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Abstract— In the last few years, there has been a growing
interest in automatic methods (metrics) that blindly estimate the
quality of digital videos, specially in applications where the videos
are digitally transmitted over wired or wireless channels and the
original (reference) video signal is not available at the receiver.
Currently, there are few methods that are able to identify and
estimate the strength of temporal artifacts (e.g. packet-loss and
jerkiness) introduced during a digital transmission. In this paper,
we present a blind (no-reference) video quality assessment metric
that estimates the impact of packet-loss artifacts on quality. The
proposed algorithm performs a comparison of inter and intra-
block correlations, considering blocks of sizes 8×8, 16×16, and
32×32. The proposed metric was tested on a database containing
videos with packet-loss artifacts with different strengths and
time durations. Results show that the proposed metric is able to
estimate the impact that packet-loss artifacts have on the overall
perceived quality, outperforming several metrics available in the
literature.

Keywords— video quality metrics, artifacts, quality assessment,
NR quality metrics, packet-loss.

I. INTRODUCTION

The most accurate way to determine video quality is by
measuring it using psychophysical experiments with human
subjects. Unfortunately, these experiments are expensive, time-
consuming and hard to incorporate into an automatic system.
Therefore, there is currently a need for fast and accurate
algorithms (objective video quality metrics) that can provide
a measure of the video quality, as perceived by human users.
As expected, quality metrics have an important role in com-
munications quality control systems. It is worth pointing out
that the quality of the received content is one of the most
important factors that determines the user’s satisfaction and,
consequently, to the acceptability of the service [1].

Generally, objective quality metrics can be divided in three
different categories, according to the availability of the orig-
inal (reference) video signal: Full Reference (FR) methods,
Reduced Reference (RR) methods, and No-Reference (NR)
methods. In the FR approach, the reference video is available
at the measurement point (receiver) and the difference between
reference and test video can be used to estimate quality. In the
RR approach, only part of the reference is available through an
auxiliary channel. Finally, in the NR approach, the reference
video is not available and the quality estimate is obtained
exclusively from the received video [2].
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For several years, the networking community has been
quantifying transmission errors using simple metrics, such as
bit error rate (BER) or packet-loss rate (PLR). Likewise, until
recent years, quality measurements in the signal processing
community had been limited to a few objective measures,
such as peak signal-to-noise ratio (PSNR), mean squared
error (MSE), and total squared error (TSE), supplemented
by limited subjective evaluation. Unfortunately, although these
metrics are relevant for data links and generic signals, in which
every bit is equally important, they are not considered good
estimates of the user’s opinion about the received multimedia
content [3]. One of the major reasons why these metrics do
not perform as desired is because they do not incorporate
human visual system (HVS) features in their computation.
Measurements produced by these metrics are simply based on
a pixel to pixel (or bit to bit) comparison of the data, without
considering what is the content and the relationships among
the pixels in an image (or frames). They also do not consider
how spatial and frequency artifact characteristics are perceived
by human observers [3].

Video quality is still far from being a mature research topic
and limited success has been reported for sophisticated models
tested under strict conditions, which include a limited range
of distortions and video material. A common approach used
by many NR metrics consists of estimating the strength of the
most relevant artifacts (e.g, blockiness, blurriness, noise, and
ringing) [4] and, then, combining them to obtain an estimate
of the overall video quality. Nevertheless, very few metrics
deal with artifacts introduced by digital transmission, like
packet-loss and jerkiness [5]. Babu et al. [6] studied the effect
of blockiness (block-edge) and packet-loss artifacts in video
streaming applications. Kanumuri et al. [7] proposed an RR
method that models how multiple packet losses affect video
quality of a H.264 codec video bitstream.

Leszczuk et al. [8] studied how to assess the quality of high
definition videos in a streaming scenario. They concluded that
the perceived video quality is prone, not only to packet losses,
but also to the temporal and spatial patterns of these artifacts.
Staelens et al. [9] proposed a bitstream-based NR method that
uses a genetic programming-based symbolic regression. They
reported that the most relevant parameters to video quality are:
duration of the distortions, percentage of lost picture slices
lost, type of frame (I, P or B) that suffered the loss, number
of picture slices, number of B-frames between the I-frames,
and number of consecutive slice drops.

Liu et al. [10] proposed an FR method that estimates
the perceptual distortion caused to packet loss and error
propagation in each individual frame. Their method is based



XXXIV SIMPÓSIO BRASILEIRO DE TELECOMUNICAÇÕES E PROCESSAMENTO DE SINAIS - SBrT2016, AUGUST 30 TO SEPTEMBER 02, SANTARÉM, PA

on a just noticeable difference (JND) model that measures the
impact of coding artifacts and error propagation on perceptual
video quality. Rui et al. [11] proposed two NR methods that
estimate the strength of packet-loss artifacts in videos, taking
into account the spatial and temporal discontinuities caused
by this artifact.

