� ẑzz(k+ 1jk)gT : (36)

These update equations are identical to the UKF process update
equations (19)–(22), knowing that the UKF definesr = 2(n + �)
regression points:n pointsXXX i(k + 1jk), n pointsXXX i+n(k + 1jk),
and2� pointsXXX o(k + 1jk) (11)–(13).

III. A DAPTATIONS TO THEORIGINAL UKF

Several adaptations to the original UKF framework have been pro-
posed. These adaptations use other criteria to choose the regression
points and/or their weights; sometimes the calculated covariance ma-
trix is increased artificially.

• The weights can be chosen as real numbers, the UKF then per-
forms a weighted linear regression.

• Sometimes, the UKF is used with a� < 0 (resulting in negative
weights) (see the aforementioned paper1 and [1]). In this case,
the calculated covariance matrices can be nonpositive, semidef-
inite. To overcome this problem, the covariances are artificially
increased

PPP
mod(k + 1jk) =PPP (k + 1jk)

+ fXXX 0(k + 1jk)� x̂xx(k + 1jk)g

� fXXX 0(k + 1jk)� x̂xx(k + 1jk)gT (37)

PPP
mod
zz (k + 1jk) =PPP zz(k + 1jk)

+ fZZZ0(k + 1jk)� ẑzz(k + 1jk)g

� fZZZ0(k + 1jk)� ẑzz(k+ 1jk)gT : (38)

• The scaled unscented transformation [5] introduces one more de-
gree of freedom in the choice of the regression points and their
weights (parameter�). In this case, the calculated covariances
lie between those of the original formulation and the previously
described modified form. The covariances can be increased even
more by introducing another parameter (�).

• The reduced sigma point filters [2], [6] minimize the number of
regression points ton+1 (the so-called simplex sigma points) for
ann-dimensional state space. This means that the linear regres-
sion is exact, i.e., the linearized function is a hyperplane through
the regression points. Hence,QQQ� andRRR� are zero: the lineariza-
tion errors are not taken into account. In this case, the calculated
covariances are too small and need to be increased artificially.

• Also some other filters are linear regression Kalman filters, e.g.,
the central difference filter [7] and the first-order divided differ-
ence filter [8], [9] which choose2n regression points.

IV. CONCLUSION

This comment has shown that the UKF is a special case of the LRKF,
i.e., 1) it linearizes the process and measurement functions by statis-

tical linear regression of the functions through some regression points;
and 2) it represents the extra uncertainty on a linearized function due
to linearization errors by the covariance of the deviations between the
nonlinear and the linearized function in the regression points. Looking
at the UKF in this way: 1) allows a better understanding of the perfor-
mance of the estimator for specific applications; and 2) allows to un-
derstand/develop adaptations to the estimator which guarantee better
performance in applications where the original estimator does not as-
sure good results (e.g., when dealing with discontinuous functions).
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Authors’ Reply

Simon Julier and Jeffrey Uhlmann

In [1], Lefebvreet al.demonstrate the validity of the so-called un-
scented Kalman filter (UKF) approach1 from a least-squares regression
perspective. We use the definition that the Kalman filter is the minimum
least squares update algorithm. From first principles and using notation
from the aforementioned paper,1 it can be proved that this is

x̂(k + 1jk + 1) = x̂(k + 1jk) +W(k + 1)�(k + 1)

P(k+ 1jk + 1) =P(k+ 1jk)

�W(k + 1)P��(k + 1jk)WT (k + 1)

�(k + 1) = z(k + 1)� ẑ(k + 1jk)

W(k + 1) =Px�(k + 1jk)P�1�� (k + 1jk):
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