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Abstract

High-speed imaging requires high-bandwidth, fast image sensors that are
generally only available in high-end specialized cameras. Nevertheless, with
the use of compressive sensing theory and computational photography tech-
niques, new methods emerged that use spatial light modulators to reconstruct
high-speed videos with low speed sensors. Although these methods represent
a big step in the field, they still present some limitations, such as low light effi-
ciency and the generation of measurements with time dependency. To tackle
these problems, we propose a per-pixel mirror-based acquisition method that
is based on a new kind of light modulator. The proposed method uses moving
mirrors to scramble the light coming from different positions, thus ensuring
better light efficiency and generating time independent measurements. Our
results show that the proposed method and its variations perform better than
methods available in the literature, generating videos that are less noisy and
that display better content separation.

Keywords: compressive sensing, computational photography, high-speed
imaging

1. Introduction

Several applications in science and industry require the acquisition of
videos with time resolutions that are from tens to a few hundred times higher
than those of typical consumer cameras. Examples include the study of blood
flow in cellular structures, imaging of combustion processes, evaluation of
precise movements in biomechanical structures, analysis of the mechanics of
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novel fluids, detection of movements causing structural fatigue, visual micro-
phones, etc. [1, 2, 3]. In these applications, the most common solution for
acquiring high-speed videos involves using special high-speed video cameras,
which have highly sensitive sensors capable of acquiring thousands of frames
per second (FPS). Unfortunately, the cost of such sensors still prevents their
use in most applications. An alternative approach uses a synchronized array
of cameras [4, 5], which is also an expensive solution because it requires,
typically, 64 to 128 cameras.

A more recent solution consists of using compressive sensing to recon-
struct high-speed videos from measurements obtained using sub-60 FPS cam-
eras [6, 7, 8, 9, 10, 11, 12]. Most of these solutions use shutters to scramble the
light rays that reach the sensors. One of the devices that uses this approach
is the flutter shutter, which divides the camera frame time into short-term
periods, during which sensors can either receive light or not. Some com-
mercial cameras have implementations of the flutter shutter device [12] that
can be used as a compressive sensing acquisition method for reconstructing
high-speed periodic scenes [10] and videos with no motion restrictions [11].

Another device that implements this approach is the per-pixel shutter,
which selects short periods for light exposure using an independent control
for each camera sensor. Some compressive sensing high-speed video recon-
struction methods [13, 14, 6] are based on per-pixel shutter devices. Although
methods that use per-pixel shutters provide better results than methods that
use flutter shutters, per-pixel shutters are not currently implemented in com-
mercial cameras. Experimental implementations of per-pixel shutters are
performed by attaching an additional optical system to the camera.

Both flutter shutter and per-pixel shutter methods have common draw-
backs. First, these methods discard around 50% of the light, reducing light
efficiency and consequently image quality after reconstruction. Also, for both
methods, the light captured at different time instants is integrated into a sin-
gle pixel, what means that measurements are time dependent. Therefore, at
the reconstruction stage it is difficult to separate the information coming
from different time instants. If the goal of an application is to reconstruct
high-speed videos, these drawbacks have to be addressed.

Considering the high cost of high-speed cameras and the limitations and
drawbacks of acquisition methods that use low-cost cameras, in this paper
we propose a new acquisition method for compressive sensing reconstruction
of high-speed videos. The proposed method, called per-pixel mirror-based
(PPM) acquisition method, was described in its initial form in an earlier
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publication [15], which contains preliminary results. PPM is based on an
acquisition strategy that uses a set of moving mirrors to redirect the light
to certain pixels. The method does not discard any light and it separates
the temporal information, generating time-independent measurements. In
this paper, we detail several variations of the proposed method and compare
them with currently available acquisition methods. We tested the proposed
method for still images, synthetic videos and natural videos.

The remaining parts of the paper are organized as follows. Sections 2 and
3 briefly describe the compressive sensing theory and the currently available
video compressive sensing acquisition methods. Section 4 describes the pro-
posed method, whereas Section 5 presents the simulation results. Finally,
Section 6 presents our conclusions and future works.

2. Compressive Sensing

Let N be the dimension of the signal x to be acquired. This signal x is
said to be sparse in the Ψ domain if only a few projections of x into the bases
of Ψ are non-zero. If the total number of non-zero projections is K < N ,
then the signal is said to be K-sparse. The theory of compressive sensing [16,
17, 18, 19, 20] allows one to acquire and to reconstruct a sparse signal with
a smaller number of measurements than the number of samples required by
the Nyquist rate. More specifically, compressive sensing allows one to take
only M linear measurements from x, where M � N , and nonetheless all N
components of x theoretically without any error.

Suppose that x is K -sparse in the basis Ψ, with K � N . Let y be the
vector of linear projections of x into M vectors Φi (i = [1, · · · ,M ]). If Φ is
the M ×N matrix in which each row is one of those distinct M vectors, then

y = Φx = ΦΨs = Θs, (1)

where Θ = ΦΨ is an M ×N matrix and s = Ψ−1x is the sparse representa-
tion of x in the domain defined by Ψ.

Note that (1) represents the relationship between the available measure-
ments, y, and the desired signal, x, which is at first unknown. The acquisition
process must provide the components of y, whereas a reconstruction proce-
dure must provide x based on y and on some signal properties. In Section 4,
we detail how we obtain y in our formulation, and we provide the mathemat-
ical modelling that relates y to x in our proposed methods. In other words,
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we describe our particular measurement matrix Φ. For now, we explain the
principles based on which we compute x from y.

