
Signal Processing: Image Communication 48 (2016) 1–11
Contents lists available at ScienceDirect
Signal Processing: Image Communication
http://d
0923-59

n Corr
E-m
journal homepage: www.elsevier.com/locate/image
Hiding color watermarks in halftone images using maximum-
similarity binary patterns

Pedro Garcia Freitas a,n, Mylène C.Q. Farias b, Aletéia P.F. Araújo a

a Department of Computer Science, University of Brasília (UnB), Brasília, Brazil
b Department of Electrical Engineering, University of Brasília (UnB), Brasília, Brazil
a r t i c l e i n f o

Article history:
Received 3 June 2016
Received in revised form
25 August 2016
Accepted 25 August 2016
Available online 26 August 2016

Keywords:
Color embedding
Halftone
Color restoration
Watermarking
Enhancement
x.doi.org/10.1016/j.image.2016.08.007
65/& 2016 Elsevier B.V. All rights reserved.

esponding author.
ail address: sawp@sawp.com.br (P.G. Freitas).
a b s t r a c t

This paper presents a halftoning-based watermarking method that enables the embedding of a color
image into binary black-and-white images. To maintain the quality of halftone images, the method maps
watermarks to halftone channels using homogeneous dot patterns. These patterns use a different binary
texture arrangement to embed the watermark. To prevent a degradation of the host image, a max-
imization problem is solved to reduce the associated noise. The objective function of this maximization
problem is the binary similarity measure between the original binary halftone and a set of randomly
generated patterns. This optimization problem needs to be solved for each dot pattern, resulting in
processing overhead and a long running time. To overcome this restriction, parallel computing techni-
ques are used to decrease the processing time. More specifically, the method is tested using a CUDA-
based parallel implementation, running on GPUs. The proposed technique produces results with high
visual quality and acceptable processing time.

& 2016 Elsevier B.V. All rights reserved.
1. Introduction

Printing an image consists of performing a conversion from
digital to analog, while scanning an image involves a conversion
from analog to digital. These two processes may add several types
of distortions to the original content, which include geometric
distortions (rotation, scaling, cropping, etc.), color distortions, and
noise. These distortions are a consequence of several factors, like,
for example, the process of conversion from digital images to
halftone representations performed just before printing [1].

The halftone representation is generated using a mathematical
model that produces the illusion of colors by using a combination
of colored dot patterns [2]. Due to the low-pass property of the
Human Visual System (HVS), halftone images are perceived as
continuous tone images when viewed from a distance. Many dif-
ferent halftoning methods have been developed over the years,
like for example Direct Binary Search (DBS) [3,4], Ordered Di-
thering (OD) [5,6], Error Diffusion (ED) [7–9], and Dot Diffusion
(DD) [10–12]. Although there is a great diversity of image half-
toning methods, these methods insert distortions during the
quantization process that converts multi-level images (color or
grayscale) into binary (halftone) images.

Scanner devices read the printed halftone and restore a multi-
level image via an inverse halftoning algorithm [13,14]. Therefore,
the scanning process corresponds to the inverse of the printing
process. Although the inverse halftoning algorithm is able to re-
cover an approximation of the intensity levels of the original im-
age, the reconstructed image often presents distortions like noise
[15] and blurring [16].

Although digital watermarking is a well-established area that
mostly targets color and grayscale images (wide range of intensity
levels) [17–19], hardcopy watermarking is still a challenging area.
In particular, distortions introduced by the print-and-scan (PS)
process make the task of transmitting data using hardcopy wa-
termarking more difficult [20].

Most works in this area focus on making the embedded in-
formation more robust to distortions of the PS channel. Methods
differ from each other in terms of efficiency, capacity, and ro-
bustness. For example, Brassil et al. [21] have proposed an au-
thentication method that is based on shift coding. To increase
robustness, their method requires the use of uniformly spaced
centroids, which are often difficult to obtain. Tan et al. [22] ex-
tended this method using a directional modulation technique for
watermarking Chinese text images. More recently, other methods
have been proposed for specific applications [23–26].

