
An Image-based Positioning System

Ankit Gupta, Rahul Garg, Ryan Kaminsky

Figure 1: Flow Diagram of the Proposed Approach

Abstract

In this paper we address the problem of building an effi-
cient database management system that allows querying
for similar images. This system, which supports image-
based queries on a database of photographs taken around
the campus, helps the user to identify his/her location
on a campus map. We have implemented and analyzed
two classes of image retrieval techniques. In the first
technique, the database is kept in memory and we study
the performance of efficient data structures like kd-trees
for approximate nearest neighbor search versus exhaus-
tive linear search. In the second, the database is stored on
the disk and the performance of exhaustive linear search
is compared with the Local Polar Coordinate (LPC) based
Indexed Nearest Neighbor (INN) search algorithm. We
also propose novel ideas to further improve the perfor-
mance of LPC-based INN search. We have built a demo
system where a user can upload a University of Washing-
ton (UW) campus photo to a web application and receive
a map of the campus with his/her position marked.

1 Introduction

Visitors to large areas such as a university campus or
city downtown can quickly become disoriented by their
surroundings and lose their positioning details. They are
only able to rediscover their position from a map if it
contains easily identifiable landmarks or position infor-
mation. Image collections of campus and city locations
are prevalent on the Web or easily obtained through man-
ual means. Given such a database of images, we can make
a machine learn the landmark descriptions so that a vis-
itor could take an arbitrary picture of the surrounding
buildings and use a software system to determine his/her
position on a map (Figure 1).

This system has several advantages over a traditional
GPS. First, it can be used on any mobile phone with In-
ternet access and phones do not need to be GPS-enabled.

Second, this system can work in environments where
GPS signals are often blocked such as cities with densely-
packed skyscrapers and even indoors. Moreover, our sys-
tem can also provide location information inside a large
indoor structure such as a museum or other tourism site.
Finally, our system could be extended to provide more
detailed information about a location, including informa-
tion about buildings or nearby landmarks.

Our goal is to develop a system that will learn identify-
ing features from a large database of images for the pur-
pose of recognizing similar images. Research has shown
that pixel colors alone are not sufficient to describe an im-
age – we need to represent the image using higher level
descriptors and use SIFT descriptors [11] for this pur-
pose. We have created a database of features extracted
from all input images that can be visualized as a set
of points distributed in multidimensional space. We can
choose to store the database either on the disk or in mem-
ory. Each feature point is associated with a location on
the map based on the image from which it was extracted.
Each unique location is referred to as a class. Thus, given
a query image we need to extract its features, find the
matching features from the database, and determine the
class using a voting mechanism.

The matching problem is called the nearest neighbor
(NN) search and is well studied. The issue is to find an
efficient NN search algorithm that works well in high di-
mensional spaces. In addition to linear search (searching
for a match by iteratively looking at all features), there
exist other methods like approximate nearest neighbor
(ANN) search [1] which use hierarchical space subdivi-
sions for faster matching. Many recent papers have re-
alized the curse of dimensionality in large databases and
solutions have been proposed ([15],[17],[3],[4]). These
methods seek to prune out candidates by operating in
a reduced dimensional space and then perform complete
matching on the pruned set.

In this paper, we have implemented and analyzed the
performance of different approaches to this problem. We
propose some novel ideas for the LPC-based INN scheme
[4] and discuss their efficacy. We have also built an online
system for image-based localization on the UW campus
that currently works on a limited dataset.

The organization of the paper is as follows. Section 2
describes the concept of image representation using fea-
tures and methods of choosing matches for an image
feature. Section 3 explains our system architecture and
other implementation details. In Section 4, we evaluate
the search and storage strategies. In Section 5, we con-
clude the work with future research topics pertaining to
the system.

1

2 Literature Review

There are two key aspects of the problem: Image repre-
sentation using features and Nearest Neighbor matching.

2.1 Image representation using features

Feature points form a signature of an image. The de-
tection process needs to be invariant to viewpoint and
illumination changes. We use the interest point detector
of [12]. Their method adapts the Harris interest point de-
tector proposed in [8] to have scale and affine invariance.
The Harris detector is known to detect corner-like and
blob-like regions. To incorporate scale invariance into
the detector, the notion of characteristic scale is defined,
which is indicated by a local extremum over scale of nor-
malized derivatives (the laplacian). The affine shape of a
point neighborhood is estimated based on the covariance
matrix. An image with detected key points and the affine
invariant point neighborhoods is shown in Figure 2.