Regarding the reconstruction stage, since (1) is an underdetermined sys-
tem, there are generally infinite signals s′ that satisfy Θs′ = y. Amongst all
solutions, we search for the sparsest one. Two properties must be satisfied so
that this procedure is stable: the restricted isometry property (RIP) [21] and
the incoherence property [22]. According to the RIP, Θ should roughly pre-
serve the lengths of the K-sparse vectors, within a predefined tolerance [22].
Incoherence, on the other hand, requires that the rows of Φ do not have a
sparse representation in the Ψ domain [20].

Once the RIP and the incoherence are satisfied, reconstructing a K-sparse
signal using these M measurements corresponds to finding the sparsest sig-
nal that satisfies these measurements [20].Directly searching for the sparsest
solution, however, is generally unfeasible, as it corresponds to a combina-
torial optimization problem [21]. Practical solutions use optimization algo-
rithms based on `1- or `p-minimization problems. Such alternatives reduce
the computational complexity, at the cost of increasing the number of linear
measurements [16].

In image reconstruction, the ideal problem of finding the sparsest solution
by `0-minimization can be replaced by the Total Variation (TV) minimiza-
tion [23, 24], which is the chosen method in this paper. The TV of an N1 ×N2

image s′, denoted as ‖s′‖TV , is related to the horizontal (Gvs′) and vertical
(Ghs′) gradients of s′. If we use `1 (approach that was already applied in
compressive video sensing [25]) to combine Ghs′ and Gvs′, TV can be defined
as:

||s′||TV =

N1∑
i=2

N2∑
j=2

|Gvs′(i, j)|+ |Ghs′(i, j)|. (2)

The use of TV minimization for image reconstruction is based on the idea
that the discrete gradient of natural images tends to generate sparser images.
TV can be then viewed as the `1 of the image in a sparse domain [26]. For
image reconstruction, the optimization problem can be described as

ŝ = argmins′(||s′||TV ), such that y = Θs′ = ΦΨs′. (3)

In this equation, Φ is the acquisition matrix and Ψ is the transform basis.
Note that, in our proposed methods, once we obtain the measurements y

described in (1), we apply a numerical optimization procedure such as (2) to
compute the desired image x. Our main contribution is a novel formulation
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for obtaining the measurements y, as described in Section 4, which improves
the objective quality in high-speed video reconstruction.

In our approach, we take the measurements in the spatio-temporal do-
main, i.e., the pixel domain. In other words, Ψ is the identity matrix. Taking
||s||TV = ||Dis||1 and making s′′ = Dis

′, the optimization problem is then
given by

ŝ = argmins′′(||s′′||1) such that y = ΦD−1i s′′. (4)

This method is equivalent to the `1 minimization problem, where the sparsi-
fying transform is the finite differences operator.

We use TV reconstruction techniques for all tested acquisition methods
tested (see Section 5). We refer to the TV reconstruction in 2 spatial dimen-
sions (finite differences of lines and rows in an image) as TV2D and to the
TV reconstruction in 2 spatial and 1 temporal dimensions (finite differences
among lines, rows, and subsequent subframes) as TV3D. TV2D takes ad-
vantage of spatial redundancies, while TV3D takes advantage of spatial and
temporal redundancies.

3. Current Video Acquisition Methods

Traditional video acquisition produces frame pictures containing the light
captured by sensors during the exposition time. If a long exposure is used,
frame pictures may appear blurry for video scenes with a lot of movement
(motion blur). However, if we choose a very short exposure time, the picture
may appear too dark or noisy, since the amount of light that reaches each
sensor is reduced because of the shorter time interval. In order to use com-
pressive sensing reconstruction for obtaining videos with a higher spatial or
temporal resolution, we have to linearly combine the scene samples. Without
linearly combining samples in a proper way, we cannot guarantee that the
incoherence property would be satisfied [27].

In many applications, a higher control of the light flow is desirable. For
example, in applications like deblurring [28] or compressive sensing video ac-
quisition [11, 29, 10], it is necessary to start and finish exposure several times
during one frame interval. A device that implements this kind of exposure
is the flutter shutter (FS), currently available in some commercial cameras.
In FS devices, we divide the exposure time into several equal-time inter-
vals, which are known as subframes. Each subframe can have its exposition
activated or not. The incoming light rays corresponding to each activated
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subframe are integrated at the end of the frame time. Therefore, linear mea-
surements are obtained from the light acquired from several subframes (at
different times).

Figure 1(a) shows the subframes acquired by a high-speed camera, as
compared to those acquired by a standard camera in Figure 1(b) and to the
FS acquisition process in Figure 1(c). Note that, unless all subframes are
activated, some light information is lost. FS is used by Holloway et al. in
their Flutter Shutter Video Camera [11], achieving a 66% luminous efficiency.

(a)

(b)

(c)

(d)

(e)

(f)

(g)

Figure 1: Illustration of light intensity in each subframe for all methods: (a) high-speed
camera with sensitive and fast sensors; (b) regular camera; (c) FS; (d) PPS1; (e) PPS2;
(f) PPM1; and (g) PPM2. The last column corresponds to the measurements acquired at
the end of the frame time, which are later used in reconstruction.