Among hardcopy watermarking methods, those that embed
information into binary images are particularly interesting be-
cause pixel binarization is the last step of the printing process.
Also, during the scanning process, the data is first acquired as a
halftone. Therefore, restoring the watermark from the halftoned
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image instead of its inverse (grayscale image obtained from the
halftone using an inverse halftoning algorithm) increases the ro-
bustness of the watermarking the PS process. On the other hand,
embedding data in binary images is often more difficult than
embedding data in color or grayscale images [27]. As stated by Hou
et al. [27], challenges include a limited data hiding capacity and
the introduction of noticeable artifacts. Although more challen-
ging, the demand for this kind of technique is high and few
techniques have already been developed [28–32].

Several techniques have been proposed with the goal of in-
creasing the embedding capacity for binary images. For example,
Pan et al. [33] proposed a low-capacity watermarking scheme for
halftone image authentication that uses an image hash as a fragile
watermark. Pan et al. [34] also developed a reversible data hiding
method for error diffused halftone images. Guo and Liu [35] de-
veloped a higher capacity watermarking technique that uses a
block truncation code. Son and Choo [36] proposed a water-
marking method for clustered halftone dots in which the em-
bedded binary data is recovered using dictionary learning. Guo
et al. [37] proposed a halftoning-based approach capable of em-
bedding watermarks using direct binary search to encode the
binary data. Guo and Liu [38] proposed a method for embedding a
multi-tone watermark that produces a lower quality watermarked
halftone image. Although these methods have a reasonable data
hiding capacity, they are restricted to a specific type of dithering
that limits their performance and application.

The aforementioned Guo's method [38] embeds a grayscale
watermark into a halftone image, but it does not covert the em-
bedding of color information. In a recent work, Son et al. proposed
techniques [39,40] to insert (and restore) color channels into
black-and-white watermarked halftone images. The work is an
important contribution to the area of reversible color-to-grayscale
mapping [41–43]. Watermarking techniques use color-to-grayscale
mapping to recover color channels from watermarked grayscale
images submitted to a PS process. This application requires a large
data hiding capacity because two chrominance images (color
channels) are embedded into a halftone version of the luminance
channel [44].

In this paper, we propose a binary image watermarking method
that uses maximum-similarity binary patterns. The method em-
beds color watermarks into dithering patterns of halftone images.
Unlike the methods of Son et al. [39,40], which embed two color
Fig. 1. Steps for embedding the color w
channels into the corresponding halftoning version of the lumi-
nance channel, our method embeds the three RGB channels into it.
In other words, the method is capable of embedding any content
into the host halftone image. No relation between host and wa-
termark contents is required, which is a significant improvement
compared to other methods in the literature.

The rest of this paper is organized as follows. Section 2 de-
scribes the proposed method, detailing the parallel algorithms for
embedding and recovering watermarks. Experimental results are
presented in Section 3. Finally, conclusions are drawn in Section 4.
2. Proposed method

Fig. 1 displays a block-diagram illustrating the proposed half-
tone-based watermarking method that enables embedding a color
image into a binary black-and-white image. The method decom-
poses the RGB color channels of a watermark image (W) into three
binary channels. Each color channel of W is treated as a grayscale
image and a halftoning algorithm is used to generate = { }R rij ,

= { }G gij , and = { }B bij , where ∈ { }r g b, , 0, 1ij ij ij . Using a combina-
tion of these binary pixels, we generate the watermark and embed
the host halftone. The method involves three steps: encoding,
embedding, and restoring the color watermark.

2.1. Watermark encoding

We encode the color channels in a binary format, creating a
common representation that can be used in the watermark em-
bedding and restoration steps. The encoding algorithm creates a
set of references, composed of binary vectors representing a subset
of the halftone binary information. More specifically, a binary
vector Z with n dimensions is defined as:

= { … } ( )Z z z z, , , , 1n1 2

where ∈ { }z 0, 1k , ∀ ∈ { … }k n1, 2, , . These binary vectors are
generated by computing the finite n-ary Cartesian product of the
set X, which is defined as:
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where Xn is a set of all ordered n-tuples { }xk and each element xk is
a basis element of Xn. For ∈ { }X 0, 1 , we have 2n distinct n-tuples.
Each tuple is equivalent to a binary vector (as defined in Eq. (1))
and is used to encode the combinations of each pixel of a halftone
RGB channel. To represent each pixel as a binary tuple, we set
n¼3, given the three R, G, and B color channels of a pixel.
Therefore, each pixel is coded as 3-tuple or a triplet, so, there are