Although there are several packet-loss metrics available in
the literature, their accuracy performance is still not satisfac-
tory, specially for the NR scenario. In this paper, we propose
a robust no-reference video quality metric that estimates the
strength of ‘packet-loss’ artifacts using a correlation-based
approach. More specifically, the work is based on a previ-
ous image blockiness metric that estimates the strength of
blockiness artifacts by comparing the inter and intra-block
correlations. Instead of only considering 8 × 8 block sizes,
the proposed metric uses three types of blocks (8×8, 16×16,
32× 32). Also, a non linear SVR regression model is used to
combine the contributions of each block size in order to obtain
a quality estimate that has a good correlation with subjective
scores provided by human subjects.

The paper is divided as follows. In Section II, we describe
the previous blockiness metric. Section III describes the adap-
tation of the metric to packet-loss. Section IV presents the
simulations and discusses the results. Finally, Section V details
our conclusions.

II. BLOCKINESS METRIC

Vlachos [12] proposed an NR metric that estimated the
strength of blockiness artifacts by comparing the cross-
correlation of pixels inside (intra) and outside (inter) the
borders of the coding blocking structure of a frame. In
Vlachos’algorithm, the frame Y (i, j) was partitioned into 8×8
blocks and simultaneously sampled in vertical and horizontal
directions. This sampling structure assumed that all visible
blockiness artifacts had a visible border, what was not always
the case.

In a previous work Farias [4], [13] modified Vlachos’
algorithm making it possible to take into account cases in
which only one of the borders of the blocking structure was
visible. Instead of down-sampling the frame simultaneously,
the algorithm proposed by Farias split the process into separate
vertical and horizontal downsampling processes. As a conse-
quence, the frame was downsampled separately in the vertical
and horizontal directions, generating a vertical downsampled
image (SV ) and a horizontal downsampled image (SH). The
two downsampled images were computed using the following
equations:

SHm = {Y (i, j) : m = i mod 8} . (1)

SVn = {Y (i, j) : n = j mod 8} . (2)

where (i, j) are the horizontal and vertical co-ordinates and
mod is the module operation. This way, SVn and SHm

are images that contain a subset of pixels with coordinates
congruent to 8, either horizontally or vertically respectively.
The subscripts m and n can be viewed as the corresponding
horizontal and vertical phases, respectively.

(a) (b)

Fig. 1
FRAME DOWNSAMPLING STRUCTURE FOR: (A) HORIZONTAL AND (B)

VERTICAL DIRECTIONS.

Fig. 2
ILLUSTRATION OF VERTICAL DOWNSAMPLING PROCESS USED TO OBTAIN

THE SUB-IMAGE SV0 .

Figures 1 (a) and (b) display the sampling structures used
by Farias’ algorithm for the horizontal (SHm) and vertical
(SVn) directions, respectively. The image shows a 16 × 16
area of the frame, containing four 8 × 8 blocks. Six sub-
images are generated by downsampling pixels located at the
positions indicated by the six different symbols. Therefore,
different symbols generate different sub-images. The set of
inter-block pixels in the vertical direction corresponds to the
sub-images SV0 and SV7 (Fig. 1 (b)), while the set of inter-
block pixels in the horizontal direction corresponds to the sub-
images SH1 and SH7 (Fig. 1(a)). The set of intra-block pixels
in the vertical direction corresponds to the sub-images SV0

and SV1 (Fig. 1 (b)), while the set of intra-block pixels in the
horizontal direction corresponds to the sub-images SH1 and
SH3 (Fig. 1 (a)).

Given that interlaced videos were used by Farias, the
symbols in the horizontal downsampling structure (see Fig.
1 (a)) are 2 pixels apart, instead of only one pixel like in the
vertical downsampling structure (see Fig. 1 (b)). For progres-
sive videos, the symbols should be one pixel apart for both
directions. Fig. 2 displays how the sub-image SV0 is obtained.
In this example, the original frame has 1280× 720 pixels and
the vertically-downsampled sub-image has 160× 720 pixels.