In some applications [30, 13, 14], it is necessary to have an even higher
control over the exposure. In these applications, we use a spatial light mod-
ulator device (SLD), which provides an independent control of the light flow
arriving at each pixel. Currently, one of the devices that implements SLDs
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is the digital micromirror device (DMD)[31, 32, 33]. DMDs are implemented
using a set of micromirrors that can be set in two positions, allowing two
possible direction angles. The first angle makes the lens points the light
in the direction of the sensor array, while the second angle makes the lens
points the light outwards (i.e. the light is thrown away). Therefore, the light
reflection of each mirror can be activated or not. Figure 2 illustrates of the
DMD operation. Single pixel camera (SPC) [34] techniques use DMDs with
all ‘activated’ mirrors pointing to a single pixel. Figure 2(b) illustrate this
process.

(a)

(b)

Figure 2: (a) DMD and its 2 mirror direction angles [35]. (b) Use of DMD in SPC method.
Adapted from [34].

With SLDs we can implement per-pixel shutter (PPS) devices. PPS is a
device that provides a better exposure control than FS devices, since it allows
activating or disactivating any of the pixels, several times during the expo-
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sure time. Nevertheless, SLDs are still not available in current commercial
cameras and experimental implementations use an external optical system.
PPS can be used in two ways. In the first one (PPS1), each pixel is activated
only once in a subframe. Figure 1(d) illustrates the PPS1 method, showing
the linear measurements acquired by the camera sensors. PPS1 is used by
Gupta et al. in their flexible voxels for motion aware photography [30] and by
Hitomi et al. for recovering high-speed videos with a training dictionary [14].
One problem of this method is that the majority of the light is not acquired.

In the second form of PPS (PPS2), the pixels can be activated or disacti-
vated regardless of the subframe. At the end of the integration time, the light
coming from the pixels activated in different subframes are summed up to
produce the acquired pixel. In other words, each acquired pixel contains tem-
poral information from multiple concurrent subframes. Figure 1(e) shows the
PPS2 methodology. Reddy et al. use PPS2 in its Programmable pixel com-
pressive camera (P2C2) technique [13] for high-speed video recovery. PPS2
implementation produces a luminous loss of around 50 %.

As mentioned earlier, FS and PPS methods have two issues. First, a
significant portion of light is not acquired. Second, except for PPS1, at the
end of the exposure time acquired pixels contain visual information from
several subframes (time dependence). Solving those issues is the motivation
for our proposed methods, described next.

4. Per-Pixel Mirror-Based Acquisition Method

In this paper, we propose a new video acquisition method, called per-pixel
mirror-based (PPM) acquisition method, which generates time-independent
measurements and does not discard any light. To implement the method,
we propose a new device called high-precision digital micromirror device
(HPDMD), which is a higher-accuracy version of the DMD. In the HPDMD,
each micro mirror has several possible direction angles, thus allowing the
device to point the incoming light to any desired pixel. In addition, simi-
larly to DMD, HPDMD can change the direction angle faster than the FPS.
HPDMD is able to simulate the behavior of a regular DMD and, therefore,
can be used to simulate all acquisition methods presented in this paper.

The proposed method operates as follows. For every subframe, light rays
coming from different pixels are redirected to common sensors, and each
pixel contributes to exactly one CS measurement. In this manner, let k be
number of subframes, while N1 and N2 are the number of camera pixels in
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the horizontal and in the vertical directions, respectively. Also, let N be the
total dimension of the signals to be reconstructed, meaning the number of
camera pixels multiplied by the number of subframes, so that N = kN1N2.
For each subframe, (N1N2)/k measurements are taken, a choice that results
in the total number of measurements for all subframes (M) matching the
number of camera pixels.

In this scheme, note that since each subframe results in (N1N2)/k mea-
surements, and since each of the N1N2 pixels contributes to exactly one
measurement, each measurement corresponds to the sum of the contents of
k pixels. Hence, there are k mirrors to redirect the light that composes a
single measurement. There is a choice, however, of which pixels contribute
to a same measurement, and a choice of whether the configuration of mir-
rors changes from one subframe to the next or not. In either case, for each
subframe the combinations of pixels that compose the (N1N2)/k measure-
ments is based on a random pool, each measurement combining a random
combination of pixels.

Figure 3 illustrates the case in which the mirror configuration is fixed
amongst subframes, hereby denominated PPM1. In this example, there are
k = 4 subframes, N1 = 4 rows and N2 = 5 columns. As shown in Figure 3(a),
for each subframe, light from k = 4 pixels is redirected by k mirrors, in or-
der to compose each of the (N1N2)/k = 5 measurements for that subframe.
Figure 3(b) summarizes the measurement procedure, with similar image pat-
terns representing pixels that contribute to the same measurement. Note
that the total number of measurements matches the number of camera pix-
els (N1N2), even though N > N1N2. However, no light is discarded since
all light arriving at each camera pixel is redirected in order to compose a
measurement. Furthermore, all light originating from a single subframe is
directed into a single set of N/k pixels. This means that light from a specific
subframe is not mixed with light coming from another subframe, i.e., there
is no time dependence between measurements. On the other hand, there is
spatial dependence among samples.

