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The present work 
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e analysis of heart rate variability (HRV)
tant tool for studying the autonomic nervous
s the evaluation of the balance between the
arasympathetic influences on heart rhythm.

II.  SPECTRAL ANALYSIS OF THE HRV SIGNAL

The spectral analysis of the HRV signal allows one t
separate in bands the frequencies related to the sympatheti

alho , A. F. Rocha , L. F. Junqueira Jr , J. Souza Neto , I. Santos , F. A. O. Nascimento
1Department of Electrical Engineering, Universidade de Brasília, Brazil

2Department of Clinical Medicine, Universidade de Brasília, Brazil
3Department of Electrical and Computer Engineering, University of Texas at Austin
nalysis of HRV makes it easier to evaluate
aries with time. This work presents a tool for
nalysis of heart rate variability (HRV)
ab 6.5 Three techniques are available: Short-
ansform, Continuous Wavelet Transform
e-Variant Auto-Regressive Modeling.

R model, auto-regressive spectrogram, CWT,
, RR, STFT, time-frequency analysis

I.  INTRODUCTION

esents a tool for time-frequency analysis of
ity (HRV), which was developed in Matlab
ted into the ECGLab system [1]. ECGLab
analysis of HRV which was developed at
Brasília-Brasil.
 of HRV is important when studying the
s system because it helps in evaluating the
een the sympathetic and parasympathetic
 heart rhythm. The sympathetic branch of
m increases the heart rhythm, resulting in
eat intervals, and the parasympathetic
s the heart rhythm, resulting in longer beat-

software developed at the University of
atically detects the heart beat instants and

 period signal, based on the beat-to-beat
tatistical analysis module of ECGLab
 that quantify the HRV. The Poincaré
allows the user to evaluate the HRV on
es. The spectral analysis module and the
analysis module help in evaluating the
ympathetic balance on the signal.

ese classical techniques for analysis of
e to provide information on how the
ympathetic balance change through time.

t feature could help explaining how the
odulates the heart rate.
prove the ECGLab system in that aspect, a
s created. The time-frequency analysis
the HRV spectrogram, which makes it easy
e sympathetic-parasympathetic activations

 time. The spectrogram analysis provides
 indexes that help in evaluating how the
arasympathetic influences vary with time.

and parasympathetic activities of the nervous system. The
most popular techniques for the spectral analysis of HRV
are the Discrete Fourier Transform (DFT) and the
autoregressive modeling.

These techniques require the samples of the signal being
analyzed to be evenly spaced in time. This is not the case
with the HRV signal because its samples are spaced
according to the heart beat intervals.

Since the sampling of the HRV signal is nonuniform, in
order to use the techniques proposed here, some pre-
processing is needed. A solution for this problem is the
reconstruction of the signal by interpolation, followed by re-
sampling of the signal at a higher sampling rate [2][3].

Thus, the power spectrum density of the signal is
calculated as follows:
• The series of RR intervals is interpolated by cubic

splines and the interpolated signal is re-sampled at a
higher, uniform rate (usually 2 or 4 Hz);

• The reconstructed signal is multiplied by a 5-minute
length window (Hamming and Hanning are the most
popular ones);

• The DC component of the signal is removed;
• The spectrum is calculated, using the absolute value of

the DFT or the auto-regressive model of the signal.
• The amplitude spectrum is squared, and multiplied by

the sampling period.
• When the AR model is used, the result is multiplied by

the variance of the prediction error of the model. When
the DFT is used, the result is divided by the number of
samples in the window.
Fig. 1 shows a comparison between the power spectrum

obtained through DFT and its approximation by AR
modeling. Although this representation is less accurate than
the DFT, many cardiologists prefer to use the AR model
because its visualization is simpler, representing the
concentrations of sympathetic and parasympathetic energy
more clearly. The AR approximation gets closer to the
Fourier amplitude spectrum as the order p of the AR model
increases. To get a good spectral estimation, the specialized
literature recommend values of p=12 for a sampling rate of
2 Hz, and p=15 for a sampling rate of 4 Hz [4].

The power spectrum is divided in 3 bands: VLF (0 to
0.04 Hz), LF (0.04 to 0.15 Hz) and HF (0.15 to 0.5 Hz).
Some authors use slightly different divisions, but the
important fact here is that the energy contained in the LF
band is related to sympathetic activity of the signal, and the
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HF band is related to parasympathetic activity. The power in
these bands is calculated based on the area under the curve,
and the ratio between them indicates the sympathetic-
parasympathetic balance in the segment of signal.

Fig. 1. HRV power spectrum density. The auto-regressive approximation is
smoother than the Fourier PSD.