The correlation between two images, I1 and I2, was given
by the following expression:

CI1,I2(i, j) = F−1

(
F ∗(I1(i, j)) · F (I2(i, j))

|F ∗(I1(i, j))F (I2(i, j))|

)
, (3)

where F and F−1 denote the forward and inverse two dimen-
sional discrete Fourier transform, respectively, and ∗ denotes
the complex conjugate. The magnitude of the highest peak is
a measure of the correlation between I1 and I2. But, before
the maximum is calculated, the array elements is filtered using
a Hamming window, what forces the elements to a constant
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value around the borders.
To estimate the blockiness signal strength, Farias measured

the correlation between the intra- and inter-block sub-images
in both directions. For the vertical direction, the correlation
was calculated using the following equations:

PVintra = max
i,j
{CSV0,SV1(i, j)} , (4)

PVinter = max
i,j
{CSV7,SV0(i, j)} . (5)

The horizontal correlations, PHinter and PHintra, were ob-
tained in a similar way:

PHintra = max
i,j
{CSH1,SH3(i, j)} , (6)

PHinter = max
i,j
{CSH7,SH1(i, j)} . (7)

Then, the blockiness measure for one frame was given by:

Sbloc =
PVintra + PHintra

PVinter + PHinter
. (8)

For frames with no blockiness, the value of PVintra was close
to PVinter and PHintra was close to PHinter. As blockiness
was introduced, the values of PVinter and PHinter became
smaller and, consequently, the value of the blockiness metric
increased.

Finally, the blockiness measure for the set of all frames was
obtained by averaging the measures over all frames:

Ŝbloc =
1

NF

NF∑
nf=0

Sbloc(nf), (9)

where nf refers to the frame number and NF is the total
number of frames.

III. PROPOSED PACKET-LOSS METRIC

The proposed no-reference packet-loss metric is based on
the blockiness metric described in the previous section. To
adapt the metric proposed by Farias [4], [13] to measure
packet-loss (instead of blockiness), we first vary the size of
the downsampling structure. Since videos compressed with
modern codecs (like H.264 and H.265) use macroblocks of
several sizes, we generalize the algorithm proposed by Farias
for 8× 8, 16× 16, and 32× 32 block sizes. Figures 3 (a) and
(b) show the 8×8 vertical and horizontal downsampling frame
structures. Again, the dark symbols in the grids correspond to
pixels in the resulting downsampled sub-images. The sampling
structures for 16 × 16 and 32 × 32 are similar. Notice that,
differently from the algorithm proposed by Farias (see Fig.
1), the proposed algorithm simultaneously downsamples the
original frame in both directions, reducing the size of the
original image in both dimensions.

A total of 6 downsampled images are obtained after the
downsampling process, with three sub-images being obtained
from the vertical downsampling (DV7, DV0, DV1) and three
sub-images from the horizontal downsampling (DH7, DH0,
and DH1). Then, similarly to what was done in the previous
section, we calculate the cross-correlation between two sub-
images to obtain the blockiness measure for a single frame.
More specifically, for the vertical direction, we obtain the

(a)

(b)

Fig. 3
FRAME DOWNSAMPLING STRUCTURE FOR THE PROPOSED PACKET-LOSS

METRIC: (A) VERTICAL AND (B) HORIZONTAL.

inter-block correlation by calculating the correlation between
sub-images DV7 and DV0 and the intra-block correlation
calculating the correlation between sub-images DV0 and DV1:

PVintra,8 = max
i,j
{CDV0,DV1

(i, j)} , (10)

PVinter,8 = max
i,j
{CDV7,DV0

(i, j)} . (11)

Similarly, for the horizontal direction, we obtain the inter-
block correlation calculating the correlation between sub-
images DH7 and DH0 and the intra-block correlation cal-
culating the correlation between sub-images DH0 and DH1:

PHintra,8 = max
i,j
{CDH0,DH1

(i, j)} , (12)

PHinter,8 = max
i,j
{CDH7,DH0

(i, j)} . (13)

The 8× 8 block measure for one frame is given by:

S8 =
PVintra,8 + PVinter,8

PHintra,8 + PHinter,8
(14)

Notice that, given that we are assuming the frames are in a
progressive format, there is no shift between the pixels. To
obtain a measure for the complete video, we average S8 for
all frames, obtaining Ŝ8.

Next, we use the same algorithm on blocks of size 16× 16
(Ŝ16) and 32 × 32 (Ŝ32). The final packet-loss metric value
(Ŝpck) is a composition of the measures for the three block
sizes (Ŝ8, Ŝ16, and Ŝ32), which is obtained using a support
vector regression (SVR) technique (The SVM function in
the R software was used in this work). SVR is a black-
box approach, in which the model is not defined upfront but
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Fig. 4
SAMPLE FRAMES OF ORIGINAL VIDEOS USED IN THE EXPERIMENT, TOP

TO BOTTOM, LEFT TO RIGHT: PARK JOY, INTO TREE, PARK RUN, ROMEO

AND JULIET, CACTUS, BASKETBALL, AND BARBECUE.

learned directly from the data (i.e. from the video dataset).
We choose to use SVR because similar machine learning-
based approaches have been used with success to model
complex non-linear perceptual processes related to artifact
annoyance [14].