Note that the fact that all measurements in Figure 3 form a single row in
y, for each frame, is just a consequence of the number of subframes (k) match-
ing the number of camera rows (N1), in this simple example. In this case, the
number of measurements in a subframe, given by (N1N2)/k = (N1N2/N1),
matches the number of camera columns (N2), which means that a single row
in y is generated per subframe. In Figure 4, we show an example with N1 = 4,
N2 = 5 and k = 2. In this case, there are (N1N2)/k = 10 measurements for
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(a)

(b)

Figure 3: Proposed method in the PPM1 configuration, with N = 80 (20 pixels times
4 subframes), M = 20 (number of measurements), and k = 4 (number of subframes).
(a) Example of the measurement process for each subframe, with randomly selected pixels
combining into common measurements through a HPDMD device; the mirror configuration
remains the same for all subframes. (b) Summary of the resulting measurements, which
are combinations of sets of pixel contents taken from each subframe independently. Each
image pattern represents a set of pixels that combine into a single measurement, for each
subframe.

each subframe, so that each subframe generates two rows in y.
Based on this description, we can infer the equations that describe the

taken measurements in PPM1, as a function of the pixels contents in each
subframe. Let Pi represent the 2-column matrix in which the rows con-
tain the coordinates of all the pixels that compose the ith measurement,
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Figure 4: Example of the measurement process for the proposed method in the PPM1
configuration, with N = 40 (20 pixels times 2 subframes), M = 20 (number of measure-
ments), and k = 2 (number of subframes). Each image pattern represents a set of pixels
that combine into a single measurement, for each subframe. Note that in this case there
are 10 measurements per subframe, so that each subframe generates two rows in y.

∀i ∈ {1, 2, . . . , (N1N2)/k}. In the case of Figure 3,

P1 =


1 2
2 5
3 3
4 4

 , P2 =


1 1
2 3
3 5
4 2

 , P3 =


1 3
1 5
2 2
4 1

 ,

P4 =


1 4
3 1
3 4
4 3

 , P5 =


2 1
2 4
3 2
4 5

 . (5)

Also, let x[i, j, f ] represent the pixel content in row i and column j for the
f th subframe in the video x that we want to reconstruct. In this case, the
measurement y[m1,m2] is given by

y[m1,m2] =
k∑

n=1

x

[
Pm2(n, 1), Pm2(n, 2), Q

(
m1 − 1,

N1

k

)
+ 1

]
, (6)

which corresponds to the linear combination exemplified in Figure 3, with
Q(a, b) being the highest integer not greater than a/b.

The second form of our proposed method uses a different mirror configu-
ration for every subframe, based on a random pool and redirecting light from
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each pixel in order to compose a single measurement for each subframe. Fig-
ure 5 illustrates this configuration, which is referred to as PPM2. Differently
from PPM1, in PPM2 each subframe has an individual random pattern of
k mirrors. Therefore, this configuration is often more interesting, because it
better satisfies the incoherence property.

Figure 5: Proposed method in PPM2 configuration with N = 80, e M = 20, and k = 4.
For each subframe, M/k = 5 measurements are taken, corresponding to sums of individual
pixel contents. The mirror pattern is different for all subframes, so that the combinations
of pixels change from subframe to subframe. Each image pattern represents a set of pixels
that combine into a single measurement, for each subframe.

In PPM2, let Pi,f represent the 2-column matrix in which the rows con-
tain the coordinates of all the pixels that compose the ith measurement for
subframe f , ∀i ∈ {1, 2, . . . , (N1N2)/k}. For the example of Figure 5, we have

P1,1 =


1 2
2 5
3 3
4 4

 , P2,1 =


1 1
2 3
3 5
4 2

 , P3,1 =


1 3
1 5
2 2
4 1

 , P4,1 =


1 4
3 1
3 4
4 3

 , P5,1 =


2 1
2 4
3 2
4 5

 ,

P1,2 =


2 1
2 3
4 2
4 4

 , P2,2 =


1 2
1 5
3 4
4 1

 , P3,2 =


2 2
2 4
3 1
3 5

 , P4,2 =


1 1
1 4
3 3
4 5

 , P5,2 =


1 3
2 5
3 2
4 3

 ,

P1,3 =


1 1
1 5
3 4
4 3

 , P2,3 =


2 1
2 3
3 2
4 5

 , P3,3 =


1 4
2 5
3 1
4 2

 , P4,3 =


1 2
2 4
3 3
4 1

 , P5,3 =


1 3
2 2
3 5
4 4

 ,

P1,4 =


1 4
3 1
3 3
4 4

 , P2,4 =


1 3
2 2
3 5
4 2

 , P3,4 =


1 1
2 4
4 3
4 5

 , P4,4 =


1 2
2 1
2 5
3 4

 , P5,4 =


1 5
2 3
3 2
4 1

 . (7)
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Then, the measurement y[m1,m2] in the case of PPM2 is given by

y[m1,m2] =
k∑

n=1

x
[
Pm2,f (n, 1), Pm2,f (n, 2), f

]
, (8)

where

f = Q

(
m1 − 1,

N1

k

)
+ 1. (9)

Once we acquire the measurements described by (8), we proceed to the
reconstruction stages using the TV minimization methods as in (4).

5. Simulation Tests

In this paper, we compare the performance of three families of acquisition
methods: FS, PPS, and PPM. Table 1 shows the main properties of these
three families of acquisition methods, more specifically, we present informa-
tion about the viability, dependency, and amount of light information loss
for each method.

Table 1: Properties of tested acquisition methods.

Acquisition Viability in Dependency of light
Method video cameras measurements information

Traditional All cameras temporal 100%
FS Some cameras temporal 50% to 67%

PPS1 Requires DMD none 100/k%
PPS2 Requires DMD temporal ∼50%
PPM1 Requires HPDMD spatial 100%
PPM2 Requires HPDMD spatial 100%

The information in Table 1 is based on the previous description of the
proposed methods (in the case of PPM1 and PPM2) as well as on the de-
scription of the traditional, FS, PPS1 and PPS2 methods already discussed in
Figure 1. In fact, Figure 1 shows several images illustrating the level of light
intensity acquired in each subframe for each one of the methods. Each col-
umn in the figure corresponds to the measurements in each subframe, while
the last column shows measurements obtained for the complete frame time
acquisition. Figure 1(a) shows a high-speed camera acquisition, in which
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each subframe is acquired in full-resolution. As expected, the resulting im-
ages have good light intensity levels and the movement of the video is well
represented. Figure 1(b) shows the acquisition using a regular camera. At
the end of the frame time (last column), we can notice that there is a motion
blur effect, as a result of the integration of the movement in the frame.