Figure 2: A subset of features detected in the image

Once a point is identified as a key point, we need to
build a signature or a feature vector for it. Again, the
representation should be invariant to illumination. We
use the representation proposed in [11]. The construction
of the descriptor is summarized in Figure 3.

2.2 Nearest Neighbor Matching

Given a set of features from a query image and a database
of features extracted from the training images, we would
like to find the nearest feature corresponding to each
query image feature. This is the well studied problem of
NN search and the popular approaches can be classified
into two broad categories - (1) Exact Approaches and (2)
Approximate Approaches. Exact approaches are guar-
anteed to yield the optimal solution while approximate
approaches guarantee bounds on “optimality” of the re-
turned solution. Even though approximate approaches
are more suited to the problem we are pursuing, we also
study and implement the exact approaches.

Exact Approaches

The naive method of finding the NN is to iterate over
every data point, compute its distance from the query
point, and return the point with the minimum distance.
We refer to this naive solution as linear search. We
study another method proposed in [4], the LPC-based

Figure 3: A keypoint descriptor is created by first computing
the gradient magnitude and orientation at each image sam-
ple point in a region around the keypoint location, as shown
on the left. These are weighted by a Gaussian window as
shown by the overlaid circle. These samples are then ac-
cumulated into orientation histograms summarizing the con-
tents over 4X4 subregions, as shown on the right, with the
length of each arrow corresponding to the sum of the gradient
magnitudes near that direction within the region. This figure
shows a 2X2 descriptor array computed from an 8X8 set of
samples, whereas the actual descriptors use 4X4 descriptors
computed from a 16X16 sample array. The final descriptor is
a 128 dimensional vector generated by concatenation of the
orientation histograms of each 4X4 window.

INN search, which does not reduce the time complexity
of the search algorithm but seeks to minimize the number
of disk I/Os if the database is stored on the disk.

There is another popular class of multidimensional in-
dexing methods (MIMs [6],[3],[7]) which partition the
data space and prune the search space for queries. While
this approach is quite successful for lower dimensional
spaces, its performance degrades rapidly as the dimen-
sionality of the space increases due to what is known as
the curse of dimensionality. To understand this effect,
let us consider the following scenario. Assume that a
d-dimensional dataset lies inside a unit dimensional hy-
percube [0, 1]d and the metric used is the L2 norm. We
also assume that data points and query points are uni-
formly distributed in the hypercube and the dimensions
are independent. Under these assumptions, we can com-
pute the expected nearest neighbor distance for a query.
Given this distance, the NN query can be reformulated
as a spherical range query and the average cost of the
search can be measured by the number of disk blocks
that intersect the range sphere. Consider a range sphere
query with diameter s in each dimension. The probabil-
ity that a point lies inside the sphere is given by sd. It
follows that even very large range queries are unlikely to
contain a point and highlights the sparsity of the data
in high dimensional spaces. For instance, at d = 256, a
range query with length 0.95 in each dimension selects
only 0.0002% of the data points. Hence the expected
NN distance becomes much greater than the length of
each dimension in higher dimensional spaces. Hence the
pruning done in MIM methods in not efficient in high
dimensional spaces.

The LPC-based INN strategy builds upon filtering
strategies like those in [18]. The filtering approach uses

2

a compact representation of vectors, and by first scan-
ning these approximations, only a small fraction of fea-
tures are identified as candidates for NN match. The
vector approximation(VA)-file approach of [18] divides
the whole space into 2b hypercells where b denotes a user
specified number of bits. The VA-file attaches a unique
bit string to each cell and the string is used as a com-
pressed representation for each of the data point lying
inside the cell. In the filtering step, the bounds dmin and
dmax are calculated for each cell and possible candidates
are selected. In the second pass, the actual distance to
each of the selected candidates is calculated by looking
at their full representation and the nearest neighbor is
returned. The selectivity during the filtration stage is
controlled by b – the number of bits used in the cell divi-
sion. Using a larger number of bits implies better filtering
but also leads to a larger compact representation and a
larger VA-file. Hence there is a trade off between the
selectivity of the filter and the size of the VA-file.