The absolute power contained in the LF and HF bands
and the LF/HF ratio are good indicators for detecting
alterations in the nervous system behavior. These alterations
have been associated with pathological conditions, such as
high blood pressure, HIV, Chagas’ disease and ischemic
attacks.

In some experiments, the researcher wants to observe
the reaction of the nervous system of a subject to specific
physical and mental stimuli. In this case, it is usual to obtain
the power spectra of two segments of the signal, one before
the stimulus, and the other after the stimulus. The two
spectra are analyzed separately and the comparison between
the obtained indexes for each segment can be used to
evaluate the response of the sympathetic and
parasympathetic branches of the nervous system to the
stimulus. But this technique does not reveal how the
components respond as a function of time. This can be
accomplished with time-frequency analysis.

III.  FOURIER SPECTROGRAM

The Short-time Fourier Transform (STFT) is a classical
technique for time-frequency analysis. In this technique, the
5-minute window is replaced by a short-time window (e.g.,
30 seconds). This window is shifted sample by sample in
time, and for each shift, a new power spectrum is calculated.

Thus, the Fourier spectrogram (Fig. 2) makes it possible
to observe the components of the sympathetic and
parasympathetic branches of the nervous system as a
function of time.

The major shortcoming of the Fourier spectrogram is
the tradeoff between spectral and time resolution. For short
windows, the time resolution is good, but the spectral
resolution is poor. On the other hand, with long windows,
the spectral resolution is good, but the time resolution is
poor.

Fig. 2. Fourier spectrogram of an HRV signal from a subject with no
autonomic dysfunction. The parasympathetic component (HF band) is
strong and is present in the whole signal. The sympathetic activity (LF
band) decreases in some segments of the signal.

IV.  AUTO-REGRESSIVE SPECTROGRAM

An alternative implementation to the Fourier
spectrogram is the auto-regressive spectrogram. The
proposed technique, called Time-Variant Auto-Regressive
Modeling (TVAR), is similar to the technique to obtain the
Fourier spectrogram. The main advantage of the technique
proposed here is that the pictures generated with the AR
model are more straightforward, as illustrated in Fig. 3.

Fig. 3. Auto-regressive spectrogram of an HRV signal from a subject with
no autonomic dysfunction. The figure, which was obtained with the TVAR,
is clearer that the one obtained with the STFT.

The frequency resolution in the AR spectrogram is
affected mostly by the order of the model [5]. That is
another advantage of this technique, as one can use a shorter
window and thus increase time resolution without losing
much frequency resolution. This cannot be accomplished
with the Fourier spectrogram.

V.  WAVELET SPECTROGRAM

The wavelet transform technique is appropriate for
studying non-stationary signals. It represents the time-
domain signals over different scales, enabling an
identification of both large-scale (low-frequency) and small-
scale (high-frequency) fragments. It has been shown that the

2575



continuous wavelet transform (CWT) helps avoiding
problems related to window length and shape, typically
encountered with the short-time Fourier Transform (STFT)
and Auto-Regressive (AR) spectrum estimation [6].

The wavelet spectrogram, or scalogram, is the squared
modulus of the CWT.  It is a distribution of the energy of
the signal in the time-scale plane, expressed in power per
frequency unit (for the HRV signal, ms2/Hz). Both,
spectrogram and scalogram can be thought of as smoothed
versions of the Wigner-Ville distribution, providing reduced
cross-term effects [7].

The continuous wavelet transform of a discrete sequence
xn is defined as the convolution of xn with a scaled and
translated version of the wavelet basis function ψ0(η):
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where the (*) denotes the complex conjugate. By varying
the wavelet scale s and translating along the localized time
index n, one can construct a picture showing how the
amplitude of the components in each scale vary with time.

The wavelet basis function for the Derivative of a
Gaussian (DOG) function is:
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where m is the derivative of the Gaussian. If m equals 2, we
have the Marr or Mexican hat wavelet. A real wavelet
function like the DOG wavelet returns only a single
component and is better suited for isolating peaks or
discontinuities. In this work, tests have also been performed
with Morlet and Paul basis functions and the results were
not satisfactory in terms of definition of the time-scale
(spectral) clusters.

A non-orthogonal analysis (such as the one used in this
implementation) is highly redundant at large scales, where
the wavelet spectrum at adjacent times is highly correlated.
The non-orthogonal transform is useful for time series
analysis, where smooth, continuous variations in wavelet
amplitude are expected. The most noticeable difference is
the fine scale structure using the DOG. This is because the
DOG is real-valued and captures both the positive and
negative oscillations of the time series as separate peaks in
wavelet power.