=2 83 possible triplet combinations.
We use Eq. (2) again to compute a larger set of tuples with the

goal of representing the local distribution of halftones. The higher
number of tuples, the larger the distribution of distinct dots, which
means that there are more options to represent the distribution of
the original pixels. On the other hand, the more distinct tuples
there are, the more space is required to represent them. For sim-
plicity, we adopt n¼9, what gives a total of =2 5129 distinct
nonuples corresponding to 512 distinct and unique distributions of
halftoning points. We distribute these 512 sets into eight subsets
and associate each of these subsets to a triplet, i.e.:

{ } { } { }
} { }
}

{ } { }
{ { } { }
{ { } { }

↦ …

↦ … ⋮

↦ …

0, 0, 0 0, 0, 0, 0, 0, 0, 0, 0, 0 , 0, 0, 0, 0, 0, 0, 0, 0, 1 , , 0, 1, 0

0, 0, 0, 0, 1, 0, 1, 1, 0 , 0, 0, 0, 0, 1, 0, 1, 1, 1 , , 1, 1, 1

1, 1, 1, 1, 1, 1, 1, 1, 1 , 1, 1, 1, 1, 1, 1, 1, 1, 0 , .

Therefore, each triplet maps a set of binary sets. More specifically,
each triplet tk maps a set of 64 distinct nonuplets

= { … }L l l l, , ,k
k k k
1 2 64 using a hash map data structure. The nonuplets

Lk are geometrically distributed in 3�3 matrices called ‘masks’.
This mapping is used to represent the halftoning color channels of
the watermark in terms of the binary representation of host
(watermarked), as described in the next section.

2.2. Watermark embedding

After generating the set of masks using the nonuplets Lk, we
map each pixel of the RGB color planes into a mask. We compute
the halftone of each color plane independently, generating R, G,
and B. As shown in Fig. 2, we extract the binary value of each
halftone channel to generate the triplets. Then, for each pixel of
these planes, we extract a triplet:

τ = { } ( )r g b, , , 3i j ij ij ij,
Fig. 2. Extraction of a triplet use
where ∈ { }r g b, , 0, 1ij ij ij . These triplets are compared with the
triplets used as a key to map a set of masks. Then, we choose the
set of nonuples Lk such that τ = ti j k, .

After each pixel of W is mapped into a set of binary masks, we
choose the masks to use. We compute its halftone Hh from its
grayscale Hg, and slice Hh into ×M N patches pij of 3�3 pixels.

Now, we have two sets: { }pij , extracted from data, and τ{ ↦ }Li j k, ,
obtained by assuming τ = ti j k, in the encoding stage. For each pij,
we choose one of the 64 available masks by solving the following
optimization problem:

( ) = ∈
( )

S X Y X p Y Largmax , subject to ,
4Y

ij k

where S is a similarity measure that is calculated between Ω∈X
and Ω∈Y , and Ω is the set of all n-dimensional binary vectors (as
defined in Eq. (1)). Since this maximization problem is performed
for each patch, the encoded halftone image C is built by placing the
computed masks at the corresponding positions of the host half-
tone image (Hh). There are 76 measures that can be used to eval-
uate the similarity, ( )S X Y, , between X and Y [45]. Among these
measures, the most popular are Dice, Jaccard–Needham, Sokal–
Sneath, Kulzinsky, Rogers–Tanimoto, Sokal-Michener, Russell–Rao,
and Yule [46,47].

2.3. Processing similarity measures on GPU

Initially, both images (host and watermark) are read into the
main memory. Then, the halftoning version of these images is
computed in the CPU or GPU. For this paper, we processed the
halftoning algorithm in CPU because the performance bottleneck
of the proposed method resides in the optimization step (block I of
Fig. 1). After generating the halftone representations, the host
image is divided using a grid with nB

mT
blocks, where B is the

number of CUDA blocks and T is the number of CUDA threads in
each block. Each CUDA thread is responsible for processing m
patches and, therefore, each block processes ·m T patches. It is
worth pointing out that a patch extracted from the host halftone is
associated with a triplet generated from the watermarking half-
tone. Each triplet is associated with a set of masks. Therefore,
depending on the size of host, a buffer is created to store the
patches since they can be processed independently from each
d to map a halftone mask.