The LPC approach proposes to increase the discrimi-
natory power of the filter step discussed above by using
the local polar coordinates of the data point within its
cell. The information represented by the local polar coor-
dinates is orthogonal to the information contained in the
cell approximation and the two local polar coordinates –
namely the distance from the corner of the cell and the
angle with the cell diagonal are stored alongside the cell
bit-string in a LPC file (Figure 4).

Figure 4: Computing the approximation of vector p in 2 and
3 dimensions

The detailed construction of the approximation ai for
each vector pi is as follows. A user defined b number of
bits are assigned to each dimension to divide the whole
data space into 2bd cells. Typically b is a small integer
like 4 or 8. Each cell is represented by the concatenation
of the binary bit patterns for each dimension in turn. In
Figure 4, the cell c is represented by the bit string 01
10 where d = b = 2. The second step is to represent
the vector p using the polar coordinates (r, θ) within the
cell where p lies. Hence, the approximation of the vec-
tor p is represented by the triplet a =< c, r, θ > where c
represents the approximation cell. Note that the approx-
imation of the VA-file is only the cell c itself.

The approximation a represents the set of points which
have local polar coordinates (r, θ) within the cell c. In 2

dimensions, there are two such points - points p and p′

which have the same approximation a. In higher dimen-
sions, this set of points is represented by a hypersphere
with its center on the diagonal of the cell and radius
rsin(θ).

Based on the approximation a, we now derive the lower
and upper bounds, dmin and dmax, on the distance from a
query point q (Figure 5). If L2(p, q) denotes the L2 norm
between the query point q and the data point p, we seek
to find dmin and dmax such that dmin <= L2(p, q) <=
dmax. Applying cosine rule in triangle OAB, we obtain

AB2 = OA2 + OB2 − 2 ∗OA ∗OB ∗ cos(φ)

|p− q|2 = |p|2 + |q|2 − 2|p||q|cos(φ)

The lower and upper bound are obtained when the
value of cos(φ) is maximum and minimum respectively.
The minimum angle and maximum angles can be seen to
be |θ1 − θ2| and (θ1 + θ2). Hence dmin and dmax can be
obtained using the equations below

d2
min = |p|2 + |q|2 − 2|p||q|cos|θ1 − θ2|

d2
max = |p|2 + |q|2 − 2|p||q|cos(θ1 + θ2)

The bounds obtained using the LPC approximation
are much tighter than the bounds obtained using the
VA-file. For more discussion see [4]. During the filter
step, we maintain an upper bound on the distance of the
nearest neighbor from the query point based on the data
points processed so far. If the bound dmin of a point is
greater than the current upper bound, the point is re-
jected, otherwise it is added to the set of candidates and
the upper bound is updated with the value of its dmax.

Figure 5: Calculation of dmin and dmax for L2(p, q) in 2 and
3 dimensions

Accelerating the filtering step in LPC based
INN approach: As discussed above, the filtering is
done by calculating the bounds dmin and dmax for each
data point using the compressed LPC representation.
The calculation uses the cosine rule and involves com-
plex calculations which are inefficient. We propose a way
to derive a coarser bound on dmin, which is efficient to
calculate. The expensive computation of dmin and dmax

can be avoided if the data point fails the test using the
coarser estimate of dmin.

The most natural idea to compute a coarser estimate
of dmin is to calculate the minimum distance of the query

3

point from the cell containing the candidate data point.
However, notice that the cell is a hypercube and comput-
ing the minimum distance is non-trivial. For instance,
a cell in 128 dimensional space will have 2128 corners!.
However, a coarser estimate can be obtained by consid-
ering the hypersphere centered at the center of the cell
with radius equal to half the diagonal length – so that it
passes through all the vertices of the cell. The distance
of the query point from the surface of this hypersphere
is a lower bound for the distance of the query point from
the cell as shown in Figure 6. This can be calculated ef-
ficiently and the performance advantage obtained using
this strategy is discussed in Section 4.

Figure 6: Coarse Estimation of dmin

Another interesting point is that the above calculation
of dmin only depends on the cell in which the data point
lies irrespective of the local polar coordinates. This al-
lows us to process data points in batches. All points
lying inside a particular cell can be filtered out when a
single point fails the test using the coarser estimate of
dmin. However, this does not lead to any performance
gain. Potential causes are discussed in Section 4.

Approximate Approaches

It has been shown by Arya and Mount [1] that if the user
is willing to tolerate a small amount of error in the search
(returning a point that is not significantly further away
from the query point than the true nearest neighbor),
then it is possible to achieve significant improvements in
running time.