IV. SIMULATIONS AND RESULTS

We have tested the proposed algorithm using data collected
in an psychophysical (subjective) experiment performed ear-
lier [15]. The database contains seven high definition original
videos (see Fig. 4), with spatial resolution of 1280× 720 and
temporal resolution of 50 frames per second (fps). The videos
are all ten seconds long and were chosen with the goal of
generating a diverse video content, as recommended in the
“Final Report of VQEG on the validation of objective models
multimedia quality assessment (Phase I)” [16]. The test videos
consist of versions of the original videos degraded with packet-
loss artifacts at different packet loss percentages (0.7%, 2.6%,
4.3%, and 8.1%) and with different durations (M = 4, 8, and
12 frames). Subjects in this experiment were asked to rate the
annoyance of artifacts in the test videos, using a scale from
‘0’ to ‘100’. The scores provided by subjects are averaged for
each test video, providing mean annoyance values (MAVs).

To train the SVR, we use a k-fold cross validation setup.
We split the dataset in k equally sized non-overlapping sets.
We then run the training k times. In each time, a different
fold is used as test set and the remaining k− 1 folds are used
for training. This way, each data point has a chance of being
validated against the other [17]. In our tests, we set k to 10,
thereby running 10 repetitions of the training. We then com-
pute the correlation between the subjective data (MAVs) and
the model predictions for each run and calculate their average,
which is used as the model performance measure. The SVR
has trained on MAVs and it has returned Pearson correlation
coefficient (PCC) and Spearman correlation coefficient (SCC)
values equal to 0.825 and 0.778, respectively.

For comparison purposes [16], we select the following
quality metrics:

• 3 FR metrics: peak signal-to-noise ratio (PSNR), mean
squared error (MSE) and multi-scale structural similarity

(MS-SSIM) [18];
• 2 NR packet-loss metrics: Rui et al. [11] and Babu et

al. [6].
We choose PSNR and the MSE because they are very popular
fidelity metrics in the image and video processing community
[16], [19]. MS-SSIM is a popular extension of the SSIM
paradigm that has been used with success to estimate video
quality [18]. The metrics by Rui et al. [11] and Babu et al.
[6] were chosen because they are both packet-loss nr metrics.

To evaluate the performance of the tested metrics, in Table
I we report the PCC, the SCC, and the Root mean squared
error (RMSE) values [16] computed for the scores predicted
with the tested quality metrics and the MAVs from the earlier
experiment [15]. Results show that the proposed metric has a
much better performance than the other metrics.

Figure 5 shows graphs of the outputs of the individual
quality metrics versus the MAVs from the earlier experiment.
The graphs corresponding to MSE and PSNR (Fig. 5 (a) and
(b)) show a high concentration of points at the center and
left regions, indicating that both PSNR and MSE are poor
annoyance predictors for packet-loss artifacts. Surprisingly,
the graph for the FR metric MS-SSIM and the packet-loss
metrics by Rui and Babu also show a large spread of points.
In particular, the graph for the metric by Babu (Fig. 5 (d))
shows vertical lines that indicate that test videos with different
MAVs obtain a very similar packet-loss score. On the other
hand, the graph of the proposed metric (Fig. 5 (f)) shows a
much better performance.

TABLE I
PEARSON (PCC) AND SPEARMAN (SCC) CORRELATION COEFFICIENTS,

AND RMSE FOR ALL TESTED METRICS.

Metrics PCC SCC RMSE
PSNR -0.0942 -0.0927 21.9297
MSE 0.2233 0.5747 39.3895
MS-SSIM -0.5785 -0.6352 43.8234
Babu 0.1470 -0.1090 43.9555
Rui 0.2779 0.2973 44.1735
Proposed Metric 0.8250 0.7780 13.5173

V. CONCLUSIONS AND FUTURE WORK

In this paper, we have proposed a no-reference packet-loss
video quality metric. The proposed metric is a modification
of a correlation-based blockiness metric, proposed by Farias,
that estimates blockiness by comparing the cross-correlation
of pixels inside (intra) and outside (inter) the borders of
the 8 × 8 coding blocking structure. Unlike the blockiness
metric, the downsampling structure of the proposed packet-
loss metric uses 3 block sizes (8× 8, 16× 16, and 32× 32).
The output of the packet-loss metric is a composition of
the measures for the three block sizes which is obtained
using an SVR technique. Results show that the proposed
metric has a better accuracy performance than the other tested
metrics, with correlation coefficients above 0.825. Future work
includes the combination of this metric with other metrics
that estimate strengths of different artifacts, such as jitter,
blockiness, blurriness, and ringing.
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(a) (b)

(c) (d)

(e) (f)

Fig. 5
QUALITY METRIC RESULTS FOR ALL TEST SEQUENCES: (A) PSNR, (B)
BABU, (C) MSE, (D) RUI, (E) MS-SSIM, AND (F) PROPOSED METRIC.
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