Fig. 3. Memory organization of proposed algorithm's data structures.

Fig. 4. Extraction of color watermark from encoded halftone.

Fig. 5. Printed grayscale halftone versions of ‘Splash’: no color watermarking (a) and watermarking the color channels (b).
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other.
Fig. 3(a) depicts the memory organization of a GPU device

(CUDA compatible), which includes registers, shared memory,
global memory, and constant memory. The local memory depicted
in this figure refers to the local memory which is reserved by a
thread in CUDA block. In CUDA, only threads and the host can
access memory. This architecture is adequate for parallel problems
that lack memory isolation among distinct threads. In general, the
required operations performed by each thread are simple. There-
fore, the proposed algorithm can be written in a parallel im-
plementation using CUDA.

Fig. 3(a) and (b) depicts the parallel processing scheme used in
this work, with Fig. 3(a) showing the memory architecture and
Fig. 3(b) the location of the data structures. The characters
{ … }A B J, , , correspond to the intermediate steps of the proposed
algorithm, showing the steps of the execution flow (Fig. 1). More
specifically, the hash table containing the trained masks (A) is
replicated into the shared memory of each block (collection of
multiprocessors). We replicate this data structure to prevent the
intensive I/O operations from harming the parallel performance.
The color channels of the watermarking image (B) are decomposed
into three distinct halftones and stored into the GPU global
memory. In parallel, each thread gets a subset of pixels and com-
putes their corresponding triplets (D). Using these triplets, each



Fig. 6. Visual effect of similarity measure on marked halftones.

Fig. 7. HPSNR values comparing marked halftone and original grayscale images of
D1.

Fig. 8. HPSNR values comparing marked halftone and original grayscale images of
D2.
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thread copies the subset of mapped masks from the shared
memory block to the local memory thread (E). After computing
the host halftone on the CPU (F) and loading it into the GPU global
memory (G), the threads load the patches into their local mem-
ories (H). Since the patches and the corresponding set of masks are
loaded into the thread local memory, Eq. (4) is solved in parallel
(I). After all threads are finished, the result is stored in the global
memory and returned to the host (J).

2.4. Watermark extraction and restoration

The decoding process is depicted in Fig. 4. First, the encoded
halftone C is sliced into ×M N patches qij of 3�3 pixels. For each
patch extracted from C, we recover the triplet τ̂i j, using the inverse
mapping of Lk. In other words, we take τ̂ = ti j k, given that ↦t Lk k and

∈q Lij k. In this manner, instead of applying the inverse halftone
algorithm to recover grayscale levels, the information is extracted
directly from the dot pattern of the printed image. Therefore, each
restored triplet contains the bits of restored channels at position
i j, :

τ̂ = {^ ^ ^ } ( )r b g, , , 5i j ij ij ij,

where ^ ^ ^ ∈ { }r g b, , 0, 1ij ij ij . Then, we distribute the recovered bits to

the respective halftone color channels R̂, Ĝ, and B̂ .
After recovering the halftone versions of the RGB channels, we

use an inverse halftoning algorithm to restore the multilevel re-
presentation of these color channels: R̄, Ḡ, and B̄. Finally, the color

watermarked image Ŵ is produced by combining the restored
channels.
3. Results

The proposed method was tested using two image datasets.
The first dataset (D1) contains eight 512�512 natural color ima-
ges, taken from the “Miscellaneous” set of USC-SIPI Image Database
[48]. The second dataset (D2) consists of eight 4K Ultra High De-
finition (3840�2160) color images collected from the Internet.
The original images of D1 and D2 are depicted in first column of
Figs. 10 and 11, respectively. These images are free of copyright,
labeled for reuse with modification, and have different visual
properties (color ranges, contrast, content, etc.). To process these
images, we used a laptop with an Intel i7-4700mq processor,
32 GB of RAM, and a Nvidia GeForce GTX 770m running Windows
7 Professional Edition. The code was written in Cþþ using CUDA
7 and it was compiled with MS Visual Cþþ compiler. The Thrust
Framework 1.8 [49] was used to implement the interface between
the GPUs and a CPU. A multi-functional (printer and scanner)
Aficio MP C4501 was used to test the print results. Pictures in Fig. 5



Fig. 9. Pairwise comparison between coded color halftones and watermarked grayscale halftone. In each table, the horizontal axis corresponds to the algorithm used to
compute the host halftone image, while the vertical axis corresponds to the algorithm used to compute the color channel halftone. The darker blocks represent the
combinations that provide the highest HPSNR values.
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were taken using the camera of a Samsung Galaxy Note N7000.
The proposed method is able to embed any content, related or

not to the host image. However, in the reported simulations, we
used the same image content for both image and host. The tests
involved recovering the RGB color channels from a printed half-
tone that was previously watermarked. In other words, we re-
stricted our comparison to ‘color-to-gray-and-back’ methods.