The data in multi-dimensional space is first structured
in the form of a kd-tree [5]. This data structure is based
on a recursive subdivision of space into disjoint hyper
rectangular regions called cells (Figure 7). Each node of
the tree is associated with such region B, called a box,
and is associated with a set of data points that lie within
this box. The root node of the tree is associated with a
bounding box that contains all the data points. As long
as the number of data points associated with a node is
greater than a small quantity, called the bucket size, the
box is split into two boxes by an axis-orthogonal hyper-
plane that intersects this box.

The standard ANN search algorithm [5] proceeds re-
cursively on this kd-tree. When first encountering a node
of the kd-tree, the algorithm first visits the child that is
closest to the query point. On return, if the box contain-
ing the other child lies within 1

(1+ε) times the distance
to the closest point seen so far, then the other child is
visited recursively. The distance between a box and the

Figure 7: Example of a kd-Tree

query point is computed exactly (not approximated), us-
ing incremental distance updates, as described by Arya
and Mount [2]. This procedure ends at a leaf of this
tree. This strategy takes O(nlogn) time for preprocess-
ing and O(logn) time for a query, where n is the number
of records in database.

Arya and Mount describe priority search, a modified
version of ANN search, in [1]. Here, the cells are visited in
increasing order of distance from the query point. This is
done as follows. Whenever we arrive at a nonleaf node,
we compute the distances from the query point to the
cells of the two children. We enqueue the further child
on a priority queue, sorted by distance, and then visit the
closer child recursively. On arriving at a leaf node, we
compute the distances to the points stored in this node,
and continue by dequeing the next item from the priority
queue. The search stops either when the priority queue is
empty (meaning that the entire tree has been searched)
or when the distance to the nearest cell on the priority
queue exceeds the distance to the nearest point seen by
a factor of more than 1

(1+ε) . Ideally this should converge
faster than the standard ANN search.

3 System Implementation

3.1 Overview

The problem of creating an image-based positioning sys-
tem has two separate stages: database creation and query
processing. Figure 1 shows the high-level diagram of both
stages of our system. The first stage requires the creation
of a database of images of the desired locations. An ef-
ficient storage mechanism may be implemented at this
stage to improve retrieval response.

In the query processing stage, given an input image
taken at a location, key features need to be identified and
matched with features in the existing database. Next,
position information encoded along with the images in
the database will then indicate where the input image
was taken on a location map. The outline of our approach
is as follows:

Stage 1: Database Creation Collect images of the
UW campus and manually register them with the campus
map. Next, extract feature points from the images and
store them in a database. Each feature corresponds to
a particular class where each class has a unique location
on the campus map. The database may be stored either
in memory or on the disk. The implementation must
be efficient due to the high-dimensionality of the feature

4

space and the number of features per image, which is
likely to be in the thousands.

Figure 8: Block Diagram for the Query System

Stage 2: Query Processing (Figure 8)

1. Extract feature points from the given query image.

2. Match the extracted feature points to those stored in
the database. Our database supports several differ-
ent versions of NN search designed to improve effi-
ciency while finding the maximum likelihood match
- linear search, LPC-based INN and extensions, and
ANN search using kd-tree [13]. Linear search is im-
plemented with both in memory and on disk ver-
sions. LPC-based INN search works with the disk
version of the database while the ANN strategies
work with the memory version.

3. Once we have the nearest neighbors for every feature
in the query image, the task is to assign an appro-
priate class. This is done through a voting mech-
anism. Each feature in the query image votes for
the class in which its two nearest neighbors lie. If
the two nearest neighbors are not in the same class,
the feature does not vote. We follow a soft voting
approach in which the votes are not discrete (1 or
0) but continuous in the interval [0,1]. This is en-
sured by evaluating a vote as e−d where d is the
distance from the nearest neighbor. The intuition
behind this voting strategy is to give more weight
to features that match well. This approach is found
to work better than discrete voting. Based on the
percentage of votes, we assign a confidence level to
each class and the winning class is used to report
the position on the map to the user.