Figure 1(c) shows the FS acquisition method. The light intensity is pro-
portional to the number of chosen subframes, which in this case is 60%.
Figure 1(d) shows the PPS1 acquisition method. Notice that, in this case, a
small amount of light information is acquired (only 20%). Figure 1(e) shows
the PPS2 acquisition method. In this case, more light is acquired than for
PPS1, but the measurements are scrambled. Figure 1(f) shows the PPM1
acquisition method, while Figure 1(g) shows PPM2. In these two methods,
for each subframe, all light is concentrated on pixels of a portion of the
video frame area. These portions of pixels do not overlay, guaranteeing time
independent measurements.

In the next sections, we evaluate the proposed method using 3 sets of
tests: (1) still images, (2) synthesized videos, and (3) natural videos. For
each set, we start with an original image or video, simulate the acquisition
for each method and reconstruct the signal. Then, we compare the Signal-
to-Noise Ratio (SNR) between reconstructed and original signals.

5.1. Part 1: Test on Natural Images

The first set of tests were conducted with still (natural) images. We use
a set of gray levels images, with three image sizes: 64 × 64 (N = 4, 096),
256 × 256 (N = 65, 536) and 1, 024 × 1024 (N = 1, 048, 576). For an image
with a total of N pixels, we consider a Sub-sampling ratio of k, what implies
that N/k samples are acquired from each image. This procedure simulates
the acquisition of one subframe for a exposure time of 1/k of the frame time.
In this paper, we show only the results for k = 4, which are representative
of the performance for other values of k.

We compare the results of acquisition methods, after reconstruction with
TV2D. In this set of tests, we consider only acquisition methods that produce
temporally independent measurements, i.e. PPS1 and PPM. For comparison
purposes, we also use a simple interpolation reconstruction. Figure 6 shows
the results for a 64 × 64 image, while Figure 7 shows zoomed details of the
results for a 1024 × 1024 image. Table 2 shows the SNR values for each
test. We can observe that the SNR values corresponding to interpolation
results are not much different from what was obtained with PPS1, although
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the image reconstructed with PPS1 (Figure 6(c)) has more details than the
one reconstructed with interpolation (Figure 6(b)). The reconstruction using
PPM has the best performance, both qualitatively and quantitatively.

(a) Original (b) SNR=19.3 dB (c) SNR=18.4 dB (d) SNR=22.2 dB

Figure 6: Reconstruction results for a 64 × 64 image. (a) Original image.
(b) Equally spaced sub-sampled image reconstructed with interpolation, SNR=19.3 dB.
(c) PPS1 (+TV2D) reconstruction, SNR=18.4 dB. (d) PPM (+TV2D) reconstruction,
SNR=22.2 dB.

(a) Original (b) Interpolated, SNR=21.16 dB

(c) PPS1, SNR=21.50 dB (d) PPM, SNR=29.25 dB

Figure 7: Reconstruction results for an excerpt of a 1024×1024 image. (a) Original image.
(b) Equally spaced sub-sampled image, reconstructed by interpolation, SNR=21.4 dB.
(c) PPS1 (+TV2D) reconstruction, SNR=21.5 dB. (d) PPM (+TV2D), SNR=29.3 dB.

For larger images, the performances of PPS1 and PPM increase. In fact,
the larger the image, the larger the difference in performance for results
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Table 2: SNR of images reconstructed using interpolation, PPS1, and PPM (k = 4).

SNR (dB)
Image Size Interpolation PPS1 (+TV2D) PPM (+TV2D)

64× 64 19.3 18.4 22.2
256× 256 16.5 16.0 23.2
1024× 1024 21.2 21.5 29.3

of different acquisition methods. This can also be observed by comparing
the images in Figures 6 and 7. In particular, notice that the image shown
in Figure 7(d), which was reconstructed with PPM from only 1/4 of the
measurements, has a good image quality showing very small details of the
original image.

The results of this initial test show the potential of the proposed method
for high temporal resolution video. If we divide the frames of a camera in
4 and take linear measurements from each subframe, we are able to recover
four images with a good quality. Therefore, we can increase the temporal
resolution 4 times, maintaining the original spatial resolution. There is tem-
poral redundancy among subframes, what means that the four subframes can
be completely different from each other and the results will not be affected.

Since videos often have a lot of temporal redundancy, if the temporal
redundancy is explored, we can get even better results. In the next section,
we present the results of applying the proposed acquisition methods for video
signals, taken into account the temporal redundancy between video frames.

5.2. Part 2: Tests with Synthetic Videos

In this section, we test the acquisition methods using a set synthetic
videos, which simulate several aspects of objects in a natural video, like
movement, occlusion, deformation, and changes in light intensity. We use
ellipses and rectangles as scenes objects. These type of videos are based on
the Shepp-Logan phantom [36], that is widely used in compressive sensing in
medical applications, showing a good performance with the TV reconstruc-
tion. Figure 8(a) shows a sample synthetic frame used in our tests. For
the five acquisition methods, we use videos of sizes equal to 100× 100× 128,
100×100×256, 200×200×128, and 200×200×256. We tested the methods
with Sub-sampling ratios (1/k) equal to 50%, 25%, 12.5%, and 6.25% s. For
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all methods and Sub-sampling ratios, we performed the reconstruction using
the TV3D minimization.