3.1. Visual quality of watermarked halftones

We tested the visibility of possible degradations caused by the
embedding watermarks generated using the Floyd–Steinberg
halftoning algorithm [9]. As a comparison criterion (S) for the
optimization problem of Eq. (4), we used Dice, Sokal–Michener,
Russel, and Yule similarity measures [46]. Fig. 6 shows the visual
difference produced by these distinct similarity measures on a
zoomed area of the ‘Lena’ image. Fig. 6(a) shows the unmarked
grayscale image and Fig. 6(b) shows the corresponding halftone
image generated using Floyd–Steinberg [9] (no watermarking).
Figs. 6(c)–(f) show the results of embedding color watermarks into
the halftones using Dice, Sokal–Michener, Russel, and Yule simi-
larity measures, respectively.

Fig. 5 shows a photo of the printed results for the ‘Splash’ im-
age. While Fig. 6 shows details of the dithering changes when the
host is watermarked, in Fig. 5 the picture was taken from a dis-
tance and, therefore, the black-and-white points are perceived as
grayscale. In other words, even though Fig. 6 shows that the binary
points are locally rearranged to store the watermark in halftone
images, in Fig. 5 we notice that the content of the final water-
marked halftone is preserved, although the image is slightly noisy.

Most image quality metrics are designed for multi-level images
(grayscale or color) and cannot be used to assess the quality of
binary images (halftones). So, even though objective quality as-
sessment methods for halftone images can be used to design
better printing and imaging systems [50], little work has been
done in this area. In this work, we use the human visual peak
signal to noise ratio (HPSNR) [11,51] to assess the quality of half-
tone images. HPSNR is basically a weighted version of the PSNR,
which exploits the perceptual limitations of the HVS to determine
if the dot patterns are being perceived as continuous gray levels. It
is calculated using the following equation:
δ
( ) = · ·

∑ ∑ ( ) ( )= =

x y
M N

x y
HPSNR , 10log

255

,
,

6i
M

j
N

ij ij
10

2

1 1
2

where

∑δ( ) = ( − )+ + + +x y g x y, ,ij ij
m n

m n i m j n i m j n
,

, , ,

x and y are the original and altered images, respectively, and gm n,
corresponds to the Gaussian filter that simulates the lowpass
characteristic of HVS.

Figs. 7 and 8 show the HPSNR values between marked half-
tones and their corresponding original grayscale images for dif-
ferent similarity measures. Figs. 7 and 8 correspond to images in
datasets D1 and D2, respectively. From these figures, we can notice
that HPSNR values for Dice, Sokal–Michener, and Russel measures
produced the best results, suggesting that watermarked halftones
have an acceptable quality. The only exception is the watermarked
halftone obtained with the Yule similarity measure, which has a
very low HPSNR. These results are in agreement with the visual
results, as depicted in Fig. 6.

Fig. 9 shows the HPSNR pairwise comparison tables of the
tested halftoning algorithms for the images Lena and Splash. In
each table, the horizontal axis corresponds to the dithering algo-
rithm used to compute the host halftone image, while the vertical
axis corresponds to the dithering algorithm used to compute the
color channel halftone. The darker blocks represent the combi-
nations that provide the highest HPSNR values. From this figure,
we observe that the dithering algorithm used to compute the host
halftone has a bigger influence on the HPSNR than the dithering
algorithm used to compute the halftone of the color channels.
Moreover, the quality of the encoded halftone is higher when
Atkinson's algorithm is used (first column of the tables). This
pairwise comparison was performed for all tested images and the
results obtained for the remaining images are similar, indicating
that the performance of the combination of dithering algorithms is
not very affected by image content.