3.2 Technical Details

In designing this system, our goal was to compare many
different implementations of NN search, as well as ex-
tended versions of previous work. This led us to cre-
ate a system with “pluggable” search strategies that
can easily be interchanged (Figure 9). The same ap-
proach was taken to enable the use of an in-memory
or an on-disk database. A search strategy has a
database(FeatureCollection) that it operates on and the
database has an access strategy which it uses to access
its data (currently in memory or on disk). Through the

use of interfaces, one can easily create a new search strat-
egy or access strategy by implementing the methods of
the appropriate interface. Using a new search strategy
requires the implementation of the methods Init, which
initializes the database and performs the required pre-
processing, and MatchFeature, which returns the best
match for a single query feature from the database. A
new access strategy requires the implementation of Get-
Next, which acts as an iterator to return the next feature
in the database, and GetByID, which returns a specific
feature from the database by its id. The main program
creates the database with the specified access strategy,
the search type with the specified search strategy and
runs queries.

Figure 9: Class Diagram Demonstrating Pluggable Interfaces

3.3 Web Interface

To enable a GPS-like feel for the system, we created a
web interface that will be usable by most mobile phones
with internet access capabilities. The interface consists
of a web page where users can upload an image of a
building for the system to identify. The system resides
on the server and processes the uploaded image as the
query image as discussed in Section 3.1. It then returns
the building matches in order of the confidence measure
of the match. The web page processes the matching in-
formation and highlights the best match on a campus
map. Known images of the matching building are also
displayed. The user can view all of the buildings along
with the confidence measures in this format by using the
previous and next links on the web page. Figure 10 dis-
plays the system overview including the web interface.
Figure 11 shows a screenshot of the web interface.

Figure 10: System Architecture including Web Interface

5

Figure 11: Web Interface for the System

4 Results

Figure 12: The top row shows query images collected from
internet and the bottom row shows a training image for the
corresponding class.

We conducted all tests using a database of 66 images
(11 buildings, 6 images per building) shot around the
University of Washington Campus (Figure 12). All tests
were run on an Intel Core2 Duo 2.2 GHz machine with
2GBs of RAM.

On-Disk Storage-Based Strategies

We compare the LPC-based INN strategy with the linear
search strategy when the data is stored on the disk. We
also test two variants of the LPC strategy – LPC-S which
is the LPC strategy with the sphere test included, and
LPC-SJ, which uses the sphere test enhancement and
skips all data points in a particular cell when a single data
point inside that cell fails the sphere test. We give the
average query time per feature and average I/O accesses
per query feature in Table 1. The results are averaged
over 200 queries with LPC strategy using 16 cells(b=4)
per dimension.

As expected, LPC-S gives an improvement over the
standard LPC. However, it is interesting to analyze why
LPC-SJ fares worse. This would happen if the cells are

very sparsely populated and the associated overhead of
computing which data points to skip negates any advan-
tage gained by skipping over those points. These obser-
vations are further corroborated by the statistics for the
density of points in cells as shown in Figure 13, which
again highlight the sparseness of the high dimensional
feature space. The I/O accesses are nearly the same for
LPC and LPC-S as expected since LPC-S optimizes over
CPU operations. It is unclear why I/O accesses for LPC-
SJ increase when they are expected to remain nearly the
same.

Figure 13: Frequency histogram for number of features per
cell for 49787 features. There are no cells with more than 5
features per cell. The total number of cells in the space is
24∗128 and non-empty cells occupy only an insignificant pro-
portion of this large set.

We can increase the density of points in a cell by us-
ing fewer cells per dimension, but this does not improve
performance since it reduces the filtering efficiency of the
LPC algorithm. The standard LPC algorithm filters out
97.23% of the features in the first pass on average. The
LPC-S variant adds another level of filtering and filters
out 50.30% of the candidates using the coarse estimates
of dmin before moving on to the first pass.

In-Memory Storage-Based Strategies

We analyze the recognition accuracy and average run
time for different memory-based storage strategies per-
forming exact and ANN search in the 128 dimensional
feature space. We run a set of 50 query images, sepa-
rate from the training images, on the feature database
and collect statistics. These images include photos, both
shot around the campus and downloaded from the In-
ternet. The program requires around 150 MB of main
memory to run per query.

Table 2 shows the average recognition response times
(in seconds) and percentage recognition accuracy. The
importance of having a spatial hierarchy in n-dimensions
becomes clearly visible when comparing the average re-
sponse times of the exhaustive linear search with the ex-
act NN search using a kd-tree. The efficacy of the approx-

6

Search Type Avg Time Per Query Feature(ms) Avg I/O Accesses per Query Feature
Linear Search 1703.36 101394207

LPC 265.94 3692842
LPC-S 247.88 3724397
LPC-SJ 320.62 9558080

Table 1: Average query time and I/O accesses of different strategies when the database is stored on the disk

imate matching is supported by a significant decrease in
response time without any significant loss of accuracy.