Table 3: Mean SNR (dB) of videos reconstructed with FS, PPS1, PPS2, PPM1, and
PPM2.

Video Acquisition Sub-sampling ratio (1/k)
size method k = 2 k = 4 k = 8 k = 16

FS 42.9 6.3 2.4 1.7
100× PPS1 9.2 3.0 -0.3 -1.7
100× PPS2 9.3 11.1 6.7 5.3
128 PPM1 27.2 20.1 12.2 1.2

PPM2 67.2 55.6 33.7 8.7

FS 42.4 8.5 1.2 0.74
100× PPS1 9.2 2.7 -0.3 -1.7
100× PPS2 9.3 11.6 7.0 5.3
256 PPM1 31.2 18.6 11.5 1.9

PPM2 76.8 55.7 32.9 8.8

FS 49.5 9.0 4.9 4.8
200× PPS1 11.8 12.0 0.8 -1.4
200× PPS2 11.7 13.8 10.4 8.4
128 PPM1 33.7 27.4 24.9 8.2

PPM2 71.3 55.2 44.3 22.6

FS 36.8 9.0 6.8 1.9
200× PPS1 11.8 12.0 0.8 -1.4
200× PPS2 11.7 14.1 10.4 8.5
256 PPM1 48.3 33.2 25.9 6.4

PPM2 73.1 58.8 44.9 25.6

SNR results are presented in Table 3. Note that, in most cases, the recon-
structions using PPM (both PPM1 and PPM2) have the best performances,
with gains of up to two dozens dB in SNR, when compared to PPS2 (the best
PPS variation). When we fix the spatial resolution and vary the number of
frames, results do not change much. However, when we increase the spatial
resolution and fix the number of frames, SNR values increase considerably.
This happens for all acquisition methods and all Sub-sampling ratios, being
more evident for the proposed method and for higher Sub-sampling ratios.

It could be argued that the increase in performance for higher spatial
resolutions is due to an increase in the number of pixels, i.e. by increasing

17



(a) Original frame 85 (b) FS (c) PPS1

(d) PPS2 (e) PPM1 (f) PPM2

Figure 8: Reconstruction results for methods FS, PPS1, PPS2, PPM1 and PPM2, consid-
ering a 200×200 ×128 synthetic video and a Sub-sampling ratio of 1/16.

either the spatial resolution or the number of frames, we are increasing the
number of pixels. However, the first set of videos has size 100 × 100 ×
128 = 1.28 million pixels, the second has size 100× 100× 256 = 2.56 million
pixels, the third has 200 × 200 × 128 = 5.12 million pixels and the fourth,
200×200×256 = 10.24 million pixels. Nevertheless, although the second set
of videos has two times more pixels than the first set, the quality differences
for the two sets is small. The same happens between the fourth and third set
of videos. On the other hand, although the third set has twice the number
of pixels as the second set, its SNR value is much larger. So, the spatial
resolution of the video seems to be more important for quality than the total
number of pixels in the video.

Figure 8 shows the acquisition results for the 5 tested methods, using
a Sub-sampling factor equal to 1/16. The images correspond to the 85-th
subframe of a 200×200×128 synthetic video. Figure 8(a) shows the original
subframe, which is the 5-th frame of a set of 16 frames that were reconstructed
together (frames 81 to 96). In this set of frames, the white circle (shown in
the top of the image) moves to the top region of the image, hits the top edge,
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and then moves to the bottom right region. This particular frame (the 85th)
shows the moment when the white circle is at the edge.

The quality of the FS frame reconstruction, shown in Figure 8(b), is not
very good showing an ‘interference’ of the adjacent frames. PPS1 frame re-
construction (see Figure 8(c)) does not show traces of adjacent (previous or
subsequent) frames, since in PPS1 there is no temporal dependencies among
measurements corresponding to different subframes. However, a lot of origi-
nal information is missing, since the amount of acquired light is too low for
an accurate scene reconstruction. The PPS2 frame reconstruction, shown in
Figure 8(d), shows traces of adjacent subframes. This shows that time de-
pendence in measurements may influence the quality of the reconstruction,
especially for areas where there is scene movement. We observe that the
higher the Sub-sampling ratio, the greater this dependence and, therefore,
the more traces of adjacent frames are present in the reconstructed frame.

PPM shows how these two problems can be addressed simultaneously.
Figures 7(e) and 7(f) show frame pictures reconstructed using the PPM1 and
PPM2 variations of the proposed method, respectively. We observe that, in
these reconstructed frames, there are no traces of the adjacent subframes. In
addition, since 100% of light is acquired, the scene has more of the original
content than results obtained with PPS1. The quality of the PPM2 recon-
struction (Figure 8(f)) is better than the quality of the PPM1 reconstruction
(Figure 8(e)), showing that the use of a random mirror pattern for each sub-
frame leads to better results. Overall, we see that methods with temporal
independence are able to better separate the temporal information.