3.2. Visual quality of restored watermarks

The performance of the proposed method is compared with
two established methods: Queiroz [41] and Ko et al. [42]. To



Fig. 10. Comparison of recovered color using images of D1. From top to bottom: Airplane, Baboon, Woman, Car, Lena, Peppers, Sailboat, and Splash. (a) Original, (b) Queiroz's
method, (c) Ko's method, and (d) proposed. (For interpretation of the references to color in this figure caption, the reader is referred to the web version of this paper.)
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restore the color channels using the proposed method, we used
the inverse halftoning algorithm proposed by Kite et al. [16], al-
though other algorithms can be used.

Figs. 10 and 11 show the restored watermarked content of da-
tasets D1 and D2, respectively. In both figures, the first columns
are the original images. The second columns show the restoration
of color images with Queiroz's method. Likewise, the third
columns show the restorations using Ko's method. The last column
shows the restoration of the color image using the proposed
method.

As expected [41,42], results obtained using Queiroz's and Ko's
methods present faded colors, as depicted in Figs. 10 and 11. We
can notice that Ko's method produces results with fewer color
artifacts, but the colors are still different from the colors in the



Fig. 11. Comparison of recovered color using images of D2. From top to bottom: Beach, Candies, Chicken, City, Cupcake, Earth, Festival, and Jet. (a) Original, (b) Queiroz's
method, (c) Ko's method, and (d) proposed. (For interpretation of the references to color in this figure caption, the reader is referred to the web version of this paper.)
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originals. The color distortions are a consequence of the sub-
sampling of the color channels that is performed during the en-
coding process (watermarking). On the other hand, in the pro-
posed method the RGB channels are equally subsampled (from 24
bits per pixel to 3 bits per pixel) and a good inverse halftoning
algorithm is used to restore the content [16]. As a consequence, the
proposed method introduces less color distortions, as shown in
the third column of Figs. 10 and 11.
We used two objective quality metrics to quantitatively eval-

uate color distortions. The first metric was the Color Multi-scale
Structural Similarity Index (CMSSIM) [52], which was used to
measure the overall similarity between original and restored
images. The second metric was the CIE color difference measure
(Δ *)E [53] that was used to measure the accuracy of the recovered



Table 1
D1: Objective evaluation of structural similarity between the original color wa-
termarks and the restored watermarks using the tested methods (CMSSIM) and

(Δ *)E .

Image Queiroz Ko Proposed

CSSIM Δ *E CSSIM Δ *E CSSIM Δ *E

Airplane 0.456 17.02 0.336 21.35 0.734 07.52
Baboon 0.525 14.09 0.456 16.55 0.751 10.20
Girl 0.432 24.65 0.357 27.39 0.855 10.37
House 0.758 10.49 0.727 11.95 0.876 06.24
Lena 0.238 20.75 0.243 22.82 0.948 05.40
Peppers 0.782 15.63 0.794 17.15 0.933 05.54
Sailboat 0.803 11.54 0.782 13.37 0.825 08.58
Splash 0.830 9.52 0.854 09.27 0.901 06.47

Average 0.603 15.46 0.569 17.48 0.853 07.53

Table 2
D2: Objective evaluation of structural similarity between the original color wa-
termarks and the restored watermarks using the tested methods (CMSSIM) and
(Δ *)E .

Image Queiroz Ko Proposed

CSSIM Δ *E CSSIM Δ *E CSSIM Δ *E

Beach 0.572 01.12 0.537 02.37 0.868 04.44
Candies 0.578 04.59 0.628 06.53 0.967 00.77
Chicken 0.093 20.97 0.054 23.91 0.971 02.13
City 0.417 06.01 0.347 20.06 0.892 03.63
Cupdake 0.549 09.35 0.461 01.91 0.914 03.40
Earth 0.223 02.87 0.179 05.56 0.777 05.15
Festival 0.383 03.38 0.335 05.16 0.884 03.80
Jet 0.346 21.64 0.286 23.36 0.872 04.13

Average 0.395 08.74 0.354 11.11 0.893 03.43
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colors. The better the quality of the reconstructed image, the
higher the value of CMSSIM and the smaller the value of Δ *E .