Whereas in the Fourier analysis the frequency resolution
∆f is constant, in wavelet analysis the ratio ∆f/f is constant.
Thus, instead of a linear frequency resolution, a logarithmic
resolution is obtained, so that the relative frequency
resolution remains the same over the entire frequency
interval under observation. In this case, the absolute
frequency resolution is obviously much better for lower than

for higher frequencies. The importance of logarithmic
frequency resolution in HRV may simply be illustrated by
looking at the ratios among the frequencies of characteristic
peaks – beginning with the peak around 0.013 Hz, each next
peak is at about twice the frequency. If a logarithmic
frequency axis is used, the peaks are approximately
equidistant. The logarithmic frequency resolution of the
wavelet analysis makes it possible for this method to capture
simultaneously very different rhythms within a single signal.

To make the maps clearer for analysis, we chose to use
the inverse of the Fourier period, instead of the wavelet
scale, as the dimension of the y axis. For the DOG, the
Fourier period is approximately four times larger than the
scale [8]. The DOG Wavelet scalogram is included in the
time-frequency analysis module of ECGLab and is
illustrated in Fig. 4.

Fig. 4. HRV of the valley of an ST depression ischemic episode and its
wavelet spectrogram (scalogram). The trajectories of the VLF, LF and HF
time-scale clusters are indicated. The vertical dotted line marks the time
instant of the amplitude valley of the episode.

VI.  TIME-FREQUENCY INDEXES

Since the Fourier spectrogram and the AR spectrogram
are the combination of the power spectra of short segments
of the HRV signal, it is possible to extend the spectral
analysis indexes to the time-frequency domain.

Thus, it is possible to obtain curves from the
spectrogram which show how the instantaneous absolute
power in VLF, LF or HF band varies with time. This can be
accomplished by the calculating the power in each band in
each PSD, and then plotting these indexes as a function of
time. Similarly, it is possible to obtain a curve that shows
the LH/HF ratio as a function of time as shown in Fig. 5.

The statistical analysis of these plots (mean, standard
deviation, variance coefficient, maximum, minimum,
dynamic range, percentiles, etc.) shows information about
the sympathetic and parasympathetic control over the heart
rate.

From the variation of LF/HF ratio curve, it is possible to
extract another index, the ratio of areas. This index measures
the global sympathetic-parasympathetic equilibrium in the
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signal.  In Fig. 5, the dotted line is an equilibrium threshold,
which indicates where the LF/HF ratio equals 1. Above this
line, the curve reveals sympathetic dominancy. Below the
threshold, the parasympathetic influence is dominant. The
index is obtained by calculating the ratio between the areas
above and below this line as shown in Fig. 6.

Fig. 5. Time-frequency plots obtained from the spectrogram: variation of
the instantaneous absolute power in the VLF, LF and HF bands. The LF/HF
ratio variation curve is also shown.

Fig. 6. The ratio of areas is calculated as the ratio of the areas above and
below the equilibrium line.

VII.  TIME-FREQUENCY ANALYSIS MODULE

In order to make the time-frequency analysis easier to
use for physicians and researchers, a time-frequency module
was added to the ECGLab system. This module implements
the techniques presented in this work with a simple and easy
to use interface (Fig. 7). The parameters to obtain the
spectrogram are easy to input and the time-frequency
indexes are obtained clicking the mouse.

VIII.  CONCLUSION

The software presented in this work was developed in
order to make the time-frequency analysis easy to be used
by researchers. As a general evaluation of the obtained
results, it can be deduced that the study of HRV in the time-
scale domain is a technique of clear clinical interest in the
monitoring of myocardial ischemia, high blood pressure,

Chagas’ disease and others, due to its detailed display of the
dynamics of the time-scale clusters and its adequate
representation of non-stationary signals over different
scales, enabling an identification of both large-scale (low-
frequency) and small-scale (high-frequency) fragments.

Fig. 7. A view of the time-frequency analysis module. In this window, the
HRV signal is being analyzed with the AR spectrogram, and the LF/HF
ratio variation curve is being displayed.
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 The correct sequence of steps for the calculation of the 
the power spectrum density of the HRV signal is: 
• The series of RR intervals is interpolated by cubic 

splines and the interpolated signal is re-sampled at a 
higher, uniform rate (usually 2 or 4 Hz); 

• The DC component of the interpolated signal is 
removed; 

• The resultant signal is multiplied by a 5-minute length 
window (Hamming and Hanning are the most popular 
ones); 

• The spectrum is calculated, using the absolute value of 
the DFT or the auto-regressive model of the signal. 

• The amplitude spectrum is squared, and multiplied by 
the sampling period. 

• When the AR model is used, the result is multiplied by 
the variance of the prediction error of the model. When 
the DFT is used, the result is divided by the number of 
samples in the window. 

 The order of steps 2 and 3 were mistakenly switched in 
page 1 of the paper. The DC component should be removed 
before windowing, not after. 
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