5.3. Part 3: Tests with Natural Videos

The synthetic (phantom based) videos used in the previous section are
very sparse with respect to the finite difference domain, as measured by the
TV operator. So, TV minimization results are, in general, good. Unfortu-
nately, natural videos are not as sparse as phantom based videos. In this
section, we present results obtained testing the acquisition methods on nat-
ural videos. Since previous results show that spatial resolution has a greater
impact on the reconstruction quality than the number of frames, we set the
number of frames to a minimum value and varied the spatial resolution.
Since the number of frames depends on the Sub-sampling ratio, to test a
Sub-sampling ratio of 1/16, we need at least 16 video frames.

The 12 original videos used in this test are from The Consumer Digital
Video Library (CDVL). The videos are uncompressed (.avi format) with
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resolution 720 × 1280, with 50 FPS and 4:2:0 color sampling. For these
videos, we choose 1 set of 16 frames and converted them to gray levels.
Figure 9 shows the first and last frame of each of the 16 frames selected.
The greater the difference between the first and last frame, the higher the
temporal activity of the video. For the test, it is important that the videos
are high quality, containing no visible degradations.

v1, frame 1 v1, frame 16 v7, frame 1 v7, frame 16

v2, frame 1 v2, frame 16 v8, frame 1 v8, frame 16

v3, frame 1 v3, frame 16 v9, frame 1 v9, frame 16

v4, frame 1 v4, frame 16 v10, frame 1 v10, frame 16

v5, frame 1 v5, frame 16 v11, frame 1 v11, frame 16

v6, frame 1 v6, frame 16 v12, frame 1 v12, frame 16

Figure 9: First and last frames of each of the 12 original videos.

In the tests performed on phantoms, the best results for the higher Sub-
sampling ratios were obtained for PPS2 and PPM2. Since the tests on HD
content require a considerable amount of time and disk space, we choose not
to re-test the FS, PPS1 and PPM1 methods. But, as our method allows
a frame-by-frame reconstruction, we added two variations to the proposed
methodology. First, with the same PPM2 measurements, we perform a TV2D
reconstruction of each frame individually. We take the first M/16 samples
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Table 4: Mean SNR (dB) for natural videos reconstructed with PPS and PPM methods,
with a Sub-sampling ratio of 1/16.

Video PPS2 PPM2 PPM-2D PPM3
k 4 8 16 4 8 16 4 8 16 4 8 16

1 11.3 10.0 8.4 12.7 9.1 7.3 15.0 12.4 10.7 15.8 13.2 11.5
2 15.1 13.4 11.9 17.4 12.3 10.0 20.2 17.0 14.7 20.4 17.5 15.3
3 18.4 17.9 14.6 21.7 13.9 11.1 27.7 23.9 21.3 27.1 24.0 21.7
4 12.1 10.2 9.2 15.0 12.1 10.4 17.0 14.7 13.3 17.2 14.9 13.5
5 13.3 12.0 10.1 18.9 11.8 8.4 30.2 25.9 22.2 25.9 22.0 19.7
6 16.7 14.4 13.5 17.3 12.3 9.7 24.3 20.9 18.7 22.0 19.4 17.9
7 11.7 9.6 7.2 14.3 10.4 8.6 24.1 21.8 20.4 19.7 17.4 17.0
8 11.9 10.5 8.8 14.8 9.5 7.0 19.8 16.7 14.4 19.2 16.6 14.5
9 10.6 8.0 5.8 14.0 8.5 5.5 23.0 21.0 18.6 22.9 20.6 18.2
10 16.0 13.1 11.6 20.8 11.6 8.5 26.5 22.8 20.1 28.0 24.1 21.3
11 17.4 14.5 13.4 20.4 14.9 12.2 29.2 25.1 21.5 26.5 23.2 20.5
12 13.2 11.1 9.2 14.8 10.5 8.7 25.2 21.3 18.5 22.5 19.6 17.1

Mean 14.0 12.5 10.3 16.8 11.4 9.0 23.5 20.3 17.9 22.3 19.4 17.3

and reconstruct the first frame, take the next M/16 samples and reconstruct
the second frame, and repeat this until the last frame. We call this configu-
ration PPM-2D. The second variation of PPM2 consists of taking the video
generated by PPM-2D and reconstructing it again with TV3D. We call this
configuration PPM3.

Tables 4 and 5 show the SNR and the structural similarity (SSIM)1 index
[37] values, respectively, for the reconstruction images obtained with PPS2,
PPM2, PPM-2D, and PPM3, considering Sub-sampling ratios equal to 1/4,
1/8, and 1/16. The last lines of these tables show the average results for
all videos. Overall, PPM-2D and PPM3 present the best SNR results, with
PPM-2D performing best on average and in most cases (8 out of 12). Al-
though PPM3 SSIM values are higher for almost half of the videos, SSIM
results are mostly in agreement with the SNR results with PPM-2D providing
(on average) better quantitative results.

Comparing the PPS2 and PPM2 reconstructions, PPM2 has better results
for the Sub-sampling ratio of 1/4, with an average SNR of 14 dB for PPS2
versus 16.8 for PPM2. For higher Sub-sampling ratios, PPS2 performs better

1SSIM values vary from ‘0’ to ‘1’, with ‘1’ corresponding to an image with a quality
level that is equal to the quality of the original image and ‘0’ corresponding to extremely
degraded image.

21



Table 5: Mean SSIM for natural videos reconstructed with PPS and PPM methods, with
a Sub-sampling ratio of 1/16.