Figure 14: Variation of Recognition Rates of ANN Strategies
with ε

Figure 15: Variation of Response Time of ANN Strategies
with ε

Figure 14 shows the recognition rates for the standard
ANN search using kd-trees as we vary the distance op-
timality threshold (ε). As we allow for more approxi-
mation, the accuracy decreases. Figure 15 indicates that
the response time for ANN search also decreases but satu-
rates much earlier. Hence, the value of ε is a trade-off be-
tween the response time and accuracy of the system. The
priority search statistics (Figure 15) provide an interest-
ing insight. By definition, the priority search should con-
verge much faster than standard kd-tree search because
it looks at the spatial cells in increasing order of distance
from the query. However, this is not observed in our ex-
periments, perhaps because our data set in n-dimensions
is sparse. This leads to creations of cells of non-uniform
sizes containing very few points. Using priority search
instead of standard hierarchical space traversal does not
give a significant speedup.

It is interesting to note that even though we find the

Figure 16: A sample misclassification with confidence values
(Note the similarity in structures)

best possible (exact) feature match, we are not able to
guarantee the correct answer for the query image. This
is reflected in the sub 100% accuracy in exact NN search
strategies. This can be explained by the occurrence of
common features across different classes. Figure 16 shows
some example images that were classified incorrectly. It
is observed that in such cases of misclassification, the
correct class does appear among the top classes when
they are ranked by votes.

5 Conclusion and Future Work

Future work for our system would focus on two areas:
Computer Vision enhancements and Database enhance-
ments. Advancements can be made in both areas to im-
prove both performance and accuracy.

Instead of relying on querying individual images in a
database, a collection of images of buildings around cam-
pus could be used to create a 3D reconstruction of the
scene as is done in [16]. Then, the query image could
be registered with each 3D building reconstruction and
the most accurate registration would be considered the
best match. Additionally, with 3D information geomet-
ric constraints are implicitly added to more accurately
match the images. Camera parameters from the recon-
struction can be used to more accurately determine the
actual coordinates of the user. Besides this, we can ex-
plore various new image descriptors and ANN algorithms
like Locality Sensitive Hashing [9] for enhanced perfor-
mance.

The large size and dimensionality of the database
present a problem for NN queries due to the number
of features examined. ANN searches focus on reducing
this number while giving an upper bound on the possi-
ble error. The size of the database can also be reduced
by clustering feature points together and assigning a lo-
cation class to the entire cluster. During a query, only
the feature considered the “center” of the cluster will be

7

Search Type Avg Response Time for an Image(seconds) Accuracy (%)
Exhaustive Linear Search 86.12 90.0

kd-Tree Exact Search 76.76 90.0
kd-Tree Standard ANN Search (ε = 2) 7.78 88.0
kd-Tree Priority ANN Search (ε = 2) 7.61 88.0

Table 2: Average response time and percentage accuracy for memory-based strategies

examined by the system. This will lead to faster query
time as fewer features need to be queried due to clus-
ters. Randomly sampling features from the query image
to match or from the database to match against could
also be explored as a method to improve response time.

To reduce the dimensionality of the query space we
can examine techniques presented in [17]. There are pros
and cons of the hard disk-based and memory-based stor-
age strategies. If the features are stored on the disk, an
update can be as simple as appending new features to a
file. Whereas in memory, it can be as complex as forcing
us to rebuild the tree structure. Further, memory-based
storage strategies have scalability issues. We would like
to design a hybrid scheme which keeps a small part of the
large disk database in memory in the form of a tree and
will be updated on disk I/Os. This will require tree struc-
tures that allow for efficient updates, which will also help
updating our database of training images on-the-fly. New
data structures like md-trees [14]and G-trees [10] have
been proposed which allow for efficient updates. Arya
and Mount also propose a new data structure called bd-
tree [15] which uses better splitting rules to avoid highly
skewed divisions which can occur in kd-trees. Further,
our problem involves repeated queries with each query
involving a pass over the database. This deteriorates the
performance considerably if the database is stored on a
physical disk. This can be optimized by updating and
evaluating all the queries simultaneously while doing a
single pass over the database.