Tables 1 and 2 show the CMSSIM and Δ *E values for all test
images of datasets D1 and D2, respectively. Notice that the pro-
posed method presents the best performance, in agreement with
the qualitative results presented in Figs. 10 and 11. The CMSSIM
values presented in these tables suggest that images reconstructed
with the proposed method are very similar to the original images
in terms of luminance, color, or both. In the same way, the Δ *E
values quantify the difference in performance between proposed
and conventional methods, showing that the proposed method
Fig. 12. Performance of tested algorithms using D1: (a) encoding time (
provides superior results in terms of structural and color fidelity.
3.3. Computational performance

To evaluate the computational performance of the proposed
algorithm, we set the ‘Dice’ similarity measure as the optimization
criterion and the Floyd–Steinberg as the halftoning algorithm. All
simulations were performed under the same conditions. For each
image, we repeated the simulation 10 times, collecting the en-
coding and decoding running times, and then calculating the
average. This procedure avoids the bias caused by other processes
running at the same time in the computer.

Figs. 12(a) and 13(a) show the average time to embed the wa-
termarks into the images of the datasets D1 and D2, respectively.
When comparing these graphs with the results shown in Sections
3.1 and 3.2, we concluded that the serial version of the proposed
algorithm requires a higher processing time than the other
methods. This higher encoding time is a consequence of the op-
timization problem (see Eq. (4)). Using parallel computing for this
encoding stage significantly reduces the overall runtime, while
maintaining the same results in terms of visual quality.

The advantage of the parallel implementation can be better
observed in Fig. 14. This figure shows the average time to solve Eq.
(4) in function of the number of triplets using four configurations:
a laptop CPU (Intel i7-4700MQ), a desktop CPU (Intel i5-4460), a
laptop GPU (Nvidia GeForce GTX 770m), and a desktop GPU
(Nvidia Quadro K4000). We varied the number of triplets and plot
the runtime required to complete the encoding step, using a serial
or a parallel implementation. From these plots, we see that the
CPU time (serial version) curve is always greater than the GPU
(parallel) curve. This demonstrates that the proposed parallel
implementation has a better performance.

Since the main bottleneck of the proposed algorithm is the
optimization problem described in Eq. (4), the decoding algorithm
was not parallelized. Average times for decoding algorithm are
depicted in Figs. 12(b) and 13(b) . From these graphs, we see that,
although the encoding time of the proposed algorithm is higher
than the encoding time of the other two methods, the decoding
time is smaller because the triplets are recovered using a simple
hash table. After recovering the triplets and reconstructing the
halftone color channels, the inverse halftone is performed three
times.
watermark embedding), (b) decoding time (watermark extraction).



Fig. 13. Performance of tested algorithms using D2: (a) encoding time (watermark embedding), (b) decoding time (watermark extraction).

Fig. 14. Runtime of proposed algorithm (parallel on GPU vs serial on CPU) of D2.
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4. Conclusions

We have presented a parallel algorithm for embedding a color
image watermark into a halftone (binary) image. The proposed
algorithm has a higher embedding capacity than the currently
available methods. Experimental results show that the recovered
colors have a higher fidelity than what is obtained using ‘color-to-
grayscale-and-back’ methods. In addition, the proposed method is
not limited to color reconstruction. Since the triplets containing
the RGB information are embedded and recovered from the
masked halftone, we can use the proposed approach to embed any
color content into a binary host image (halftone). The proposed
method can be used in applications, such as steganography,
hardcopy data hiding, and printed image authentication.

Although the quality of the colors restored with the proposed
method is superior, the required processing time using serial
processing is high. To reduce the computation time, we proposed a
parallel approach to perform the watermark embedding. Results
show that the algorithm can be executed efficiently using a simple
laptop GPU. However, the proposed algorithm can present further
speedups by using multiple or better GPUs. This is possible be-
cause the considerable amount of input and output in this problem
can be distributed to avoid a centralized I/O.

Future works include implementing the proposed algorithms
with multiple GPUs and additional CUDA cores. Architectures with
distributed memory can be used to exploit the parallelism of the
problem. The algorithm can be executed, for example, in cloud-
architectures, Message Passing Interfaces in distributed shared
memory clusters, or in Xeon Phi co-processors. Also, the mask
construction process is currently not fully optimized. A machine
learning algorithm can be used to reduce the execution time for
the mask construction, providing an efficient distribution of the
mask groups. With optimized mask groups, redundant processing
can be avoided and the optimization problem can be simplified.
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