Video PPS2 PPM2 PPM-2D PPM3
k 4 8 16 4 8 16 4 8 16 4 8 16

1 0.506 0.337 0.193 0.387 0.223 0.129 0.471 0.309 0.194 0.496 0.342 0.224
2 0.621 0.381 0.187 0.599 0.340 0.198 0.691 0.492 0.317 0.706 0.532 0.361
3 0.299 0.193 0.092 0.321 0.130 0.068 0.471 0.314 0.195 0.469 0.322 0.208
4 0.478 0.299 0.184 0.440 0.251 0.142 0.522 0.336 0.206 0.540 0.362 0.231
5 0.494 0.305 0.163 0.407 0.169 0.085 0.771 0.644 0.509 0.648 0.502 0.403
6 0.366 0.150 0.084 0.303 0.139 0.072 0.539 0.368 0.234 0.461 0.315 0.210
7 0.251 0.135 0.069 0.239 0.119 0.070 0.536 0.367 0.253 0.394 0.254 0.183
8 0.450 0.272 0.149 0.411 0.196 0.105 0.596 0.424 0.281 0.570 0.416 0.280
9 0.407 0.229 0.120 0.233 0.103 0.053 0.385 0.257 0.179 0.404 0.268 0.189
10 0.595 0.444 0.356 0.447 0.172 0.091 0.607 0.438 0.300 0.678 0.521 0.378
11 0.476 0.202 0.161 0.364 0.174 0.095 0.643 0.457 0.300 0.566 0.407 0.280
12 0.282 0.137 0.066 0.237 0.117 0.066 0.528 0.360 0.231 0.450 0.318 0.204

Mean 0.435 0.257 0.152 0.366 0.178 0.098 0.563 0.397 0.267 0.532 0.380 0.262

than PPM2 in most cases. However, for videos 4 and 7, PPM2 performs
better. Taking a closer look at these videos, we notice that the video content
is affecting the results. Video 4 has 2 frames with no visual information and
14 frames consisting of a man walking. Video 7 has lots of camera movements,
including a zoom, what generates fast transitions between frames. In general,
we notice for videos with a high temporal activity, PPM2 performs better
than PPS2.

Figure 10 shows the results obtained for video 7. Notice that, contrary
to PPS2, PPM2 gene a frame with well defined edges and low inter-frame
information, but with a lot of noise. PPM3 has much better results, with
images with defined edges and small amounts of noise. However, PPM-2D
shows even better results than PPM3. These results are in agreement with
SSIM and SNR quantitative results. Note that, as each frame is reconstructed
separately, there is no content mixture among adjacent frames and even less
noise. This suggests that the proposed methods obtain better results for
videos with a higher content transition.

Figure 11(a) shows a 600×600 detail of the first frame of video 9. Note
that, in the original frame there is a shadow that covers the man’s back.
This shadow moves during the video and is not present in the last frame.
Figures 11(b), (c), (d), and (e) show the frame reconstructions using PPS2,
PPM2, PPM-2D and PPM3, respectively, with a 1/16 Sub-sampling ratio.
For the frame reconstructed with PPS2, the back of the man appears in
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(a) original, frame 1 (b) original, frame 16

(c) frame 1, PPS2, SNR=7.6 (d) frame 16, PPS2, SNR=5.3

(e) frame 1, PPM2, SNR=6.7 (f) frame 16, PPM2, SNR=7.3

(g) frame 1, PPM-2D, SNR=22.5 (h) frame 16, PPM-2D, SNR=12.1

(i) frame 1, PPM3, SNR=20.2 (i) frame 16, PPM3, SNR=11.2

Figure 10: Reconstructions of the first and last frames of video 7, using PPS2, PPM2,
PPM-2D, and PPM3, at a Sub-sampling ratio of 1/16 (6.25% of samples). In these exam-
ples, the methods performed differently over the whole frames.
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(a) original

(b) PPS2 (c) PPM2

(d) PPM-2D (e) PPM3

Figure 11: Results obtained for video 9, using the acquisition methods PPS2, PPM2,
PPM-2D, and PPM3, with a Sub-sampling ratio of 1/16. The white marks represent
regions where the 4 methods performed very differently.

every frame (although it is not visible in the original). Therefore, PPS2
is not able to separate the content of adjacent frames, as a consequence of
temporal dependency. PPM2 generates a noisy reconstruction. Both PPM-
2D and PPM3 got much better results, with PPM-2D showing slightly better
SNR values than PPM3. Visually, PPM3 results seem to be a little better,
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showing less of the characteristic TV minimization artifacts. Although the
SNR values for this video are higher for PPM2, the SSIM values are higher
for PPM3 in accordance with the qualitatively results.

6. Conclusions

We proposed a new video acquisition method for high-speed reconstruc-
tion. The per-pixel mirror-based method (PPM) spatially mixes the light
using micro-mirrors, in such way that no light is discarded. To maintain time
independence among measurements, light is separated for each subframe. Up
to our knowledge, no method in literature ensures both time independence
and no information loss. Therefore, we believe PPM is a promising technique.

We performed a set of reconstruction simulations with the proposed acqui-
sition methods and the methods available on literature. For natural images,
the proposed method (PPM) showed the best results. For the synthetic
sparse videos, PPM2 presented the best results in terms of reconstruction
quality, showing a great SNR improvement when compared to other meth-
ods. When tested on natural high definition videos, PPM2 performs better
than PPS2 for videos with a high spatial activity. The introduction of two
PPM2 adaptations (PPM-2D and PPM3) improved the results, providing re-
constructed video frames with a very good quality (both quantitatively and
qualitatively).

The main limitation of the proposed method is the HPDMD required
for its implementation, which at the moment is not commercially available.
Therefore, future works include building a HPDMD prototype and imple-
menting other variations of the PPM methodologies.
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