In this paper, we have presented an image-based po-
sitioning system using Computer Vision and database
query techniques. We compared the accuracy and per-
formance of several exact NN and ANN search algorithms
using both in memory and on disk database implementa-
tions. We also enhanced the LPC-based INN algorithm
resulting in improved query response time. Our system is
engineered in a flexible manner allowing the algorithms
and database type to easily be interchanged. We also
provide a web interface that can be used “in the field” to
determine location from a laptop or mobile phone with
Internet access.

References
[1] Arya and Mount. Approximate nearest neighbor queries in fixed

dimensions. In SODA: ACM-SIAM Symposium on Discrete Al-
gorithms (A Conference on Theoretical and Experimental Anal-
ysis of Discrete Algorithms), 1993.

[2] Sunil Arya and David M. Mount. Algorithms for fast vector
quantization. In J. A. Storer and M. Cohn, editors, Proceedings
DCC’93 (IEEE Data Compression Conference), pages 381–390,
Snowbird, UT, USA, 1993.

[3] Stefan Berchtold, Daniel A. Keim, and Hans-Peter Kriegel. The
X-tree: An index structure for high-dimensional data. In T. M.

Vijayaraman, Alejandro P. Buchmann, C. Mohan, and Nandlal L.
Sarda, editors, Proceedings of the 22nd International Conference
on Very Large Databases, pages 28–39, San Francisco, U.S.A.,
1996. Morgan Kaufmann Publishers.

[4] Guang-Ho Cha, Xiaoming Zhu, Dragutin Petkovic, and Chin-Wan
Chung. An efficient indexing method for nearest neighbor searches
in high-dimensional image databases. IEEE Transactions on Mul-
timedia, 4(1), March 2002.

[5] Jerome H. Freidman, Jon Louis Bentley, and Raphael Ari Finkel.
An algorithm for finding best matches in logarithmic expected
time. ACM Trans. Math. Softw., 3(3):209–226, 1977.

[6] C. GH and C. CW. A new indexing scheme for content-based
image retrieval, 1998.

[7] Antonin Guttman. R-trees: a dynamic index structure for spatial
searching. In SIGMOD ’84: Proceedings of the 1984 ACM SIG-
MOD international conference on Management of data, pages
47–57, New York, NY, USA, 1984. ACM.

[8] C. Harris and M.J. Stephens. A combined corner and edge detec-
tor. In Alvey88, pages 147–152, 1988.

[9] Piotr Indyk and Rajeev Motwani. Approximate nearest neighbors:
towards removing the curse of dimensionality. In Proc. of 30th
STOC, pages 604–613, 1998.

[10] A. Kumar. G-tree: A new data structure for organizing multi-
dimensional data, 1994.

[11] David G. Lowe. Distinctive image features from scale-invariant
keypoints. International Journal of Computer Vision, 60(2):91–
110, 2004.

[12] K. Mikolajczyk and C. Schmid. Scale and affine invariant inter-
est point detectors. International Journal of Computer Vision,
60(1), 2004.

[13] David M. Mount. ANN Programming Manual, 2006.

[14] Y. Nakamura, S. Abe, Y. Ohsawa, and M. Sakauchi. Md-tree:
A balanced hierarchical data structure for multi-dimensional data
with highly efficient dynamic characteristics. In ICPR88, pages I:
375–378, 1988.

[15] Y. Ohsawa and M. Sakauchi. The bd-tree–a new n-dimensional
data structure with highly efficient dynamic characteristics. In
IFIP Conference, 1983.

[16] Noah Snavely, Steven M. Seitz, and Richard Szeliski. Photo
tourism: Exploring photo collections in 3d. In SIGGRAPH Con-
ference Proceedings, pages 835–846, New York, NY, USA, 2006.
ACM Press.

[17] Khanh Vu, Kien A. Hua, Hao Cheng, and Sheau-Dong Lang. A
non-linear dimensionality-reduction technique for fast similarity
search in large databases. In SIGMOD ’06: Proceedings of the
2006 ACM SIGMOD international conference on Management
of data, pages 527–538, New York, NY, USA, 2006. ACM.

[18] Roger Weber, Hans-Jörg Schek, and Stephen Blott. A quantitative
analysis and performance study for similarity-search methods in
high-dimensional spaces. In Proc. 24th Int. Conf. Very Large
Data Bases, VLDB, pages 194–205, 24–27 1998.

8

